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Existence of Entropy Solutions of the Anisotropic Elliptic Nonlinear Problem with
Measure Data in Weighted Sobolev Space

Adil Abbassi, Chakir Allalou and Abderrazak Kassidi

ABSTRACT: This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem

Au—diveg(u) =p in Q
u=20 on 0N,

N
where the right hand side i belongs to L'(Q)+ W_l’?\,(ﬂ7 W*). The operator Au = — Z 9; ai(w, u, Vu)
i=1
is a Leray-Lions anisotropic operator acting from Wol’? (€, w’) into its dual W_l’?l(ﬂ7 Z?*) and ¢; €
CO(R,R).
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1. Introduction

Suppose that € be a bounded open subset of R™(N > 2) with smooth boundary. In this paper,
let us consider the following nonlinear elliptic problem

N N
_Zai ai(x,u, Vu) — Z 0i p;(u) = p in Q, (1.1)
i=1 :

i=1
u =0 on 01,
where ¢ = (¢, -+, ¢py) belongs to CO°(R,R)Y. As regards the second member, we assume that the

datum p belongs to L1(Q) + W17 (Q, &*).
The space W17 (Q, W*) is the dual space of the weighted anisotropic Sobolev space Wl’?(Q, W),

where 1 < p1, -, py < +00 be a N real numbers and 7 = {po,...,pn}, the vector @ denoting a
vector of measurable positive functions, i.e., o= {w1,...,wn}, with w; are weight measurable functions
forall i=1,---, N (we refer to [1,2,13] for more details).

In this study we are using the entropy solutions who was introduced for the first time by P. Benilan et
al [7], because the function ¢, does not belongs to L}, () in general, then the problem (1.1) does not
admit weak solution. In the case of a datum in u € L'(Q)+ WL (€2) the existence of entropy solutions
is treated by A. Salmani, Y. Akdim and H. Redwane in [16]. Moreover, L. Boccardo, T. Gallouet and L.
Orsina (see[11]) have considered the case ¢ = 0.
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The objective of our paper is to study the anisotropic unilateral nonlinear elliptic problem associated
with the nonlinear problem (1.1). More precisely, we establish only the existence of entropy solutions for
the following unilateral anisotropic problem,

u > ae. in €
To(uw) e WoP (QT) Wk >0,

N N
;/Q ai(z,u, Vu)o; T, (u — v)dx + ;/ﬂ &; (1) 0; Ty (u — v)dw o)

N
< / ka(u—v)dx—i—Z/FiaiTk(u—v)dx,
Q = Je
Yo € Ky N L*(9),

in the convex class Ky, := { u € W&’?(Q, ﬁ(x)), u>1 a.ein Q}, where 1) is a measurable function

on () such that
e WET(Q, TN LeQ). (1.3)

This type of problem has been studied by many authors in recent years, in particular by Y. Akdim,
C. Allalou and A. Salmani (see. [4]) have demonstrated the existence of entropy solutions problem like
(1.1). In the non weighted case w; =1 for any 7 € {1,..., N}, Boccardo et al. in [10] studied the

N ;=2
0 oul""* 0
existence of weak solutions for nonlinear elliptic problem (1.1) with Au = — Z o < 85 85 ) ,
— oz, i i

¢;(u) =0 for i=1,---,N and the right-hand side is a bounded Radon measure on 2. In addition
this, we mention some works in this direction such as [5,8,12,16,6,18].

The uniqueness problem being a rather delicate one, due to acounterexample by J. Serrin (see [17], and
[15] for further remarks).

One of the motivations for studying (1.1) comes from applications the mathematical modeling of physical
and mechanical processes in anisotropic continuous medium.

Let us briefly summarize the contents of the paper : after a section devoted to developing the necessary
functional setting as Lebesgue space with weighted and the weighted anisotropic Sobolev space, we
introduce some useful technical lemmas to prove existence results and basic assumptions of our problem
in section 3. In the final section we state the main result and proofs.

