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General Decay for Semilinear Abstract Second-order Viscoelastic Equation in Hilbert

Spaces with Time Delay

Houria Chellaoua and Yamna Boukhatem

abstract: The paper is concerned with semilinear abstract second-order viscoelastic equation with time
delay and a relaxation function satisfying h′(t) ≤ −ζ(t)G(h(t)). Under suitable conditions, we establish
explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some
proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous
results without time delay term to those with delay.
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1. Introduction

Let H be a real Hilbert space with inner product and related norm denoted by 〈., .〉 and ‖ . ‖,
respectively. Let A : D(A) −→ H and B : D(B) −→ H be a self-adjoint linear positive operator with
domains D(A) ⊂ D(B) ⊂ H such that the embeddings are dense and compact. h : R+ −→ R+ is the
kernel of the memory term, τ > 0 represents a time delay and F : D(A

1

2 ) → H is function satisfying
some conditions to be specified later.

In this work, we consider the following semilinear abstract second-order evolution equation







utt(t) +Au(t) −
∫ t

0 h(t− s)Bu(s)ds+ µ1ut(t) + µ2ut(t− τ ) = F (u(t)), t ∈ (0,+∞),
ut(t− τ ) = f0(t− τ ) t ∈ (0, τ),
u(0) = u0, ut(0) = u1,

(1.1)

where the initial datum (u0, u1, f0) belongs to suitable spaces, µ1 is a positive constant and µ2 is a real
number such that

|µ2| ≤ µ1. (1.2)

In the absence of delay (µ2 = 0), there exist in the literature different stability results for this type
of problems. Dafermos in [14] studied the system (1.1) where µ1 = 0. He showed that the energy tends
asymptotically to zero, but he didn’t give the decay rate.
Under the following condition on h

∃δ > 0 : h′(t) ≤ −δh(t), ∀t ∈ R+. (1.3)
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Many authors have established the exponential decay of solutions of this system, see [24,25,16,33] and
references therein.

Messaoudi in [22] gave a general decay rate of which the exponential and the polynomial decay rates
are special cases. Precisely, he considered relaxation functions satisfying

h′(t) ≤ −ζ(t)h(t), ∀t ∈ R+, (1.4)

where ζ is a nonincreasing positive differentiable function. After that, Alabau-Boussouira et al. [2]
introduced the following condition

h′(t) ≤ −G(h(t)), ∀t ∈ R+,

where G is a convex function which appeared in many papers, see [11,20,34,26].
Recently, Mustafa in [28] established an explicit energy decay result where the exponential and the

polynomial decay rates are recovered, under a general condition on the relaxation function, h′(t) ≤
−ζ(t)hp(t), with 1 ≤ p < 2. In [29], the same author established an optimal explicit and general decay
result when the relaxation function h satisfy

h′(t) ≤ −ζ(t)G(h(t)), ∀t ∈ R+, (1.5)

where G is an increasing and convex function. For some works used (1.5), we refer to read [30,23,6,17]
Time delays arises in many applications and practical problems and in many cases, even small delay

may destabilize a system which is asymptotically stable in the absence of delay, in this sense, see [15,5,31].
A large part in the literature is available addressing the stability, instability and the connection between
the memory term, the frictional damping and the delay terms. In particular, for wave equation with
constant or variable delay, we refer to read [3,31,32]. They showed that the frictional damping term is
strong enough to stabilize the system when the weight of the delay be sufficiently small. In [19], Kirane
and Said-Houari considered the following wave equation

utt(t) − ∆u(t) +

∫ t

0

h(t− s)∆u(s)ds+ µ1ut(t) + µ2ut(t− τ ) = 0,

where µ1 and µ2 are positive constants. They established the energy decay under the condition µ2 ≤ µ1

in the case of relaxation functions satisfy (1.4). Recently, there are different results according to the
general decay for several problems with internal or boundary feedback and for constant or variable delay.
For instance, Chellaoua and Boukhatem in [13] considered the following abstract viscoelastic equation
with time-varying delay

utt(t) +Au(t) −
∫ t

0

h(t− s)Bu(s)ds+ µ1ut(t) + µ2ut(t− τ (t)) = 0.

They established optimal decay results of the stability of energy for a wider class of kernel memory

functions; condition (1.5), under the condition |µ2| ≤ 2(1−d)
2−d

µ1, where the constant d satisfies τ ′(t) ≤ d <

1, for all t > 0. In [12], the same results have been established by the previous authors for problem (1.1)
in the absence of source term (F = 0) and infinite memory. For more papers have been concerned with
the study of general decay results in the case of constant or varying time delay, see [27,7,21,9,18,8] and
references therein.

In this work, we are interested in giving optimal, explicit and general decay rates of solution of
problem (1.1) under some suitable assumptions. More precisely, we are intending to extend the results of
Messaoudi [23] and Mustafa [30] to the abstract viscoelastic equation with time delay in Hilbert spaces;
the system (1.1). To the best of our knowledge, there is no decay result for problems with delay where
the relaxation functions satisfy (1.5) in the abstract form and the presence of source term. Moreover, our
problem generalizes the earlier problems without time delay term to those with time delay.

The paper is organized as follows. In Section 2, we state and prove some preliminary results under
suitable hypothesis. In Section 3, we present some technical lemmas needed for our work. Then, we
establish the decay results of the energy by using the energy method to produce a suitable Lyapunov
functional in the Section 4. Finally, Section 5 is devoted to give some concrete applications to illustrate
our abstract result.
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2. Preliminary results

In this section, we present some material that we shall use in order to present our results and we state
the existence result of problem (1.1). Let us consider the following assumptions:

(A1) There exist positive constants a, b and d satisfying

b ‖u‖2 ≤
∥

∥

∥
B

1

2 u
∥

∥

∥

2

≤ a
∥

∥

∥
A

1

2 u
∥

∥

∥

2

, ∀u ∈ D(A
1

2 ), (2.1)

∥

∥

∥
A

1

2u
∥

∥

∥

2

≤ d
∥

∥

∥
B

1

2u
∥

∥

∥

2

, ∀u ∈ D(A
1

2 ). (2.2)

(A2) The kernel memory function h : R+ −→ R+ is nonincreasing function of class C1 satisfying

h(0) > 0, h0 =

∫ +∞

0

h(s)ds <
1

a
. (2.3)

