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abstract: The aim of this paper is to extend the application of the reproducing kernel Hilbert space method
(RKHSM) to solve linear and non-linear fuzzy integro-differential equations of fractional order under Caputo’s
H-differentiability. The analytic and approximate solutions are given in series form in term of their parametric
form in the space W 2
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Key Words: Fuzzy fractional integro-differential equation, Caputo’s H-differentiability, Reproducing
kernel Hilbert space method.

Contents

1 Introduction 1

2 Preliminaries 1

3 Fuzzy Fractional Integro-differential Equations 3

4 The RKHSM for Solving FFIDEs 4

5 Numerical Examples 7

6 Conclusion 14

1. Introduction

The theory of fractional calculus has been a subject of interest, not only among mathematicians, but
also among physicists and engineers for its considerable importance in many fields of science, see [1,2,3].
But when modeling real world phenomena, information about the behavior of a dynamical system may
be uncertain. So, fuzzy set theory was established to describe uncertainty in mathematical models. It
was originally introduced by Zadeh in 1965 [4]. In 1978, Dubois and Prade introduced the notion of fuzzy
real numbers and established some of their basic properties [5]. The term ”fuzzy differential equations”
was coined in the same year by Kandel and Byatt [6]. The fuzzy set theory has been used in various
other fields, i.e., fuzzy fixed-point theory, fuzzy topology, fuzzy control systems, fuzzy automata, etc.
There are many suggestions to define a fuzzy derivative and then to study fuzzy differential equations
[7,8,9,10,11].
The most popular approach is using Hukuhara differentiability [8,9,10,11,12] which was generalized by
Bede and Gal in 2005 [13]. In 2010, the concept of fuzzy fractional differential equations (FFDEs)
has been introduced [14]. In [15], the authors considered a generalization of H-differentiability for the
fractional case. This concept of fuzzy derivative was used in [16] to introduce fuzzy fractional Volterra-
Fredholm integro-differential equations and prove the existence and uniqueness of the solutions of this
class of fractional equations.
In this paper, we present an effective numerical method to obtain approximate solutions of fuzzy frac-
tional integro-differential equations (FFIDEs) based on the reproducing kernel theory. Among the last
works that applied RKHSM to solve differential equations are: solving fuzzy Fredholm-Volterra integro-
differential equations [38], solving integro-differential equations of fractional order [18], solving fourth
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order boundary value problem [19], solving systems of fractional integro-differential equations [17], solv-
ing fuzzy singular integral equation with Abel’s type kernel using a novel hybrid method [20] and solving
non-linear Fredholm integro-differential equations [21].
This paper is organized as follows: In section 2, we give some basic concepts related to fuzzy calculus
and fractional calculus. In section 3, we convert a FFIDE into a system of fractional integro-differential
equations. A description of the RKHSM for solving linear and non-linear FFIDEs is given in section 4.
Some numerical examples are carried out in section 5. This paper ends with a conclusion in section 6.

2. Preliminaries

In this section, we introduce some necessary definitions and mathematical preliminaries of fuzzy
calculus and fractional calculus.

Definition 2.1. [23] A fuzzy number u is a mapping u : R −→ [0, 1] that satisfies the following properties:

1. u is normal. That is, there is x ∈ R with u(x) = 1.

2. u is fuzzy convex. That is, u(γx+ (1 − γ)y) ≥ min{u(x), u(y)} for all x, y ∈ R and γ ∈ [0, 1].

3. u is upper semicontinuous.

4. The set {x ∈ R : u(x) > 0} is bounded.

The set of all fuzzy numbers is denoted by RF . An effective way to present a fuzzy number u
is by using its r-cut representation which is given by [u]r = {x ∈ R : u(x) ≥ r} for r ∈ (0, 1] and
[u]0 = {x ∈ R : u(x) > 0}. [u]0 is called the support of A.The core of A is the crisp set of all points x in
R such that u(x) = 1. Obviously, if u is a fuzzy number, then [u]r = [u1(r), u2(r)] where u1(r) = u1r =
min{x|x ∈ [u]r} and u2(r) = u2r = max{x|x ∈ [u]r}, ∀r ∈ [0, 1].
The following theorem gives the conditions that must be satisfied by two real valued functions u1, u2

defined on [0, 1] so that [u1(r), u2(r)] is the parametric form of a fuzzy number u for each r ∈ [0, 1].

Theorem 2.2. [24] Suppose that u1, u2 : [0, 1] −→ R satisfy the conditions; first, u1 is a bounded
monotonic nondecreasing left continuous function ∀r ∈ (0, 1] and right continuous for r = 0; second,
u2 is a bounded monotonic non increasing left continuous function ∀r ∈ (0, 1] and right continuous for
r = 0; third,u1(1) ≤ u2(1). Then u : R −→ [0, 1] which is defined by u(x) = sup{r|u1(r) ≤ x ≤ u2(r)}
is a fuzzy number with parameterization [u]r = [u1(r), u2(r)]. Moreover, if u is a fuzzy number with
[u]r = [u1(r), u2(r)] (or simply, [u1r, u2r] ), then the functions u1, u2 : [0, 1] −→ R satisfy the above
conditions. In this case, we can represent a fuzzy number by an ordered pair of functions (u1, u2).

Arithmetic operations in RF can be defined as those on intervals of R. So for any γ ∈ R − {0},and
u, v ∈ RF with [u]r = [u1r, u2r] and [v]r = [v1r , v2r], we have [u+ v]r = [u]r + [v]r = [u1r + v1r, u2r + v2r],
and [γu]r = γ[u]r = [min{γu1r, γu2r}, max{γu1r, γu2r}].
Obviously, RF does not form a vector space with the zero element {0}. Hence, additive simplification is
not valid, that is u + v = u + w does not imply that v = w for fuzzy numbers u, v and w. To overcome
this situation, we will use the Hukuhara difference (H-difference).The H-difference of u, v ∈ RF , denoted
by u ⊖ v = w, is the fuzzy number that satisfies u = v + w. Its r-cut representation is [u ⊖ v]r =
[u1r − v1r, u2r − v2r].