2. Mathematical preliminaries

Throughout this paper  is a bounded open subset of RV (N > 2) with smooth boundary. Almost
everywhere positive and locally integrable function w : 2 — R will be called a weight. We shall denote
by LP(,w) the set of all measurable functions v on € such that the norm

po= ([ lrwoie)” 1p<o 1)

lullze(o,w) = llul

Let pi1,...,pn be N real numbers, we define the following vectors J = {p1,...,pn} be a vector
of exponent and = {w1,...,wn} be a vector of weight functions, i.e., every component w; is a
measurable function which is positive a.e. in . Moreover, we assume in all our considerations that

(Al) wi € Llloc(Q)
=1
(AZ) wliq’i_l € Llloc(Q)'
forany ¢ =1, ..., N, we denote
Oiu = Ou for i=1,...,N,

&ri
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p- =min{p1, ..., pn}, p+:max{p1, ..., DN} (2.2)

At present, let us consider the weighted anisotropic Sobolev space Wl’?(Q, ﬁ) is defined as follow
WLP(Q, T) = { we L (Q) and D'uc LP(Quw;), i=1, N}

is a Banach space with respect to norm (see [13])

N
lally 3 2 = lullLie) + D 10 ullpw.. (2.3)

i=1

We define the functional space Wol’?(ﬂ, W) as the closure of C5°(Q) in Wl’?(ﬂ, W) with respect to

the norm (2.3). Note that C5°(2) is dense in W&’?(Q, W). By an adapted method of that of Adams
N

[2], and by constructing an isometric isomorphism from Wl’?(Q, W) into H LP (Q, w;), we can show
i=1
that (W&’?(Q, @), ||1777;>) is separable and reflexive if 1 < p; < oo and 1 < p; < oo, respectively,

- —
forall i = 1,...,N. For p; > 1, W=5P (Q, L?Z) designs its dual where p’ is the conjugate of 7, i.e.

p;:—pl and ?:{wt:wtip;alzl57]v}
pi—1

Lemma 2.1. Let Q be a smooth bounded open subset of R, and suppose that infw;(.) > 0 a.e. in
forall i=1,...,N. Let (A1) and (Az) be satisfied, we have

e If p~ <N, then Wol’?(ﬂ, Z?) C LYQ) forall qe[p—,(p™)*[, with ﬁ = pi— %
o If p~ =N, then WEP(Q, @) C LUQ)  for all -

) 0 9 q € [P 7+OO[7
o Ifp~ >N, then WhP(Q, &) C L®(Q)NCOQ) .

Further, the embeddings are compacts. The proof of this lemma follows from the fact that we are the
embedding
Wo (@ @) Wy () € Wy ()

Remark 2.2. A note concerning the anisotropic spaces W&’?(Q) and their embedding theorems, can be
found in [9].

The rest of this paper, note by

‘J'(l)’?(Q, W) = { u measurable in Q, Tj(u) € W(}’?(Q, W), foranyk >0 } ,

s it |s| <k,
L) =93 k2 it |s| >k

5]

where

3. Basic assumptions and technical lemmas

We introduce in this section some useful technical lemmas to prove existence results, and we impart
the assumptions of our problem. The functions a; : € x R x RY = R are Carathéodory functions (
measurable with respect to z in Q for every (s, £) in R x RY and continuous with respect to (s, £) in
R x RY for almost every z in ) which satisfied the following conditions, for all s € R,¢ € RV, ¢ € RN

and a. e. in x € (),
ai(z, 5, )& > aw; | for i=1,...,N, (3.1)
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L ooon
lai(z, s, &) < fuwi’ <Ri(w) it |s| Wit € pi_l) for i=1,...,N, (3.2)
(ai(z, s, &) —ai(z, s, €)(E& —&) >0 for & #&, (3.3)
where R; is a nonnegative function lying in LPi (©Q) and «, > 0. Moreover, we suppose that
#; € C°(R,R) for i=1,...,N. (3.4)
and )
pe LNQ)+WLT(Q, T). (3.5)