Moreover, there exists a C1 function G : [0,+∞) → [0,+∞) which is linear or it is strictly increasing
and strictly convex C2 function on (0, r], r ≤ h(0), with G(0) = G′(0) = 0, such that

h′(t) ≤ −ζ(t)G(h(t)), ∀t ≥ 0, (2.4)

where ζ : R+ → R+ is a nonincreasing differentiable function.
(A3) The functions F is locally lipschitz mapping and there exist a continuous and differentiable

mapping F : D(A
1

2 ) → [0,+∞) satisfying DF = F and

〈F (u), u〉 ≥ F (u), ∀u ∈ D(A
1

2 ). (2.5)

Moreover, there exists an increasing continuous function ψ : [0,+∞) → [0,+∞), with ψ(0) = 0, such
that

|〈F (u), v〉| ≤ ψ
(∥

∥

∥
A

1

2u
∥

∥

∥

)∥

∥

∥
A

1

2u
∥

∥

∥

∥

∥

∥
A

1

2 v
∥

∥

∥
, ∀u, v ∈ D(A

1

2 ). (2.6)

Remark 2.1. If G is a strictly increasing and strictly convex C2 function on (0, r], with G(0) = G′(0) =
0, then G has an extension G which is a strictly increasing and strictly convex C2 function on [0,+∞).
Moreover, we can define G by

G(t) =
c

2
t2 + (b − cr)t+

(

a+
c

2
r2 − br

)

, for t > r, (2.7)

where a = G(r), b = G′(r) and c = G′′(r).

Lemma 2.1. For δ and t1 be positive constants, we have

h′(t) ≤ −δh(t), ∀t ∈ [0, t1].

Proof: Similarly to [30], from assumption (A2), we clearly deduce that limt→+∞ h(s) = 0. Therefore,
there exists t1 > 0 large enough such that

h(t1) = r and h(t) ≤ r, ∀t ≥ t1. (2.8)

By using the fact that h and ζ are positive nonincreasing continuous and G is a positive continuous
function, we get, for all t ∈ [0, t1],

{

0 < h(t1) ≤ h(t) ≤ h(0)
0 < ζ(t1) ≤ ζ(t) ≤ ζ(0),

which gives, for two positive constants δ1 and δ2,

δ1 ≤ ζ(t)G(h(t)) ≤ δ2.
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Consequently, for all t ∈ [0, t1],

h′(t) ≤ −ζ(t)G(h(t)) ≤ − δ1

h(0)
h(0) ≤ − δ1

h(0)
h(t). (2.9)

�

In the following remark, we present the inequality of Jensen which will be used in establishing our
main result.

Remark 2.2. If Q is a convex function on [a, b], f : Ω → [a, b] and h are integrable functions on
Ω, h(x) ≥ 0, and

∫

Ω h(x)dx = k > 0, then Jensen’s inequality states that

Q

[

1

k

∫

Ω

f(x)h(x)dx

]

≤ 1

k

∫

Ω

Q[f(x)]h(x)dx.

In the following result, we state, without proof, the local existence, uniqueness and regularity of
(2.10), see [7,10].

Proposition 2.1. Under the assumptions (A1)-(A3), for an initial datum (u0, u1) ∈ D(A
1

2 ) × H, the
system (2.10) has a unique local mild solution u such that

u ∈ C
(

0, T ;D(A
1

2 )
)

∩ C1(0, T ;H).

Moreover, if (u0, u1) ∈ D(A
1

2 ) ×D(A
1

2 ), then the solution of (2.10) satisfies (classical solution)

u ∈ C
(

0, T ;D(A
1

2 )
)

∩ C1
(

0, T ;D(A
1

2 )
)

∩ C2(0, T ;H).

In order to state and prove the desired results, as in [31], we introduce the variable z by

z(ρ, t) = ut(t− ρτ), ρ ∈ (0, 1), t > 0,

therefore, the problem (1.1) takes the following form























utt(t) +Au(t) −
∫ t

0
h(t− s)Bu(s)ds+ µ1ut(t) + µ2z(1, t) = F (u(t)), t ∈ (0,+∞),

τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0, 1), t > 0,
z(ρ, 0) = f0(−ρτ ), ρ ∈ (0, 1),
z(0, t) = ut(t) t ≥ 0,
u(0) = u0, ut(0) = u1, t ≥ 0.

(2.10)

Now, let us define the modified energy functional E associated with problem (2.10) by

E(t) =
1

2

(

∥

∥

∥
A

1

2u
∥

∥

∥

2

−
∫ t

0

h(s)ds
∥

∥

∥
B

1

2u
∥

∥

∥

2

+ ‖ut‖2 + (h ⋄B 1

2u)(t) − 2F (u) + ξτ

∫ 1

0

‖z(ρ, t)‖2
dρ

)

,

(2.11)
for all t ∈ R+ and the initial energy is given by

E(t) =
1

2

(

∥

∥

∥
A

1

2u0

∥

∥

∥

2

+ ‖u1‖2 − 2F (u0) + ξτ

∫ 0

−τ

‖f0(s)‖2
ds

)

, (2.12)

where

(h ⋄B 1

2u)(t) =

∫ t

0

h(t− s)
∥

∥

∥
B

1

2u(t) −B
1

2u(s)
∥

∥

∥

2

ds (2.13)

and ξ is a positive constant (note that ξ exists according to (1.2)) such that

|µ2| ≤ ξ ≤ 2µ1 − |µ2|. (2.14)
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Lemma 2.2. Assume that (A1)-(A3) hold. Then, the energy functional defined by (2.11) satisfies

E′(t) ≤ 1

2
(h′ ⋄B 1

2u)(t) ≤ 0, ∀t ∈ R+. (2.15)

Proof: By using the first equation of (2.10), we get

1

2

d

dt

(

‖ut‖2 +
∥

∥

∥
A

1

2 u
∥

∥

∥

2

− 2F (u)

)

+ µ1‖ut‖2 + µ2 〈z(1, t), ut〉 =

∫ t

0

h(t− s) 〈Bu(s), ut(t)〉 ds. (2.16)

On the other hand, we can easily check that

2

∫ t

0

h(t− s) 〈Bu(s), ut(t)〉 ds =
d

dt

[
∫ t

0

h(s)ds
∥

∥

∥
B

1

2 u
∥

∥

∥

2

− (h ⋄B 1

2u)(t)

]

+ (h′ ⋄B 1

2u)(t) − h(t)
∥

∥

∥
B

1

2 u
∥

∥

∥

2

.