Definition 2.3. [25] The Housdorff metric D on RF is defined by D : RF ×RF −→ R+ ∪ {0} such that
D(u, v) = sup

r∈[0,1]

max{|u1r −v1r|, |u2r −v2r|} for any fuzzy numbers u = (u1, u2) and v = (v1, v2). A fuzzy

function on an interval T is a mapping F : T −→ RF . If for fixed t0 ∈ T and ε > 0, ∃δ > 0 such that
|t− t0| < δ =⇒ D(F (t), F (t0)) < ε, then we say that F is continuous at t0. If F is continuous ∀t ∈ T ,
then F is continuous on T [26]. A natural way for extending a crisp mapping f : R −→ R to a mapping
F : RF −→ RF is Zadeh’s extension principle [27]. An important result related to fuzzy functions is
Nguyen Theorem which says that Zadeh’s extension of a continuous real valued function f : R×R −→ R,
say F : RF ×RF −→ RF , is a well-defined fuzzy function with r-cuts [F (u, v)]r = f([u]r, [v]r) = {f(x, y) :
x ∈ [u]r, y ∈ [v]r}, ∀r ∈ [0, 1] and u, v ∈ RF [28].
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For the differentiation of a fuzzy function, we are interested with the following definition:

Definition 2.4. [13] Let F : (a, b) −→ RF and t0 ∈ (a, b). We say that F is strongly generalized
differentiable at t0 if there exists a fuzzy number F ′(t0) such that:

1. There exist F (t0 + h) ⊖ F (t0) and F (t0) ⊖ F (t0 − h) and

lim
h−→0+

F (t0 + h) ⊖ F (t0)

h
and lim

h−→0+

F (t0) ⊖ F (t0 − h)

h
= F ′(t0), or

2. There exist F (t0) ⊖ F (t0 + h) and F (t0 − h) ⊖ F (t0) and lim
h−→0+

F (t0) ⊖ F (t0 + h)

−h and

lim
h−→0+

F (t0 − h) ⊖ F (t0)

−h = F ′(t0)

The limits here are taken in the metric space (RF , D).

We say that F is (n)-differentiable for n = 1, 2 if F is strongly generalized differentiable in the nth
form and denote the (n)-derivative of F at t0 by F ′(t0) = D1

nF (t0). However, if D1
1F (t0) exists, then

D1
2F (t0) does not exist [29].

Remark 2.1. In [13], the authors suggested four cases for the generalized H-derivative and proved
that two of them are reduced to a crisp element. So, they are missing here.

Theorem 2.5. [30] Let F : [a, b] −→ RF be a strongly generalized differentiable function at t0 ∈ [a, b].
Then F1r and F2r are differentiable at t0, ∀r ∈ [0, 1]. Moreover, [F ′(t0)]r = [F ′

1r(t0), F ′

2r(t0)] if F is
(1)-differentiable and [F ′(t0)]r = [F ′

2r(t0), F ′

1r(t0)] under (2)-differentiability.

For integration of a fuzzy valued function, we will consider the following definition.

Definition 2.6. [31] Let F : [a, b] −→ RF . Then F is said to be fuzzy-Riemann integrable to I ∈ RF

if ∀ε > 0, there is δ > 0 such that for any division P : a = x0 < x1 < ... < xn = b of [a, b] with norm

△(P ) < δ, and for any points ξi ∈ [xi, xi+1], i = 0, 1, ..., n−1, we have D(
∑n−1

i=0 F (ξi)(xi+1 −xi), I) < ε.

The fuzzy-Riemann integral is denoted by I =

∫ b

a

F (x) dx.

Remark 2.2. If F : [a, b] −→ RF is fuzzy-Riemann integrable, then the r-cut representation of its

integral is
[

∫ b

a

F1r(x) dx,

∫ b

a

F2r(x) dx
]

, see [32].

In this paper, we deal with Caputo’s H-derivative. Before presenting its definition, we give the
following definitions for crisp functions: The Riemann-Liouville fractional integral of order α ∈ (0, 1] over

the interval [a, b] for a function f ∈ L[a, b] is defined by (Jα
a f)(x) =

1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt
, x > a. The

Caputo fractional derivative of order α ∈ (0, 1] is given by (Dα
a+f)(x) =

1

Γ(1 − α)

∫ x

a

f ′(t)

(x− t)α
dt. The

Caputo’s derivative for a continuous function f on [a, b] satisfies the property (Jα
a+D

α
a+f)(x) = f(x)−f(a).

For details, see [33]. Now, we define some notations which are used for fuzzy fractional calculus:
CF [a, b] = The space of continuous fuzzy valued functions on [a, b]. LF

p [a, b] = {F : [a, b] −→ RF ;F

is measurable and

∫ b

a

D(F (x), 0)p dx < ∞}, 1 ≤ p < ∞. The generalized H-differentiability was used to

expand the definitions of fractional derivatives in the crisp sense for the fuzzy space as follows.

Definition 2.7. [34] Let 0 < α ≤ 1, F : [a, b] −→ RF and F ∈ CF [a, b] ∩ LF [a, b]. The fuzzy Riemann-

Liouville fractional integral of order α is defined by (Jα
a+F )(x) =

1

Γ(α)

∫ x

a

F (t)

(x − t)1−α
dt, x > a. It can

be written in parametric form as [(Jα
a+F )(x)]r =

[ 1

Γ(α)

∫ x

a

F1r(t)

(x− t)1−α
dt,

1

Γ(α)

∫ x

a

F2r(t)

(x− t)1−α
dt

]

.