Lemma 3.1. [I] Let g € L"(Q,y) and g, C L"(Q,v) such that | gyl
gn(z) = g(x) a.e. in Q then g, — g weakly in L"(Q,~).

ry < C, 1 < 1r < oo, If

Lemma 3.2. [3] Assume that (3.1) - (3.3) hold, let (un)n @ sequence in Wol’?(Q, W) and u e
woT (@, @), i
up, — u  weakly in Wol’?(Q, W),

and

N
Z/(ai(x, Un, Vu,) —ai(z, u, Vu))oi(u, —u)dr — 0,
i=1 7
then w,, — u strongly in Wol’?(Q, W) .
N
Lemma 3.3. [3/ Ifu¢€ Wol’?(Q, W) then Z/ diudr = 0.
=179

Proof. Since u € Wol’?(Q, W) there exists u, € C5°(Q) such that uj, — u strongly in Wol’?(Q, W)
Moreover, since uy € C5°(2) by Green’s Formula, we have

N
Z/&iukdx:/ up.mds =0 (3.6)
= Jo a0

Since 0; ux — 0; u strongly in  LPi(2,w;) we have d; uy — 0; u strongly in L*(Q2). We pass to limit in

N
(3.6), we conclude that Z/ Oiu dz = 0. O
=179

4. Notion of solutions and main results

In this section we formulate and prove the main result of the paper. Now, we give a definition of
entropy solutions for our unilateral elliptic problem (1.1).

Definition 4.1. A measurable function w is said to be an entropy solution for the obstacle problem
(1.1), ifu e ‘J'é’?(Q,ﬁ) such that uw > a.e. in Q and

N
> [ laite,u, Vu) 0Tilu — ) + 6,(u) O Tiu — )] da
i=1 Q

N
S/Qka(u—cp)dx—l—;/QE&Tk(u—v)dx (4.1)

for all ¢ € Ky NL>®(Q).

Theorem 4.2. Assume that (3.1) — (3.5) hold. Then there exists at least an entropy solution of problem
(1.1).

Proof. The proof of Theorem 4.2 will be divided into several steps. O



EXISTENCE OF ENTROPY SOLUTIONS THE ANISOTROPIC... 5

Step 1: Approximate problems. We consider the following approximate problems

Up € Kﬂ,

N N

Z/ a; (2, Up, Vuy)0;(u, —v)dx + Z/ &1 (up)0i(uy — v)da
i=179 i=1"%

N
S/ fn(un_v)dx+2/FiaiTk(un—’U)d{E
Q =179
Vve Ky andVk >0,

where f,, = T,.(f) and ¢7'(s) = ¢;(Tn(s)) -
We define the operators @, of K, to Wofl’? (Q,T*) by :

N
(D, u,v) = Z/Q ¢;(Ty(u)) Oyvdr  for allu € Ky and v € W&’?(Q, W)
i=1

Lemma 4.3. The operator B, = A+ ®,, is pseudo-monotone and coercive in the following sense; there
exists vg € Ky such that

<ana v — U0>

— +00 if  |vllie g — +oo for ve Ky.
olh7.2 7
For the proof of Lemma 4.3, (see ”Appendix”).

Proposition 4.4. Assume that (3.1) — (3.5) are fulfilled, then there exists at least one solution of the
problem (4.2).

Proof. Thanks to Lemma 4.3 and Theorem 8.2 chapiter 2 in [14], there exists at least one solution to the
problem (4.2). O

Step2: A priori estimate.

Proposition 4.5. Under the conditions (3.1)—(3.5) and if w, is a solution of the approximate problem
(4.2). Then there exists a constant C such that

N
> / 10: T (1)

Proof. Let v = u, —nTi(u}f —4¢T) where 1 > 0. Since v € W(}’?(Q, @) and for all 7 small enough, we
get v € K. We choose v as test function in problem (4.2), we have

Pigi(z)de < C(k+1) Yk > 0.