(2.17)
Similarly, by the second equation of (2.10), we have

ξτ
d

dt
‖z(ρ, t)‖2 + ξ

∂

∂ρ
‖z(ρ, t)‖2 = 0.

Integration over (0, 1), with respect to ρ, yields

ξτ

∫ 1

0

d

dt
‖z(ρ, t)‖2dρ = ξ

(

‖ut(t)‖2 − ‖z(1, t)‖2
)

. (2.18)

Then, by using Cauchy-Schwarz’s and Young’s inequalities and inserting (2.17) and (2.18) in (2.16), we
get

E′(t) ≤ 1

2
(h′ ⋄B 1

2u)(t) − 1

2
h(t)

∥

∥

∥
B

1

2u
∥

∥

∥

2

+

( |µ2|
2

− µ1 +
ξ

2

)

‖ut(t)‖2 +

( |µ2|
2

− ξ

2

)

‖z(1, t)‖2

≤ 1

2
(h′ ⋄B 1

2u)(t) − 1

2
h(t)

∥

∥

∥
B

1

2u
∥

∥

∥

2

− C
(

‖ut(t)‖2 + ‖z(1, t)‖2
)

,

where

C = min

{

µ1 − |µ2|
2

− ξ

2
,
ξ

2
− |µ2|

2

}

,

which is positive by (2.14). This completes the proof of the Lemma. �

By using Lemma 2.2, we prove the global existence of solution of problem (2.10) under small initial
conditions.

Theorem 2.1. Assume that (A1)-(A3) hold and there exist a positive constant ρ0 such that for any
(u0, u1, f0) ∈ D(A

1

2 ) × H × L2(−τ , 0;H) satisfying

(

‖A 1

2 u0‖ + ‖u1‖2 +

∫ 0

−τ

‖f0(s)‖2ds

)

1

2

< ρ0,

The problem (2.10) admits a unique mild solution u on [0,+∞).

Proof: From the proposition 2.1, the problem admits a unique local solution u in a maximal time interval
[0, T ). Now, similarly to [1] and by using (2.5), (2.6) and (2.12), we have

E(0) ≥ 1

2
‖u1‖2 +

1

2

∥

∥

∥
A

1

2u0

∥

∥

∥

2

− F (u0) ≥ 1

2
‖u1‖2 +

l

4

∥

∥

∥
A

1

2 u0

∥

∥

∥

2

≥ 0,

if ψ
(∥

∥

∥
A

1

2 u
∥

∥

∥

)

< l
4 where l = (1 − ah0). Furthermore, we show that if

ψ
(∥

∥

∥
A

1

2 u
∥

∥

∥

)

<
l

4
and ψ

(

2

(

E(0)

l

)
1

2

)

<
l

4
, (2.19)
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then

E(t) ≥ 1

2
‖ut(t)‖2 +

1

2

∥

∥

∥
A

1

2u(t)
∥

∥

∥

2

−
∫ t

0
h(s)ds

2

∥

∥

∥
B

1

2 u(t)
∥

∥

∥

2

− F (u(t))

≥ 1

2
‖ut(t)‖2 +

1

2

∥

∥

∥
A

1

2u(t)
∥

∥

∥

2

− h0

2

∥

∥

∥
B

1

2 u(t)
∥

∥

∥

2

− F (u(t))

≥ 1

2
‖ut(t)‖2 +

l

4

∥

∥

∥
A

1

2u(t)
∥

∥

∥

2

, ∀t ∈ [0, T ). (2.20)

Now, let consider r the supremum of all s ∈ [0, T ) such that (2.20) holds true for any t ∈ [0, s]. Suppose
r < T . By continuity of the function E, we obtain

E(r) ≥ 1

2
‖ut(r)‖2 +

l

4

∥

∥

∥
A

1

2 u(r)
∥

∥

∥

2

≥ 0. (2.21)

Hence, from (2.21), we have

ψ
(∥

∥

∥
A

1

2u(r)
∥

∥

∥

)

≤ ψ

(

2

(

E(r)

l

)
1

2

)

≤ ψ

(

2

(

E(0)

l

)
1

2

)

<
l

4
,

which gives

E(r) ≥ 1

2
‖ut(r)‖2 +

1 − ah0

2

∥

∥

∥
A

1

2 u(r)
∥

∥

∥

2

− F (u(r))

≥ 1

2
‖ut(r)‖2 +

(

l

2
− l

4

)

∥

∥

∥
A

1

2u(r)
∥

∥

∥

2

=
1

2
‖ut(r)‖2 +

l

4

∥

∥

∥
A

1

2 u(r)
∥

∥

∥

2

.

This contradicts the maximality of r. Let

ρ0 =

√
l

2
ψ−1

(

l

4

)

> 0.

then ψ
(∥

∥

∥
A

1

2 u
∥

∥

∥

)

< l
4 . For any u0 ∈ D(A

1

2 ), u1 ∈ H and f0) ∈ L2(−τ , 0;H) such that

(

∥

∥

∥
A

1

2u0

∥

∥

∥

2

+ ‖u1‖2 +

∫ 0

−τ

‖f0(s)‖2ds

)

1

2

< ρ0. (2.22)

This assumption implies that
∥

∥

∥
A

1

2 u0

∥

∥

∥
< ρ0, so, we have

ψ
(
∥

∥

∥
A

1

2u0

∥

∥

∥

)

< ψ(ρ0) = ψ

( √
l

2
ψ−1

(

l

4

)

)

.