Definition 2.8. [35] Let 0 < α < 1, F : [a, b] −→ RF and F ∈ CF [a, b] ∩ LF [a, b]. Then F is said

to be Caputo’s H-differentiable at x if (Dα
a+F )(x) =

1

Γ(1 − α)

∫ x

a

F ′(t)

(x− t)α
dt exists. We say that F is

[(1) −α]-differentiable if F is (1)-differentiable, and F is [(2) −α]-differentiable if F is (2)-differentiable.
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3. Fuzzy Fractional Integro-differential Equations

Consider the following Fredholm-Volterra FFIDE:

(Dβ
a+x)(t) = p(t)x(t) + (Tx)(t) + f(t), x(a) = α, 0 < β ≤ 1, a ≥ 0 (3.1)

where (Tx)(t) =

∫ b

a

H(t, τ , x(τ )) dτ +

∫ t

a

K(t, τ , x(τ )) dτ with continuous kernel functions H(t, τ , x(τ ))

and K(t, τ , x(τ )). Also, p(t) is a continuous real valued function with nonnegative or nonpositive values
on [a, b], f : [a, b] −→ RF is continuous, and α ∈ RF . Without loss of generality, we assume that
H(t, τ , x(τ )) = h(t, τ)x(τ ) for τ ∈ [a, b], h(t, τ ) ≥ 0 for τ ∈ [a, c1] and h(t, τ ) ≤ 0 for τ ∈ [c1, b].
Similarly, K(t, τ , x(τ )) = k(t, τ )x(τ ) for τ ∈ [a, t], k(t, τ) ≥ 0 for τ ∈ [a, c2] and k(t, τ) ≤ 0 for τ ∈ [c2, t].
Also, we suppose that p(t) ≥ 0 on [a, b]. We write f(t) and x(t) in term of their r-cut representations:
[f(t)]r = [f1r(t), f2r(t)], [x(t)]r = [x1r(t), x2r(t)] and [x(a)]r = [x1r(a), x2r(a)] = [x1r , x2r] = [α1r, α2r].
Hence, (3.1) has the form:

[(Dβ

a+x)(t)]r = p(t)[x(t)]r +

∫ b

a

[h(t, τ )x(τ )]r dτ +

∫ t

a

[k(t, τ )x(τ )]r dτ + [f(t)]r, [x(a)]r = [α]r.

Therefore, we can translate (3.1) into one of the following systems:
If x(t) is [(1) − β]- differentiable, the system is:

(Dβ

a+x1r)(t) = p(t)x1r(t) +

∫ c1

a

h(t, τ )x1r(t) dτ +

∫ b

c1

h(t, τ )x2r(t) dτ +

∫ c2

a

k(t, τ )x1r(t) dτ

+

∫ t

c2

k(t, τ )x2r(t)dτ + f1r(t)

(Dβ

a+x2r)(t) = p(t)x2r(t) +

∫ c1

a

h(t, τ )x2r(t) dτ +

∫ b

c1

h(t, τ )x1r(t) dτ +

∫ c2

a

k(t, τ )x2r(t) dτ

+

∫ t

c2

k(t, τ )x1r(t)dτ + f2r(t) (3.2)

subject to

x1r(a) = α1r, x2r(a) = α2r (3.3)

While if x(t) is [(2) − β] - differentiable, the system is:

(Dβ

a+x1r)(t) = p(t)x2r(t) +

∫ c1

a

h(t, τ )x2r(t) dτ +

∫ b

c1

h(t, τ )x1r(t) dτ +

∫ c2

a

k(t, τ )x2r(t) dτ

+

∫ t

c2

k(t, τ )x1r(t)dτ + f2r(t)

(Dβ

a+x2r)(t) = p(t)x1r(t) +

∫ c1

a

h(t, τ )x1r(t) dτ +

∫ b

c1

h(t, τ )x2r(t) dτ +

∫ c2

a

k(t, τ )x1r(t) dτ

+

∫ t

c2

k(t, τ )x2r(t)dτ + f1r(t) (3.4)

subject to

x1r(a) = α1r, x2r(a) = α2r (3.5)
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4. The RKHSM for Solving FFIDEs

To apply the RKHSM, we need to construct reproducing kernel functions of certain spaces, see [36,
37,38,39]:

• W 1
2 [a, b] = {u : [a, b] −→ R : u ∈ AC[a, b], u′ ∈ L2[a, b]} with inner product for u, v ∈ W 1

2 [a, b] given

by 〈u, v〉W 1
2

= u(a)v(a) +

∫ b

a

u′(t)v′(t) dt and norm ||u||W 1
2

=
√

〈u(t), u(t)〉W 1
2

. Its reproducing

function has the form

G2
t (s) =

{

1 − a+ t , s ≤ t

1 − a+ s , s > t

It was shown by [37] that the space W 1
2 [a, b] is a complete RKHS with the reproducing kernel

function G2
t (s).

• W 2
2 [a, b] = {u : u, u′ ∈ AC[a, b], u′′ ∈ L2[a, b], u(a) = 0} with inner product for u, v ∈ W 2

2 [a, b] given

by 〈u, v〉W 2
2

= u′(a)v′(a)+

∫ b

a

u′′(t)v′′(t) dt, and norm: ||u||W 2
2

=
√

〈u(t), u(t)〉W 2
2

. The reproducing

function of W 2
2 [a, b] is

Kt(s) =
1

6

{

(s− a)(2a2 − s2 + 3t(2 + s) − a(6 + 3t+ s)) , s ≤ t

(t− a)(2a2 − t2 + 3s(2 + t) − a(6 + 3s+ t)) , s > t

• H [a, b] = W 1
2 [a, b] ⊕ W 1

2 [a, b] = {(u1(t), u2(t))T : u1, u2 ∈ W 1
2 [a, b]}. The inner product and the

norm of u(t) = (u1(t), u2(t))T , v(t) = (v1(t), v2(t))T in H [a, b] are given by : 〈u(t), v(t)〉H =

2
∑

i=1

〈ui(t), vi(t)〉W 1
2

and ||u||H =

√

√

√

√

2
∑

i=1

||ui||1W 2
2

.