N N
) ) sy n iT ;'t_ +d :L n 7]T ,j;_ +d
;/Qa(xu Vu,)0:iTi(u w)x—i—;/ﬂqﬁ(u)a k(uy — " )de

N
< / FnTe(u) — Y H)de + Z/ F; 0, Ty (u} — Y1) d. (4.3)
Q = Jo
Which implies that
N
Z/ ai(z, un, Vun)0Tp(uf — ¢ )da < / faTi(uf = o) da
i=17% Q

N N
> /Q ROTu(u; — o o + 3 /Q 167 () [|0:T (1 — )] d.
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Since 0; Ty, (u;r — ™) = 0 on the set {uf — ™ > k}, we get

N
Z/ ai(z, un, Vuy)i(u —yt)de < / FnTr(ut —T)dx
o1 {u —¢ T <k}
N
+ / F; 0, Ty, (u,t — ¢ 1)dx + / ()05 (u,h — 1) |da,
Z: {uf —y+ <k} o Z wf 7w+<k} s )
thus, we can write
Z/ ai(x, wb, Vu)oulde
ub —pt <k}
< [1nus —v*) |dx+2 / B0 | w7 (@) (@) da
uh —pt <k}
+ / F; 007" |dx + / 7 (un, 8u+w’” xw?xdx
Z +7w<k}| | Z ey IO T @) @
+ / " (un)| |05 T | da + / ai(z,ut, Vu)oaT|de.
Z ot Z e i

By Young’s inequalities, we get for a positive constant A

Z/ ai(z, b, Vul)outdr < / TnTr(ut —1)de
—¢t<k} Q

1 N
T " i TPl E ; +|Pi i
+ Cl E / e |¢1 k+||w”w(u )) w; (33) dx + 6 1,:5 - /in+<k} |8 un| w;dx

) N
’ —— (0%
+ O ( / FilPiw, " de + — / out P wi(z) d
" >§:j L D3 NI
N
>
im1

{u =t <k}

APi /
+ lai(z, wn, Vuy,)
Z {ut —yt <k}

\F, 00 |dz + Z / O (Tt o) ()]0 |

un w+<

plw p’dac—i—z PV / 10T Piw da.

¥ -yt <k}
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1

Using to (3.2) and taking A = <péﬁ ) , we obtain

N

Z/ ) ai(m, Uy, Vup)dubdr < / T (ut — T de
{ug ¢+<k’}

+ 1 (a / (T (un)) Pi w’”_l ) dx —|— / |0sut [P wi(x) do
, 1 o
+ Cs(a) / |FilPiw, " (z) do + — / |0;ut P w i (x) do
2; {uf —yt <k} ‘32: wf — gt <k}

+

M=

[ iRt Z / O (Tl (wn) 1000 *
{un ¢+<k} “n 111+<}

pldm—i— / lut |Piw i (z) do
/{u L Z Pwi(a)

w+<k}

N Gﬁ pi—1

10wl P w () do + E 10T [Piw () da.

p o (! v \pi—1
{uh —yt <k} 7 pi(pi)Pe {uf —yp+ <k}

=1

_|_
M=
ENES

s
Il
—

M=
ENES

+

=1

According to (1.3), (3.1), (3.2), (3.3) and (Ay), (A1), we have

N
S o
i1 J{ud -yt <k}

Since {x € Q, ut <k} C {x € Q, ut — " <k}, then

Piwi(xr)de < Ck+C". (4.4)

N N N
0T (ut z)dr = / dut|Piw r < / Dt |P wi(z) d.
12_;/9| ( : ; {“+§k}| Z: {ut— ¢+<k}| )
Hence, thanks to (4.4), we get
N
Z/ |0 T(u)Pr wi(x)de < kC+C" Vk > 0. (4.5)
Q

Similarly taking v = u, + Tk(u, ) as test function in approximate problem (4.2), we get

N
3 / 10, T (u
i=179

Pii(z)de < (k+1)C". (4.6)
By (4.5) and (4.6), we have

N
Z/ |0k (u) )P wi(z)de < (k+1)C" Vk > 0.
— Ja

Step 3 : Strong convergence of truncations.