Moreover, by using (2.5) and (2.6), we obtain

E(0) ≤ 1

2
‖u1‖2 +

1

2

∥

∥

∥
A

1

2u0

∥

∥

∥
+

1

2

∫ 0

−τ

‖f0(s)‖2ds

≤
(

∥

∥

∥
A

1

2u0

∥

∥

∥
+ ‖u1‖2 +

∫ 0

−τ

‖f0(s)‖2ds

)

< ρ2
0,

and, by definition of ρ0, we deduce that

ψ

(

2

(

E(0)

l

)
1

2

)

< ψ

(

ψ−1

(

l

4

))

=
l

4
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In addition, under the assumption (2.22) and (2.19), we get

0 ≤ 1

2
‖ut(t)‖2 +

l

4

∥

∥

∥
A

1

2u(t)
∥

∥

∥

2

≤ E(t) ≤ E(0) ≤ ρ2
0. (2.23)

Thus, the energy function is nonnegative on [0, T ) and bounded which means that the solution exists on
[0,+∞) and from (2.23), we have

ψ
(∥

∥

∥
A

1

2u(t)
∥

∥

∥

)

≤ ψ

(

2

(

E(t)

l

)
1

2

)

≤ ψ

(

2

(

E(0)

l

)
1

2

)

<
l

4
, ∀t ≥ 0. (2.24)

This completes the proof of Theorem 2.1. �

3. Technical Lemmas

In the section, we state and prove some technical Lemmas in order to prove the desired results.

Lemma 3.1. Let u be the solution of (2.10). Then the functional

I1(t) = 〈ut(t), u(t)〉, (3.1)

satisfies, for δ1 > 0 and for all t ≥ 0

I ′
1(t) ≤

(

1 +
µ1

4δ1

)

‖ut‖2 −
(

l

2
− a

b
δ1(µ1 + |µ2|)

)

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
aCα

2l
(k ⋄B 1

2u)(t) +
|µ2|
4δ1

‖z(1, t)‖2
, (3.2)

for any 0 < α < 1, where

Cα =

∫ +∞

0

h2(s)

αh(s) − h′(s)
ds and k(t) = αh(t) − h′(t). (3.3)

Proof: Differentiating (3.1) with respect to t, we find

I ′
1(t) = ‖ut‖2 + 〈utt(t), u(t)〉.

On the other hand, multiplying the first equation of (2.10) by u(t), we have

〈utt(t), u(t)〉 + 〈Au(t), u(t)〉 −
〈
∫ t

0

h(t− s)Bu(s)ds, u(t)

〉

+µ1〈ut(t), u(t)〉 + µ2〈z(1, t), u(t)〉 = 〈F (u(t)), u(t)〉 ,

By the definitions of A
1

2 and B
1

2 , we have

I ′
1(t) = ‖ut‖2 −

∥

∥

∥
A

1

2u
∥

∥

∥

2

+

∫ t

0

h(s)ds
∥

∥

∥
B

1

2 u
∥

∥

∥

2

+

〈
∫ t

0

h(t− s)B
1

2 (u(s) − u(t)) ds,B
1

2u(t)

〉

−µ1〈ut(t), u(t)〉 − µ2〈z(1, t), u(t)〉 + 〈F (u(t)), u(t)〉 . (3.4)

By using Cauchy-Schwarz’s and Young’s inequalities and (2.1), we have, for δ1 > 0

−µ1〈ut(t), u(t)〉 ≤ µ1

4δ1
‖ut(t)‖2

+
aµ1δ1

b

∥

∥

∥
A

1

2u
∥

∥

∥

2

, (3.5)

−µ2〈z(1, t), u(t)〉 ≤ |µ2|
4δ1

‖z(1, t)‖2
+
a|µ2|δ1

b

∥

∥

∥
A

1

2 u
∥

∥

∥

2

, (3.6)

〈
∫ t

0

h(t− s)B
1

2 (u(s) − u(t))ds,B
1

2u(t)

〉

≤ l

4

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
a

l

∥

∥

∥

∥

∫ t

0

h(t− s)B
1

2 (u(s) − u(t))ds

∥

∥

∥

∥

2

(3.7)
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and, using (2.6) and (2.24), we obtain

〈F (u(t)), u(t)〉 ≤ ψ2

(∥

∥

∥
A

1

2u
∥

∥

∥

)∥

∥

∥
A

1

2 u
∥

∥

∥

2

≤ l

4

∥

∥

∥
A

1

2u
∥

∥

∥

2

. (3.8)

Moreover, we have

∥

∥

∥

∥

∫ t

0

h(t− s)B
1

2 (u(s) − u(t))ds

∥

∥

∥

∥

2

≤
(
∫ t

0

h(t− s)
∥

∥

∥
B

1

2 (u(s) − u(t))
∥

∥

∥
ds

)2

≤
(

∫ t

0

h(t− s)
√

αh(t− s) − h′(t− s)

√

αh(t− s) − h′(t− s)
∥

∥

∥
B

1

2 (u(s) − u(t))
∥

∥

∥
ds

)2

≤
(
∫ t

0

h2(s)

αh(s) − h′(s)
ds

)
∫ t

0

(αh(t− s) − h′(t− s))
∥

∥

∥
B

1

2 (u(s) − u(t))
∥

∥

∥

2

ds

≤ Cα(k ⋄B 1

2u)(t). (3.9)

Substituting the inequalities (3.5), (3.6), (3.7) and (3.9) in (3.4), we get (3.2). �

Lemma 3.2. Let u be the solution of (2.10). Then the functional

I2(t) = −
〈

ut(t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

, (3.10)

satisfies, for ε > 0 and for all t ≥ 0

I ′
2(t) ≤ (ε−

∫ t

0

h(s)ds)‖ut‖2 + ε
∥

∥

∥
A

1

2 u
∥

∥

∥

2

+ µ2

〈

z(1, t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

+
c(Cα + 1)

ε
(k ⋄B 1

2u)(t), (3.11)

where c = max
{

c′

b
, d+ ε+ l2

16b
+

µ2

1

2b
+

ah2

0

2 + α2

b

}

.

Proof: Differentiating (3.10) with respect to t, we find

I ′
2(t) = −

〈

utt(t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

−
〈

ut(t),

∫ t

0

h′(t− s)(u(t) − u(s))ds

〉

−
∫ t

0

h(s)ds‖ut‖2.