• W [a, b] = W 2
2 [a, b] ⊕ W 2

2 [a, b] = {(u1(t), u2(t))T : u1, u2 ∈ W 2
2 [a, b]}.The inner product and

the norm of u(t) = (u1(t), u2(t))T , v = (v1(t), v2(t))T in W [a, b] are given by: 〈u(t), v(t)〉W =

2
∑

i=1

〈ui(t), vi(t)〉W 2
2

and ||u||W =

√

√

√

√

2
∑

i=1

||ui||2W 2
2

, respectively.

Now, we apply the RKHS method to obtain approximate and analytic solutions of (3.1) under [(1) − β] -
differentiability. The same manner can be employed to obtain solutions under [(2) − β] -differentiability.
In order to get the solutions of (3.2) and (3.3), consequently, the solutions of (3.1) under (1)-differen-
tiability, we define the integro-differential operators vij : W 2

2 [a, b] −→ W 1
2 [a, b], i, j = 1, 2 such that:

vijz(t) =

{

(Dβ

a+z)(t) − p(t)z(t) −
∫ c1

a
h(t, τ)z(t) dτ −

∫ c2

a
k(t, τ)z(t)d τ , i = j

−
∫ b

c1
h(t, τ)z(t) dτ −

∫ t

c2
k(t, τ)z(t) dτ , i 6= j

Put Fr =

(

f1r

f2r

)

, xr =

(

x1r

x2r

)

, αr =

(

α1r

α2r

)

, V =

(

v11 v12

v21 v22

)

. So, V : W [a, b] −→ H [a, b].

Also, we homogenize the I.C.s (3.3) using the transform y1r = x1r − α1r, y2r = x2r − α2r, to obtain the
system:

V yr = Fr(t) (4.1)

subject to yr(a) = 0.

Theorem 4.1. The operator V : W [a, b] −→ H [a, b] is bounded and linear.

Proof: It is enough to prove that the operators vij : W 2
2 [a, b] −→ W 1

2 [a, b], j = 1, 2, are bounded and
linear. The linearity of vij , j = 1, 2 is clear. For boundedness, we have ∀yjr ∈ W 2

2 [a, b], j = 1, 2:
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||vijyjr ||2W 1
2

= 〈vijyjr, vijyjr〉W 1
2

=
[

(vijyjr)(a)
]2

+

∫ b

a

[

(vijyjr)′(t)
]2

dt

By the reproducing property of Kt(s), and using Schwarz Inequality and the fact that Dβ

a+Kt(s) is
continuous and uniformly bounded in s and t, we get

|(vijyjr)(t)| =
∣

∣

∣
〈yjr(.), (vijKt)(.)〉W 2

2

∣

∣

∣
≤ ||yjr||W 2

2
||(vijKt)(.)||W 1

2
≤ Mij ||yjr||W 2

2
,

and

|(vijyjr)′(t)| =
∣

∣

∣
〈yjr(.), (vijKt)

′(.)〉W 2
2

∣

∣

∣
≤ ||yjr ||W 2

2
||(vijKt)

′(.)||W 1
2

≤ Nij ||yjr||W 2
2
,

where Mij and Nij ∈ R+. So, ||vijyjr ||2W 1
2

≤ (M2
ij + N2

ij(b − a))||yjr ||2W 2
2

= Lij ||yjr||2W 2
2

, where

Lij =
√

(M2
ij +N2

ij(b − a)). Hence, Ljr, j = 1, 2 are bounded.

Now, let {tk}∞

k=1 be a countable dense set in [a, b] and v∗

ij be the adjoint operator of vij . Then we

have [v∗

ijG
2
tk

(.)](t) = 〈[v∗

ijG
2
tk

(.)](s),Kt(s)〉W 2
2

= 〈G2
tk

(.), [vijKt(s)]〉W 1
2

= vijKt(s)|s=tk
.

Define ψij(t) as ψij(t) =
[

vj1Kt(s)|s=ti
, vj2Kt(s)|s=ti

]T

, i = 1, 2, 3, ..., j = 1, 2.

Theorem 4.2. Assume that the system (3.2) and (3.3) has a unique solution and {ti}∞

i=1 is dense in

[a, b], then {ψij(t)}(∞,2)
(i,j)=(1,1) is the complete function system of W [a, b].

Proof: See [38].

For simplicity, we rearrange the sequence , {ψij(t)}(∞,2)
(i,j)=(1,1) as {µk(t)}∞

k=1 such that µ2(i−1)+j(t) =

ψij(t), i = 1, 2, ..., j = 1, 2, and apply the Gram-Schmidt process on {µk(t)}∞

k=1 to obtain the orthonormal

function system {µk(t)}∞

k=1 of W [a, b] that satisfies µi(t) =

i
∑

k=1

βikµk(t), i = 1, 2, 3, ..., where βik are the

orthogonalization coefficients.

Theorem 4.3. If {ti}∞

i=1 is dense on [a, b] and the solution of (4.1) is unique, then it has the form:

yr(t) =

∞
∑

i=1

(

i
∑

k=1

βikγk)µi(t),

where

γk = 〈yr(t), µk(t)〉W =







f1r

(

t k+1

2

)

, k is odd

f2r

(

t k
2

)

, k is even

Proof: See [38].