Proposition 4.6. Let u, be a solution of approximate problem (4.2). Then there exists a measurable
function u and a subsequence of u, such that

T (uy) — T(u)  strongly in W(}’?(Q, <)
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Proof. Using to Proposition 4.5, we obtain
1
170t .7 g < Ok + )7 (4.7)

Firstly, we will prove that (uy), is a Cauchy sequence in measure in . For all A > 0, we obtain
{Jun — um| > A} C {Jun] >k} U {Jum| > &} U{|Tk(un) — Tk(um)| > A} which implies that

meas {|un — um| > A} < meas{|u,| > k} + meas{|u,,| > k}

+ meas {|Ti(un) — Ti(um)| > A} (48)

By Holder’s inequality, Lemma 2.1 and (4.7), we have

kmeas{|u,| > k} = / | Ty (wy)|dz < / T (un)d

{lun|>k}

< (meas(2)) - 1Tk (wn)ll Lo~ (0

< C(meas(Q)) @)~ ||Tk(un)||wgv?(ﬂ,?)

1

<C(k+1)7

1
1 =

Then meas{|u,| >k} <C (k =t F) " — 0 as k — +oo. As results, for all € > 0, there exists

ko such that VE > kg, we get

meas{|u,| > k} < and  meas{|uy,| > k} < (4.9)

<
3

wlm

Since the sequence (Tk(un))n is bounded in W&’?(Q, W) there exists a subsequence (Th(ty))n such
that T'(u,) converges to vy a.e. in Q, weakly in W(}’?(Q, W) and strongly in LP (Q) as n tends
to +00. Then the sequence (Ty(uy)), is a Cauchy sequence in measure in €2, thus for all A > 0, there
exists ng such that

meas{| T (un) — Ti(um)| > A} < § Y, m > no. (4.10)
Using (4.8), (4.9) and (4.10), then VY A,e > 0 we have
meas{|un — um| > A} <€ Vn, m > ng.

Which implies that (u,), is a Cauchy sequence in measure in 2, then there exists a subsequence
denoted by (u), such that wu, converges to a measurable function u a.e. in Q and

Ti(up) — T(u) weakly in W&’?(Q, W) andae in Q VEk >0. (4.11)

Secondly, we will show that
hﬁm Z/ (ai(z, Tk(upn), VIp(upn)) — ai(z, Tk(un), VIE(u)))(0iTk(un) — 0;Tk(u))dx = 0.  (4.12)
Let choose v = uy, + T1(up — T (uy,))~  as test function in approximate problem (4.2), we obtain

N N
-3 /Q 0i(@, s Vtin)OTs (1 — T (1)) it — Z/ 7 ()0 T (ttn — T ()~ dar

/fnTl (1)) dx+Z/F8T1 T ()™ da.
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Then,
N N
Z/ ai(x, wp, Vuy)0u, dx + Z/ ;(up)0 juy, dx
i=1 {7(m+1)§un§7m} i=1 {7(m+1)§un§7m}

. (4.13)
< _/ fnTl(un _Tm(un))i dw"‘Z/ F; O;u,, dz.
Q@ i=1 7 {=(

m+1)<u, <—m}

We pose @7'(s) = / &7 ()X {—(m+1)<t<—m)dt. Then using the Green’s formula, we obtain
o <t<

N

N
/ 619 e =3 [ D17 e =0
[~ (m+1) <up<—m) ~ Jo

i=1

Then, we have

N
Z/ a;(x, Un, Vtn)0iju, dx < —/ foTi(un — T (up))” da
i=1 {7(m+1)§un§7m} Q

N
; {=(m+1)<up<—m}

By the Young’s inequality, we get

N
Z/ ai(xy U, Vun)az Un S _/ fnTl(un - Tm(un))7
i=1 {7(m+1)§un§7m} Q

(m+1)<un<-m}

N . N
- o
+C(e)d :/ R w7 (@) do+ 2 S :/ 1Ostun | () d.
i—1 Y {—(m+1)<upn<—m} 2 i—1 A