Then, using the first equation of (2.10) and using the definitions of A
1

2 and B
1

2 , we get

I ′
2(t) = −

∫ t

0

h(s)ds‖ut‖2 + µ1

〈

ut(t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

+µ2

〈

z(1, t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

−
〈

F (u(t)),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

−
〈

ut(t),

∫ t

0

h′(t− s)(u(t) − u(s))ds

〉

+

〈

A
1

2u(t),

∫ t

0

h(t− s)A
1

2 (u(t) − u(s))ds

〉

−
∫ t

0

h(s)ds

〈

B
1

2 u(t),

∫ t

0

h(t− s)B
1

2 (u(t) − u(s))ds

〉

(3.12)

+

∥

∥

∥

∥

∫ t

0

h(t− s)B
1

2 (u(s) − u(t))ds

∥

∥

∥

∥

2

. (3.13)
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By using Cauchy-Schwarz’s and Young’s inequalities, (2.1), (2.2), (2.3) and (3.9) , we get, for ε > 0

µ1

〈

ut(t),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

≤ ε

2
‖ut(t)‖2

+
µ2

1

2ε

∥

∥

∥

∥

∫ t

0

h(t− s)(u(t) − u(s))ds

∥

∥

∥

∥

2

≤ ε

2
‖ut(t)‖2

+
µ2

1Cα

2bε
(k ⋄B 1

2u)(t),

〈

A
1

2 u(t),

∫ t

0

h(t− s)A
1

2 (u(t) − u(s))ds

〉

≤ ε

4

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
1

ε

∥

∥

∥

∥

∫ t

0

h(t− s)A
1

2 (u(t) − u(s))ds

∥

∥

∥

∥

2

≤ ε

4

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
dCα

ε
(k ⋄B 1

2u)(t)

and

−
〈

B
1

2u(t),

∫ t

0

h(t− s)B
1

2 (u(t) − u(s))ds

〉

≤ ε

2h0

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
ah0Cα

2ε
(k ⋄B 1

2u)(t).

Then, by using (2.6) and (2.24), we get

〈

F (u(t)),

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

≤ ε

4

∥

∥

∥
A

1

2u
∥

∥

∥

2

+
l2Cα

16bε
(k ⋄B 1

2 u)(t). (3.14)

On other hand, we have

−
〈

ut(t),

∫ t

0

h′(t− s)(u(t) − u(s))ds

〉

=

〈

ut(t),

∫ t

0

k(t− s)(u(t) − u(s))ds

〉

−
〈

ut(t),

∫ t

0

αh(t− s)(u(t) − u(s))ds

〉

≤ ε

2
‖ut(t)‖2 +

1

ε

(
∫ t

0

√

k(t− s)
√

k(t− s)‖u(t) − u(s)‖ds
)2

+
α2

ε

(
∫ t

0

h(t− s)‖u(t) − u(s)‖ds
)2

≤ ε

2
‖ut(t)‖2 +

(

∫ t

0
k(s)ds

εb
+
α2Cα

εb

)

(k ⋄B 1

2 u)(t) ≤ ε

2
‖ut(t)‖2 +

(

c′

εb
+
α2Cα

εb

)

(k ⋄B 1

2u)(t),

where c′ = αh0 + h(0). Then, inserting these five inequalities and the inequality (3.9) in (3.13), we get
(3.11). �

Lemma 3.3. Let u be the solution of (2.10). Then the functional

I3(t) = τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds, (3.15)

satisfies, for all t ≥ 0

I ′
3(t) ≤ −2τ

∫ 1

0

‖z(ρ, t)‖2ds+ e2τ ‖ut‖2 − ‖z(1, t)‖2. (3.16)

Proof: By using the second equation of (2.10), we get

I ′
3(t) = 2τe2τ

∫ 1

0

e−2τρ〈zt(ρ, t), z(ρ, t)〉dρ

= −2e2τ

∫ 1

0

e−2τρ ∂

∂ρ
‖z(ρ, t)‖2dρ.
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Then, by integrating by parts and z(0, t) = ut(t), we get

I ′
3(t) = −2τe2τ

∫ 1

0

e−2τρ‖z(ρ, t)‖2ds+ e2τ ‖ut‖2 − ‖z(1, t)‖2,

which is (3.16) by using the fact that e−2τρ ≥ e−2τ , for any ρ ∈]0, 1[. �

Lemma 3.4. Let u be the solution of (2.10). Then the functional

I4(t) =

∫ t

0

f(t− s)
∥

∥

∥
B

1

2u(s)
∥

∥

∥

2

ds, (3.17)

where f(t) =
∫ +∞

t
h(s)ds, satisfies,

I ′
4(t) ≤ −1

2
(h ⋄B 1

2 u)(t) + 3(1 − l)
∥

∥

∥
A

1

2u
∥

∥

∥

2

, ∀t ≥ 0. (3.18)

Proof: By differentiating (3.17), we get

I ′
4(t) = f(0)

∥

∥

∥
B

1

2 u
∥

∥

∥

2

+

∫ t

0

f ′(t− s)
∥

∥

∥
B

1

2 u(s)
∥

∥

∥

2

ds.

Then, by using Young’s inequality and the fact f ′(t) = −h(t)

I ′
4(t) = f(0)

∥

∥

∥
B

1

2u
∥

∥

∥

2

−
∫ t

0

h(t− s)
∥

∥

∥
B

1

2 u(s)
∥

∥

∥

2

ds

≤ h0

∥

∥

∥
B

1

2 u
∥

∥

∥

2

−
∫ t

0

h(t− s)
∥

∥

∥
B

1

2 (u(t) − u(s))
∥

∥

∥

2

ds− 2

〈

B
1

2u,

∫ t

0

h(t− s)B
1

2 (u(t) − u(s))ds

〉

.

But

−2

〈

B
1

2u,

∫ t

0

h(t− s)B
1

2 (u(t) − u(s))ds

〉

≤
∫ t

0 h(s)ds

2h0

∫ t

0

h(t− s)
∥

∥

∥
B

1

2 (u(t) − u(s))
∥

∥

∥

2

ds

+2h0

∥

∥

∥
B

1

2u
∥

∥

∥

2

.

Moreover, as
∫ t

0
h(s)ds ≤ f(0) = h0 and by using (2.1), we get (3.18) where ah0 = 1 − l. �

4. Stability results

In this section, we shall state and prove explicit and general decay rate results of the energy function
E. For this purose, we construct a Lyapunov functional L equivalent to E, with which we can show the
desired result. Let

L(t) = ME(t) +

3
∑

i=1

NiIi(t), (4.1)

where M , N1, N2 and N3 are positive constants.