The n-term approximate solution yn
r (t) of (4.1) is given by the finite sum yn

r (t) =
n

∑

i=1

(
i

∑

k=1

βikγk)µi(t).

We now define another operator in order to solve non-linear FFIDEs of the form

(Dβ

a+xr)(t) = Fr(t, x1r(t), x2r(t)), x(a) = α

which is equivalent to the system







(Dβ

a+x1r)(t) = F1r(t, x1r(t), x2r(t))

(Dβ

a+x2r)(t) = F2r(t, x1r(t), x2r(t))
x1r(a) = α1r, x2r(a) = α2r.

(4.2)



A Modified Reproducing Kernel Hilbert Space Method 7

under (1)-differentiability, and to the system:







(Dβ

a+x1r)(t) = F2r(t, x1r(t), x2r(t))

(Dβ

a+x2r)(t) = F1r(t, x1r(t), x2r(t))
x1r(a) = α1r, x2r(a) = α2r.

(4.3)

under (2)-differentiability. Applying the Riemann-Liouville fractional integral Jβ
a+ to the two equations

in (4.2) after homogenizing the initial conditions to get:

J
β
a+[(Dβ

a+x1r ](t) = J
β
a+[F1r(t, x1r(t), x2r(t))] and Jβ

a+[(Dβ
a+x2r)](t) = J

β
a+[F2r(t, x1r(t), x2r(t))],

which are equivalent to

{

x1r(t) = 1
Γ(β)

∫ t

a

F1r(s,x1r(s),x2r(s))
(t−s)1−β dt = Q1r(t, x1r(t), x2r(t)), t > a

x2r(t) = 1
Γ(β)

∫ t

a

F2r(s,x1r(s),x2r(s))
(t−s)1−β dt = Q2r(t, x1r(t), x2r(t)), t > a.

(4.4)

Define the operator Ijr : W 2
2 [a, b] −→ W 1

2 [a, b] by Ijrxjr(t) = xjr(t), j = 1, 2, and let Ir = diag(I1r, I2r).
Obviously, Ir is a bounded linear operator such that Ir : W [a, b] −→ H [a, b] and (4.4) can be rewritten
as Irxr(t) = Qr(t, xr(t)) = Qr(t, x1r(t), x2r(t)), where Qr = (Q1r, Q2r)T .
Applying the RKHSM with the operator Ir, we can obtain the approximate solution of (4.2) of the form

xn
r (t) =

n
∑

i=1

2
∑

j=1

i
∑

l=1

j
∑

k=1

βjilQkr(tl, xr(tl))ψij(t),

which converges to the analytic solution:

xr(t) =
∞

∑

i=1

2
∑

j=1

i
∑

l=1

j
∑

k=1

βjilQkr(tl, xr(tl))ψij(t).

Here, βjil are the orthogonalization coefficients.

5. Numerical Examples

Example 5.1. Consider the following FFIDE of Volterra type:

(Dβ
0+x)(t) = −x(t) + sin(t) −

∫ t

0

x(τ ) dτ , 0 < β ≤ 1, t ∈ [0, 1], x(0) = α (5.1)

where [α]r =
[24

25
+

r

25
,

101

100
− r

100

]

.

Case1: Under [(1) − β]-differentiability, the equivalent system is

(Dβ
0+x1r)(t) = −x2r(t) + sin(t) −

∫ t

0

x2r(τ ) dτ, (Dβ
0+x2r)(t) = −x1r(t) + sin(t) −

∫ t

0

x1r(τ ) dτ ,

x1r(0) =
24

25
+

r

25
, x2r(0) =

101

100
− r

100

If β = 1, then the exact solution of this system is

x1r(t) = a1(r)e( 1−

√

5

2
)t + a2(r)e( 1+

√

5

2
)t + e−0.5t

(

a3(r) cos(

√
3

2
t) + a4(r) sin(

√
3

2
t)

)

+ sin t

x2r(t) = b1(r)e( 1−

√

5

2
)t + b2(r)e( 1+

√

5

2
)t + e−0.5t

(

b3(r) cos(

√
3

2
t) + b4(r) sin(

√
3

2
t)

)

+ sin t
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where a1(r) =
5 −

√
5

20

(

x1r(0) − x2r(0)
)

, a2(r) =
5 +

√
5

20

(

x1r(0) − x2r(0)
)

, a3(r) =
1

2

(

x1r(0) +

x2r(0)
)

, a4(r) =

√
3

6

(

− x2r(0) − x1r(0) − 4
)

, b1(r) = −a1(r), b2(r) = a2(r), b3(r) = a3(r), b4(r) =

−a4(r).
Case2: Under [(2) − β]-differentiability,(5.1) is equivalent to the system:

D
β
0+x1r(t) = −x1r(t) −

∫ t

0

x1r(τ ) dτ + sin t,Dβ
0+x2r(t) = −x2r(t) −

∫ t

0

x2r(τ ) dτ + sin t

x1r(0) =
24

25
+

r

25
, x2r(0) =

101

100
− r

100

If β = 1, then the exact solution of this system is

x1r(t) = sin t+
(24

25
+

r

25

)

e−0.5t cos(

√
3

2
t) + e−0.5t sin(

√
3

2
t)

( −2√
3

− 1√
3

(
24

25
+

r

25
)
)

x2r(t) = sin t+
(101

100
− r

100

)

e−0.5t cos(

√
3

2
t) + e−0.5t sin(

√
3

2
t)

( −2√
3

− 1√
3

(
101

100
− r

100
)
)

Applying the RKHS method, with n = 50 and m = 5, some numerical results are given in TABLE 1, 2
and FIGURE 1 .