Lemma 4.1. Assume that (A1)-(A3) hold, there exist two positive constants c1 and c2 such that

c1E(t) ≤ L(t) ≤ c2E(t). (4.2)

Proof: Using Cauchy-Schwarz’s and Young’s inequalities, we have

|L(t) − ME(t)| ≤ N1|〈ut, u〉| + N2

∣

∣

∣

∣

〈

ut(t),

∫ t

0

h(t − s)(u(t) − u(s))ds

〉
∣

∣

∣

∣

+ N3τe
2τ

∫

1

0

e
−2τρ‖z(ρ, t)‖2

ds

≤
N1 + N2

2
‖ut‖

2 +
aN1

2b

∥

∥

∥
A

1

2 u

∥

∥

∥

2

+
h0N2

2b
(h ⋄ B

1

2 u)(t) + N3τe
2τ

∫

1

0

‖z(ρ, t)‖2
ds

≤ CE(t),

Then, by choosing M so large, we have L ∼ E. �
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Lemma 4.2. The Lyapunov functional L defined in (4.1) satisfies

L′(t) ≤ −3(1 − l)
∥

∥

∥
A

1

2u
∥

∥

∥

2

− ‖ut‖2 +
1

4
(h ⋄B 1

2 u)(t), ∀t ≥ t1, (4.3)

under a suitable choice of M , N1, N2 and N3.

Proof: Combining (4.1), (2.15), (3.2), (3.11) and (3.16). Then, by using (3.3) and for h1 =
∫ t1

0 h(s)ds >
0, where t1 was introduced in (2.8), we have, for all t ≥ t1,

L
′(t) ≤ −

[

(h1 − ε)N2 −
(

1 +
µ

1

4δ1

)

N1 − N3e
2τ

]

‖ut‖
2 −
[(

l

2
−

a

b
δ1(µ

1
+ |µ

2
|)
)

N1 − εN2

]
∥

∥

∥
A

1

2 u

∥

∥

∥

2

+µ
2

〈

z(1, t), N2

∫

t

0

h(t − s)(u(t) − u(s))ds

〉

+
αM

2
(h ⋄ B

1

2 u)(t) − 2N3τ

∫

1

0

‖z(ρ, t)‖2
ds

−

[

M

2
−

aCα

2l
N1 −

c(Cα + 1)

ε
N2

]

(k ⋄ B
1

2 u)(t) −

(

N3 −
|µ

2
|

4δ1

N1

)

‖z(1, t)‖2
.

By using Cauchy-Schwarz’s and Young’s inequalities, (2.1) and (3.9), we get

〈

µ2z(1, t), N2

∫ t

0

h(t− s)(u(t) − u(s))ds

〉

≤ |µ2|
(

1

2
‖z(1, t)‖2 +

Cα

2b
N2

2 (k ⋄B 1

2 u)(t)

)

.

Consequently, by taking ε = l
4N2

, we obtain

L′(t) ≤ −
[

h1N2 − l

4
−
(

1 +
µ1

4δ1

)

N1 −N3e
2τ

]

‖ut‖2 −
[(

l

2
− a

b
δ1(µ1 + |µ2|)

)

N1 − l

4

]

∥

∥

∥
A

1

2u
∥

∥

∥

2

−
[

M

2
− aCα

2l
N1 − c(Cα + 1)

ε
N2 − |µ2|Cα

2b
N2

2

]

(k ⋄B 1

2 u)(t) +
αM

2
(h ⋄B 1

2u)(t)

−
[

N3 − |µ2|
(

N1

4δ1
+

1

2

)]

‖z(1, t)‖2 − 2N3τ

∫ 1

0

‖z(ρ, t)‖2ds.

At this point, let take δ1 = bl
4a(µ

1
+|µ

2
|) and choose N1 large enough so that

l

4
N1 − l

4
> 4(1 − l).

Then, let pick N3 and N2 big enough so that

N3 − |µ2|
(

N1

4δ1
+

1

2

)

> 0,

h1N2 − l

4
−
(

1 +
µ1

4δ1

)

N1 −N3e
2τ > 1.

Now, as αh2(s)
αh(s)−h′(s) < h(s) and by using the Lebesgue dominated convergence theorem, we have

αCα =

∫ +∞

0

αh2(s)

αh(s) − h′(s)
ds → 0 as α → 0.

Consequently, there is 0 < α0 < 1 such that if α < α0, then

αCα <
1

8
[

a
2l
N1 +

(

4c
l

+ |µ
2

|
2b

)

N2
2

] .

Then, we choose M large enough such that (4.2) is satisfied and

M

2
− 4c

l
N2

2 > 0,
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then, for M fixed, we choose α so that

α =
1

2M
< α0,

which gives
M

2
− 4c

l
N2

2 − Cα

[

a

2l
N1 +

(

4c

l
+

|µ2|
2b

)

N2
2

]

> 0.

Therefore, we arrive at

L′(t) ≤ −4(1 − l)
∥

∥

∥
A

1

2u
∥

∥

∥

2

− ‖ut‖2 +
1

4
(h ⋄B 1

2 u)(t) − 2N3τ

∫ 1

0

‖z(ρ, t)‖2ds.

which yields (4.3). �

The stability results is ensuring by the following theorem.

Theorem 4.1. Assume that (A1)-(A3) hold. Then there exist a positive constants k1, k2, k3 and k4

such that the solution of (1.1) satisfies, for all t ≥ t1,

E(t) ≤ k1e
−k2

∫

t

t1

ζ(s)ds
, if G is linear (4.4)

E(t) ≤ k4G
−1
1

(

k3

∫ t

t1

ζ(s)ds

)

, if G is nonlinear, (4.5)

where G1(t) =
∫ r

t
ds

sG′(s) , which is strictly decreasing and convex on (0, r], with limt→0 G1(t) = +∞.

Proof: By using (2.9) and (2.15), we conclude that, for any t ≥ t1,
∫ t1

0

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds ≤ −h(0)

δ1

∫ t1

0

h′(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds ≤ −cE′(t). (4.6)

Inserting this estimate in (4.3) and introducing the following function F which is equivalent to E by

F (t) = L(t) + cE(t).

On the other hand, we have for some constant m > 0 and for all t ≥ t1,

L′(t) ≤ −3(1 − l)
∥

∥

∥
A

1

2u
∥

∥

∥

2

− ‖ut‖2 +
1

4
(h ⋄B 1

2u)(t)

≤ −mE(t) + c(h ⋄B 1

2u)(t)

≤ −mE(t) − cE′(t) + c

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds,

which gives

F ′(t) ≤ −mE(t) + c

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds. (4.7)

Let consider the following two cases.