Table 1: The fuzzy approximate (1)−solution [x1r(t), x2r(t)] at different values of t and r of example 5.1
t r β = 1 Error β = 1 β = 0.9 β = 0.8

0.6 0 [0.51156229, 0.61655959] 5.40893182×10−5 [0.49595447, 0.61223616] [0.48358722, 0.61461544]
0.5 [0.5410404, 0.59353910] 4.004646025×10−5 [0.52807641, 0.58621725] [0.51925885, 0.58477296]
0.75 [0.55577952, 0.58202885] 3.302503127×10−5 [0.54413738, 0.57320780] [0.53709466, 0.56985172]

1 [0.57051860, 0.57051860] 2.60036023×10−5 [0.56019834, 0.56019834] [0.55493047, 0.55493047]
0.9 0 [0.37622029, 0.53923971] 7.419506231×10−5 [0.37810912, 0.56349221] [0.37933748, 0.5946745]

0.5 [0.41843591, 0.49994563] 4.660477954×10−5 [0.4259355, 0.51862714] [0.43471020, 0.54237872]
0.75 [0.43954373, 0.48029858] 3.280963816×10−5 [0.44984882, 0.49619460] [0.46239656, 0.51623082]

1 [0.46065154, 0.46065154] 1.901449677×10−5 [0.47376206, 0.47376206] [0.49008292, 0.49008292]

Table 2: The fuzzy approximate (2)−solution [x1r(t), x2r(t)] at different values of t and r of example 5.1
t r β = 1 Error β = 1 β = 0.9 β = 0.8

0.4 0 [0.65359329, 0.6840618] 7.623925024×10−5 [0.62976210, 0.65844928] [0.60932730, 0.63637377]
0.25 [0.65968701, 0.68253845] 7.565488371×10−5 [0.61951492, 0.67299953] [0.59752145, 0.65223660]
0.5 [0.66578073, 0.68101502] 7.507051718×10−5 [0.64123697, 0.65558057] [0.62014589, 0.63366912]
0.75 [0.67187444, 0.67949159] 7.448615065×10−5 [0.64697441, 0.65414621] [0.62555518, 0.63231680]

1 [0.67796816, 0.67796816] 7.390178412×10−5 [0.65271185, 0.65271185] [0.63096448, 0.63096448]
0.8 0 [0.48083881, 0.49426469] 1.029130177×10−6 [0.48691471, 0.50001255] [0.49700106, 0.51005328]

0.25 [0.48352398, 0.49359339] 9.572314812×10−6 [0.46185765, 0.52703428] [0.47190067, 0.53711150]
0.5 [0.48620916, 0.49292210] 8.853327853×10−6 [0.49215384, 0.49870276] [0.50222195, 0.50874805]
0.75 [0.48889433, 0.49225080] 8.134340894×10−6 [0.49477341, 0.49804787] [0.50483239, 0.50809544]

1 [0.49157951, 0.49157951] 7.415353936×10−6 [0.49739298, 0.49739298] [0.5074428, 0.50744283]
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Figure 1: a) The core and the support of the fuzzy approximate (1)−solution, b) The core and the
support of the fuzzy approximate (2)−solution

Example 5.2. Consider the following FFIDE of Frdholm type:

(Dβ
0+x)(t) + 2etx(t) =

(

sinh(t)(1 − t) + e2t + e−1
)

α+

∫ 1

0

τx(τ ) dτ +

∫ t

0

tx(τ ) dτ, (5.2)

where 0 < β ≤ 1, t ∈ [0, 1], x(0) = α and [α]r =
[

−
√

1 − r,
√

1 − r
]

.

Case1: Under [(1) − β]-differentiability, the equivalent system is

(Dβ
0+x1r)(t) + 2etx1r(t) = −

(

sinh(t)(1 − t) + e2t + e−1
)√

1 − r +

∫ 1

0

τx1r(τ ) dτ +

∫ t

0

tx1r(τ ) dτ ,

(Dβ
0+x2r)(t) + 2etx2r(t) =

(

sinh(t)(1 − t) + e2t + e−1
)√

1 − r +

∫ 1

0

τx2r(τ ) dτ +

∫ t

0

tx2r(τ ) dτ

x1r(0) = −
√

1 − r, x2r(0) =
√

1 − r.
If β = 1, then the exact solution of this system is x1r(t) = −

√
1 − r cosh(t), x2r(t) =

√
1 − r cosh(t).

Applying the RKHSM, with n = 100 and m = 5, some numerical results are given in Table 3 and Figure
2.
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Table 3: The fuzzy exact and approximate (1)−solution [x1r(t), x2r(t)] at different values of t and r of
example 5.2

t r β = 1 Error β = 1 β = 0.9 β = 0.8
0.5 0 [-1.12764366, 1.12764366] 1.769585551×10−5 [-1.14200986, 1.14200986] [-1.15547570, 1.15547570]

0.25 [-0.97656805, 0.97656805] 1.532506041×10−5 [-0.98900955, 0.98900955] [-1.00067131, 1.00067131]
0.5 [-0.79736447, 0.79736447] 1.251285943×10−5 [-0.80752292, 0.80752292] [-0.81704470, 0.81704470]
0.75 [-0.56382183, 0.56382183] 8.847927754×10−6 [-0.57100493, 0.57100493] [-0.57773785, 0.57773785]

1 0 [-1.54309532, 1.54309532] 1.469289793×10−5 [-1.55929451, 1.55929451] [-1.57399929, 1.57399929]
0.25 [-1.33635975, 1.33635975] 1.272442287×10−5 [-1.35038866, 1.35038866] [-1.36312337, 1.36312337]
0.5 [-1.09113317, 1.09113317] 1.038944776×10−5 [-1.10258772, 1.10258772] [-1.11298557, 1.11298557]
0.75 [-0.77154766, 0.77154766] 7.346448967×10−6 [-0.77964725, 0.77964725] [-0.78699964, 0.78699964]