Case 1: G is linear.

By multiplying (4.7) by ζ and using (A2) and (2.15), we get

ζ(t)F ′(t) ≤ −mζ(t)E(t) + cζ(t)

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≤ −mζ(t)E(t) + c

∫ t

t1

ζ(t)h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≤ −mζ(t)E(t) − c

∫ t

t1

h′(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≤ −mζ(t)E(t) − cE′(t),
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by using the fact ζ is nonincreasing, we deduce

(ζF + cE)
′
(t) ≤ −mζ(t)E(t), ∀t ≥ t1.

Consequently, by integrating this last over (t1, t) and using the fact that ζF + cE ∼ E, we obtain

E(t) ≤ k1e
−k2

∫

t

t1

ζ(s)ds ∀t ≥ t1,

where k1 and k2 be a positive constants.

Case 2: G is nonlinear.

Firstly, we introduce the following function

L1(t) = L(t) + I4(t),

which is nonnegative by using Lemmas (3.4) and (4.2). Moreover, it satisfies

L′
1(t) ≤ −(1 − l)

∥

∥

∥
A

1

2u
∥

∥

∥

2

− ‖ut‖2 − 1

4
(h ⋄B 1

2u)(t) ≤ −βE(t).

Hence,

β

∫ t

t1

E(s)ds ≤ L1(t1) − L1(t) ≤ L1(t1),

this gives
∫ +∞

0

E(s)ds < +∞. (4.8)

Let now define the function I by

I(t) = p

∫ t

t1

∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds, ∀t ≥ t1,

where p be a positive constant, so I(t) > 0, for all t ≥ t1, otherwise (4.7) leads to an exponential decay.
Furthermore, by a particular choice of p so that

I(t) < 1. (4.9)

We also define the function λ by

λ(t) = −
∫ t

t1

h′(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds, ∀t ≥ t1,

for t1 small enough and by (2.15), we observe that

λ(t) ≤ −cE′(t). (4.10)

Since G is strictly convex on (0, r] and G(0) = 0, then

G(θx) ≤ θ G(x), for some θ ∈ [0, 1] and x ∈ (0, r].
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By using the assumption (A2), (4.9) and Jensen’s inequality, we get

λ(t) =
1

p I(t)

∫ t

t1

I(t) (−h′(s)) p
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≥ 1

p I(t)

∫ t

t1

I(t)ζ(s)G(h(s))p
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≥ ζ(t)

p I(t)

∫ t

t1

G(I(t)h(s))p
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

≥ ζ(t)

p
G

(

1

I(t)

∫ t

t1

I(t)h(s)p
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

)

=
ζ(t)

p
G

(

p

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

)

=
ζ(t)

p
G

(

p

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds

)

where G is an extension of G, which is strictly increasing and strictly convex C2 on [0,+∞), see Remark
(2.1). The use of this fact and since ζ is a positive nonincreasing function, we obtain

∫ t

t1

h(s)
∥

∥

∥
B

1

2 (u(t) − u(t− s))
∥

∥

∥

2

ds ≤ 1

p

(

G
)−1

(

p λ(t)

ζ(t)

)

,

and (4.7) becomes

F ′(t) ≤ −m E(t) + c
(

G
)−1

(

p λ(t)

ζ(t)

)

, ∀t ≥ t1. (4.11)

Let 0 < r1 < r, then we define the functional F1 by

F1(t) = G
′
(

r1
E(t)

E(0)

)

F (t) + E(t),

by using (4.11) and the fact that E′ ≤ 0, G′ > 0 and G′′ > 0, we conclude that F1 is equivalent to E and

F ′
1(t) = r1

E′(t)

E(0)
G

′′
(

r1
E(t)

E(0)

)

F (t) +G
′
(

r1
E(t)

E(0)

)

F ′(t) + E′(t),

≤ −m E(t)G
′
(

r1
E(t)

E(0)

)

+ c G
′
(

r1
E(t)

E(0)

)

(

G
)−1

(

p λ(t)

ζ(t)

)

+ E′(t). (4.12)

Let G
∗

be the convex conjugate of G in the sense of Young (see [4] pp. 61-64), which is given by

G
∗
(s) = s

(

G
′
)−1

(s) −G

[

(

G
′
)−1

(s)

]

(4.13)

and it satisfies the following Young’s inequality

AB ≤ G
∗
(A) +G(B). (4.14)

By taking

A = G
′
(

r1
E(t)

E(0)

)

and B =
(

G
)−1

(

p λ(t)

ζ(t)

)

,

and using (4.14), we obtain

G
′
(

r1
E(t)

E(0)

)

(

G
)−1

(

p λ(t)

ζ(t)

)

≤ G
∗
(

G
′
(

r1
E(t)

E(0)

))

+
p λ(t)

ζ(t)

≤ r1
E(t)

E(0)
G

′
(

r1
E(t)

E(0)

)

−G

(

r1
E(t)

E(0)

)

+
p λ(t)

ζ(t)
,
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then, using the fact that G is nonnegative, we get

G
′
(

r1
E(t)

E(0)

)

(

G
)−1

(

p λ(t)

ζ(t)

)

≤ r1
E(t)

E(0)
G

′
(

r1
E(t)

E(0)

)

+
p λ(t)

ζ(t)
. (4.15)

Inserting (4.15) in (4.12), we arrive at

F ′
1(t) ≤ −m E(t)G

′
(

r1
E(t)

E(0)

)

+ c r1
E(t)

E(0)
G

′
(

r1
E(t)

E(0)

)

+ c
p λ(t)

ζ(t)
+ E′(t),

then, multiplying by ζ(t) and using (4.10) and the fact that, as r1
E(t)
E(0) < r, G

′
(

r1
E(t)
E(0)

)

= G′
(

r1
E(t)
E(0)

)

to obtain

ζ(t)F ′
1(t) ≤ −m ζ(t)E(t)G′

(

r1
E(t)

E(0)

)

+ c r1 ζ(t)
E(t)

E(0)
G′

(

r1
E(t)

E(0)

)

− c E′(t).