Figure 2: a) The core and the support of the fuzzy approximate solution, b) Approximate solutions x1r(t)
and x2r(t) for different values of β at r = 0.5, c) Approximate solutions x(t) at different values of r when
β = 0.9 for example 5.2, case1

Case2: Under [(2) − β]-differentiability, the system is:

(Dβ
0+x1r)(t) + 2etx2r(t) =

(

sinh(t)(1 − t) + e2t + e−1
)√

1 − r +

∫ 1

0

τx2r(τ ) dτ +

∫ t

0

tx2r(τ ) dτ ,

(Dβ
0+x2r)(t) + 2etx1r(t) = −

(

sinh(t)(1 − t) + e2t + e−1
)√

1 − r +

∫ 1

0

τx1r(τ ) dτ +

∫ t

0

tx1r(τ ) dτ

x1r(0) = −
√

1 − r, x2r(0) =
√

1 − r

Applying the RKHS method, with n = 25 and β = 1, the resulting approximate solution is not
acceptable since x1r > x2r for some t ∈ [0, 1].
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Example 5.3. Consider the following FFIDE of Volterra type:

(Dβ
0+x)(t) =

∫ t

0

x(τ ) dτ + (1 + t)α, 0 < β ≤ 1, t ∈ [0, 1], x(0) = 0 (5.3)

where [α]r =
[

r − 1, 1 − r
]

.

Case1: Under [(1) − β]-differentiability, the equivalent system is

(Dβ
0+x1r)(t) = (1 + t)(r − 1) +

∫ t

0

x1r(τ ) dτ , (Dβ
0+x2r)(t) = (1 + t)(1 − r) +

∫ t

0

x2r(τ ) dτ

x1r(0) = 0, x2r(0) = 0

If β = 1, then the exact solution of this system is

x1r(t) = (r − 1)(et − 1), x2r(t) = (1 − r)(et − 1).

Applying the RKHS method with n = 100 and m = 6, some numerical results are given in Table 4 and
Figure3.

Table 4: The fuzzy exact and approximate solutions at different values of t and r of example 5.3, case1.
r t β = 1 Error β = 1 β = 0.9 β = 0.8
0 0.1 [-0.08413588, 0.08413588] 8.456648354×10−7 [-0.17527338, 0.17527338] [-0.13570074, 0.13570074]

0.2 [-0.17712092, 0.17712092] 1.27691154×10−6 [-0.32904351, 0.32904351] [-0.27015534, 0.27015534]
0.3 [-0.27988553, 0.27988553] 1.509760871×10−6 [-0.48662083, 0.48662083] [-0.41305344, 0.41305344]
0.4 [-0.39345821, 0.39345821] 1.54005965×10−6 [-0.65417798, 0.65417798] [-0.56775614, 0.56775614]
0.5 [-0.51897565, 0.51897565] 1.35854611×10−6 [-0.83523550, 0.83523550] [-0.73662785, 0.73662785]
0.6 [-0.65769408, 0.65769408] 9.505664934×10−7 [-1.03255728, 1.03255728] [-0.9217967, 0.9217967]
0.7 [-0.81100187, 0.81100187] 2.956949585×10−7 [-1.24867876, 1.24867876] [-1.12538282, 1.12538282]
0.8 [-0.98043337 0.98043337] 6.32750391×10−7 [-1.48612193, 1.48612193] [-1.34959976, 1.34959976]
0.9 [-1.16768435, 1.16768435] 1.868304202×10−6 [-1.74750771, 1.74750771] [-1.59681544, 1.59681544]
1 [-1.37462891, 1.37462891] 3.452073773×10−6 [-2.03568221, 2.03568221] [-1.86963027, 1.86963027]

0.6 0.1 [-0.04206794, 0.04206794] 4.228324177×10−7 [-0.07010935, 0.07010935] [-0.05428029, 0.05428029]
0.2 [-0.08856046, 0.08856046] 6.384557709×10−7 [-0.13161740, 0.13161740] [-0.10806213, 0.10806213]
0.3 [-0.13994276, 0.13994276] 7.548804354×10−7 [-0.19464833, 0.19464833] [-0.16522137, 0.16522137]
0.4 [-0.19672910, 0.19672910] 7.700298252×10−7 [-0.26167119, 0.26167119] [-0.22710245, 0.22710245]
0.5 [-0.25948782, 0.25948782] 6.792730553×10−7 [-0.33409420, 0.33409420] [-0.29465114, 0.29465114]
0.6 [-0.32884704, 0.32884704] 4.752832468×10−7 [-0.41302291, 0.41302291] [-0.36871870, 0.36871870]
0.7 [-0.40550093, 0.40550093] 1.478474794×10−7 [-0.49947150, 0.49947150] [-0.45015313, 0.45015313]
0.8 [-0.49021668, 0.49021668] 3.163751954×10−7 [-0.59444877, 0.59444877] [-0.53983990, 0.53983990]
0.9 [-0.58384217, 0.58384217] 9.341521008×10−7 [-0.69900308, 0.69900308] [-0.63872617, 0.63872617]
1 [-0.68731445, 0.68731445] 1.726036886×10−6 [-0.81427288, 0.81427288] [-0.74785210, 0.74785210]
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Figure 3: a) The core and the support of the fuzzy approximate solution, b) Approximate solution x(t)
for different values of β at r = 0.2, and c) Approximate solutions for different values of r at β = 0.9 for
example 5.3, case1.