On the other hand, the functional F2 = ζF1 + cE is equivalent to E which means for some γ1 and γ2,
we have

γ1F2(t) ≤ E(t) ≤ γ2F2(t), (4.16)

and under a suitable choice of r1 and for a positive constant k, we find

F ′
2(t) ≤ −k ζ(t)E(t)

E(0)
G′

(

r1
E(t)

E(0)

)

= −k ζ(t)G2

(

E(t)

E(0)

)

, (4.17)

where G2(t) = tG′(r1t). Since G′
2(t) = G′(r1t) + r1tG

′′(r1t), and using the strict convexity of G on (0, r],
we find that G2, G

′
2 > 0 on (0, 1]. Finally, with

R(t) = γ1

F2(t)

E(0)
,

then, by using (4.16) and (4.17), we have R ∼ E and for some positive constant k3, (4.17) gives

R′(t) ≤ −k3 ζ(t)G2(R(t)), ∀t ≥ t1.

A simple integration over (t1, t), we find

∫ t

t1

−R′(s)

G2 (R(s))
ds ≥ k3

∫ t

t1

ζ(s)ds.

Since r1R(t1) < r, we obtain

G1(r1R(t)) =

∫ r1R(t1)

r1R(t)

ds

s G′(s)
≥ k3

∫ t

t1

ζ(s)ds.

Using the fact that G1 is strictly decreasing function on (0, r] and limt→0 G1(t) = +∞. Then

R(t) ≤ 1

r1
G−1

1

(

k3

∫ t

t1

ζ(s)ds

)

,

consequently, by using the fact that R is equivalent to E, the stability estimate (4.5) is established. This
completes the proof. �

Remark 4.1. The decay rate of E given by (4.1) is optimal in the sense that it’s consistent with the
decay rate of h given by (2.4) where (4.4) and (4.5) provide the best decay rates expected under the very
general assumption on h.
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Example 4.1. Assume that (A2) holds with G(s) = sp, where 1 ≤ p < 2. Then, the decay rate of E is
given by

E(t) ≤







c̃e
−c̃1

∫

t

0

ζ(s)ds
, if p = 1

c̃2

(

1 +
∫ t

0
ζ(s)ds

)

−1

p−1

, if 1 < p < 2.
(4.18)

In this example, we can show that h not be necessarily of exponential or polynomial decay but under
general assumption on the relaxation function h which gives a much larger class of functions h, the
uniform stability of the system (1.1) is established with an explicit formula of the decay rates of the
energy.

For more examples of relaxation functions and the decay rates of the energy, see [29,6,8].

5. Applications

We can seek our result in many problems. In this section, we present only three applications. Let Ω
be a bounded and regular domain of Rn, with n ≥ 1.

5.1. More general model

Our first application is the abstract system (1.1) with more general form







utt(t) +Au(t) −
∫ t

0
h(t− s)Bu(s)ds+ C1C

∗
1ut(t) + C2C

∗
2ut(t− τ ) = F (u(t)), t ∈ (0,+∞),

C∗
2ut(t− τ ) = f0(t− τ ) t ∈ (0, τ),

u(0) = u0, ut(0) = u1,

(5.1)
where Ci : Wi → H be bounded linear operators and Wi be real Hilbert spaces with norm ‖.‖Wi

.
Moreover, we assume that

∃ 0 < µ < 1, ‖C∗
2u‖W2

≤ µ ‖C∗
1u‖W1

, ∀u ∈ H. (5.2)

5.2. Wave equations

We consider the following equation















utt(t) +Au(t) +
∫ t

0 h(t− s)∆u(s)ds+ µ1ut(t) + µ2ut(t− τ) = |u(t)|γu(t), t ∈ (0,+∞),
u(x, t) = 0, x ∈ ∂Ω,
u(0) = u0, ut(0) = u1, x ∈ Ω,
ut(t− τ) = f0(t− τ ) t ∈ (0, τ),

(5.3)

with initial data (u0, u1, f0) ∈ [H2(Ω) ∩H1
0 (Ω)] ×H1

0 (Ω) ×H1(−τ , 0;L2(Ω)) and γ be a positive number.
Our results hold with H = L2(Ω) and the operators A, B are given by

A : D(A) −→ H : u 7→ −
n
∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

,

B : D(B) −→ H : u 7→ −∆u,

where D(A) = D(B)) = H2(Ω) ∩H1
0 (Ω). aij ∈ C1(Ω), is symmetric and

∃a0 > 0,

n
∑

i,j=1

aij(x)ζjζi ≥ a0|ζ|2, x ∈ Ω, ζ = (ζ1, · · · , ζn) ∈ Rn.

The function F (u) = u|u|γ satisfies the assumption (A3) with 0 < γ < 2
n−2
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5.3. Coupled systems

We can also consider the following coupled systems with Dirichlet condition:































































wtt(t) − α∆w(t) +

∫ t

0

h(t− s)div(a1(x)∇w(s))ds + µ1wt(t) + µ2wt(t− τ )

+dv(t) = f1(w(t)), t ∈ (0,+∞),

vtt(t) − β∆v(t) +

∫ t

0

h(t− s)div(a2(x)∇v(s))ds+ µ1vt(t) + µ2vt(t− τ )

+dw(t) = f2(v(t)), t ∈ (0,+∞),
w(x, t) = v(x, t) = 0, x ∈ ∂Ω,
w(0) = w0, v(0) = v0, x ∈ Ω,
wt(0) = w1, vt(0) = v1, x ∈ Ω,
wt(t− τ ) = l0(t− τ), vt(t− τ) = m0(t− τ ) t ∈ (0, τ ),

(5.4)

where α and β are positive constants, a1, a2 ∈ C1(Ω), a1(x), a2(x) > 0. The above system is
equivalent to (1.1) where u = (w, v), f0 = (l0,m0) and H = (L2(Ω))2 with

〈(w1, v1), (w2, v2)〉 =

∫

Ω

w1w2 + v1v2dx.

We take D(A) = D(B)) = (H2(Ω) ∩H1
0 (Ω))2 and the operators A, B are given by

Au = −(α∆w, β∆v) + d(v, w),

Bu = −(div(a1(x)∇w), div(a2(x)∇w)).

The function F2(u(t)) = (f1(w(t)), f2(v(t))) satisfies (A3).

Conclusion

In conclusion, this work improves the previous results; we have considered a semilinear abstract
second-order viscoelastic equation with time delay. For a much larger class of kernel functions, we have
established explicit and general decay results of the energy solution by introducing a suitable Lyapunov
functional and some properties of the convex functions. Moreover, we have given some applications in
particular case of Hilbert space.
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