Case2: Under [(2) − β]-differentiability,(5.3) is equivalent to the system:

D
β
0+x2r(t) = (1 + t)(r − 1) +

∫ t

0

x1r(τ ) dτ , Dβ
0+x1r(t) = (1 + t)(1 − r) +

∫ t

0

x2r(τ ) dτ

x1r(0) = 0, x2r(0) = 0 whose solution is not (2)− differentiable.

Example 5.4. Consider the following non linear FFIDE:

(Dβ
0+x)(t) = f(t) + 0.1t2

∫ 1

0

τx2(τ ) dτ , 0 < β ≤ 1, t ∈ [0, 1], x(0) = 0 (5.4)

where [f(t)]r =
[

r − (rt)2

40
, 2 − r − ((2 − r)t)2

40

]

.

Assuming that x(t) is [(1) − β]− differentiable, then the FFIDE is equivalent to the system

(Dβ
0+x1r)(t) = r − (rt)2

40
+ 0.1t2

∫ 1

0

τx2
1r(τ ) dτ , (Dβ

0+x2r)(t) = 2 − r − ((2 − r)t)2

40
+ 0.1t2

∫ 1

0

τx2
2r(τ ) dτ

x1r(0) = 0, x2r(0) = 0. For β = 1, the exact solution is x1r(t) = rt and x2r(t) = (2 − r)t.
Applying the RKHS method with n = 40 and m = 6, some numerical results are in Table 5 and Figure
4.
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Table 5: The fuzzy exact and approximate solutions at different values of t and r of example 5.4
r t β = 1 Error β = 1 β = 0.9 β = 0.8

0.25 0.1 [0.02492374, 0.17446466] 7.625625322×10−5 [0.03272358,0.22903388] [0.04254030, 0.29773781]
0.2 [0.04992374, 0.34946451] 7.6259231922×10−5 [0.06106021,0.42718901] [0.07406147, 0.51812231]
0.3 [0.07492373, 0.524464118] 7.6267296882×10−5 [0.11391203, 0.79567582] [0.10242648, 0.71603335]
0.4 [0.09992371, 0.699463342] 7.6282996492×10−5 [0.08794104, 0.61483721] [0.12891137, 0.90028348]
0.5 [0.12492369, 0.874462059] 7.6308883082×10−5 [0.13922167, 0.97136179] [0.15407526, 1.07473360]
0.6 [0.14992365, 1.04946048] 7.6340701372×10−5 [0.16401345, 1.14289813] [0.178232070, 1.24164542]
0.7 [0.17492362, 1.22445890] 7.6372519652×10−5 [0.18838362, 1.31109837] [0.201585794, 1.40270101]
0.8 [0.19992359, 1.39945732] 7.6404337942×10−5 [0.21240592, 1.47684445] [0.224285385, 1.55948472]
0.9 [0.22492356, 1.57445574] 7.6436156222×10−5 [0.23614524, 1.64129525] [0.246452591, 1.71380307]
1 [0.24992353, 1.74945416] 7.6467974512×10−5 [0.25966706, 1.80609914] [0.26819888, 1.86796217]

0.75 0.1 [0.07477101, 0.12461798] 2.289892228×10−4 [0.09816628,0.16360305] [0.12761457, 0.21268041]
0.2 [0.14977098, 0.24961790] 2.290160679×10−4 [0.18314742, 0.30519035] [0.22214041, 0.37016070]
0.3 [0.22477091, 0.37461770] 2.290888003×10−4 [0.26371597, 0.43934803] [0.30714344, 0.51167906]
0.4 [0.29977076, 0.49961731] 2.292305055×10−4 [0.34149205, 0.56874665] [0.38643468, 0.64355873]
0.5 [0.37477053, 0.62461665] 2.294643766×10−4 [0.41720935, 0.69458942] [0.46168397, 0.76857014]
0.6 [0.44977024, 0.74961585] 2.297519607×10−4 [0.49129827, 0.81759330] [0.53384241, 0.88831377]
0.7 [0.52476996, 0.87461505] 2.300395448×10−4 [0.56406778, 0.93830653] [0.60355870, 1.00393128]
0.8 [0.59976967, 0.99961425] 2.303271289×10−4 [0.63579194, 1.05727299] [0.67135794, 1.11642682]
0.9 [0.67476938, 1.12461345] 2.30614713×10−4 [0.706767291, 1.17515465] [0.73774318, 1.22686600]
1 [0.74976909, 1.24961264] 2.309022972×10−4 [0.77736204, 1.292848569] [0.80326866, 1.33653588]

Figure 4: a) The core and the support of the fuzzy approximate solution, b) Approximate solutions x(t)
for different values of β at r = 0.5, and c) Approximate solutions for different values of r at β = 0.9 for
example 5.4.
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6. Conclusion

In this work, we introduced modified algorithms based on the RKHS method to obtain approximate
solutions of fuzzy fractional integro-differential equations under Caputo’sH-differentiability. The analytic
solution and its approximate solution are represented in series form in term of their parametric form in
the space W 2

2 [a, b] ⊕ W 2
2 [a, b]. Moreover, the approximate solution and its derivatives are uniformly

convergent to the analytic solution and its derivatives, respectively.
Several examples of linear and non-linear FFIDEs were given to show the effectiveness of the proposed
method. By comparing our results with the exact solutions, we observe that the RKHS method yields
accurate approximations. To see the effects of the fractional derivative on the solution, we solved the
same fuzzy integro-differential equation (FIDEs) for different values of the fractional order. The results
showed that the solutions of FFIDEs approach the solution of FIDEs as the fractional order approaches
the integer order. The RKHS method has several advantages; it is accurate and applicable for linear and
non-linear differential equations. Also, it is possible to pick any point in the interval of integration.
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