Using (3.1), we have
N
Z/ ai(x? Uns Vun)alun < _/ fnTl(un_Tm(un))_
i—1 7 {=(m+1)<up<—m} Q

+c(a>¥/ L

Which implies that

N
, 1 1
Pigy, N (r) dr + = Z/ ai(z, Up, Viug,)Oitn,.
2 St <un<—m}
| X
_Z/ ai(x, wn, Vuy,)oiu, < —/ fuT (un — Ty ()™
2 i—1 J{=(m+1)<up<-m} Q

N
+o@y [ 7

(m+1)<u, <-m}

e}

According to Lebesgue’s theorem, we get

lim lim sup/ foT1 (un, — T (uy))” dx =0,
Q

m—=+00 p_s 400

and
N

1
lim lim supZ/ |Fi|Piw, " (z) dz = 0.
{=(m+1)<up<-—m}

m—=+00 py4oo “ 1
i=
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Then, we obtain

N

lim limsup /
M0 no+too 221 {=(m+1)<u,<—m}

1=

a;(z, Un, Vuy)oiu,dr =0. (4.14)

Similarly, we take v = u,, — 5T (up — Ty (uy))t as test function in approximate problem (4.2), we have

N
lim 1imsup2/ ai(x, wp, Vig)diu, dx =0. (4.15)
{m<u, <m+1}

m—00 noo 4
=1
We define the following function of one real variable:

1 if |s]
him(s) =49 0 if [s]
m—|—1—|| if

3 IV IA

m
m +
<|s |§m+1,

where m > k. Now, let consider ¢ = u,, — 9(Tx(upn) — T(u)) T him(uy) as test function in approximate
problem (4.2), we have

N
2 /Q @i, wn, Vun)0i(Ti(un) =T ()" hun (wn)d
=1 N
1]_\]1
’ Z/ ¢i(un)0i(Ti(un) — Tio(w)) " hom (up) da (4.16)
=179
N
+;L¢i(un)8¢un(Tk(un) — Ti(w)) R, (un) da
N
< /an(Tk(un) — T3 ()" hon () doz + Z; /Q F204(Th () — T () o ()i

N
* ; /Q Fy (Ti(un) = Tio(w) T Qiunhy, (un) dz.

Combining (4.14) and (4.15), we have the second integral in (4.16) converges to zero as n and m tend
to 4o00. Since hy,(un) =0 if |uy| > m+ 1, we get

N
> / (1) 0 (Ti (1) — Tie (1)) i (1)t

N
=3 [ 6T (0)0: (Ti ) ~ Tiw)
i=1 7%

Using Lebesgue’s theorem, we have ¢, (Tyn i1 (tun))m (un) — ¢;(T(u))hm(u) in  LPi(Q,w%) and
0iTk(up) — 0;T(u) weakly in LPi(Q,w;(x)) as n goes to +oo, then the third integral in (4.16) con-

verges to zero as n and m tend to +oo. We set ®;(u,) = / &, (t)(Tx(t) — Tk(u))+x{m§|t‘§m+1}dt.

0
Then by Lemma 3.3, we obtain the fourth integral in (4.16) converges to zero as n and m tend to +oo.
Using Lebesgue’s theorem, we have the first integral on the right hand in (4.16) converges to zero as n
and m tend to +o0o. Moreover, since Fjhp, (un) = Fihm(u) in LP(Q,w?%) and 0;(Tk(un) — Ti(u)) — 0
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weakly in LPi(Q,w;) we get the second integral on the right hand in (4.16) converges to zero as n and
m tend to 4oo.
By Young’s inequality, we have

N —1 1

>/ Fi(Ti(un) = Th(w) Qo | ¥
T {m<un,<m+1}

i=

<

N
> / Fi (T () — Ti(u)) Ostin ), (1)

>/ Fi(Ti(un) — To(w)) Ostin 0]

1

N
<> C) /{ o BT n) Tt
m<u, <m-+

a N
T3 12_;/{ |Osunl” wi (Ti(un) — Ti(u))™

m<u,<m+1}
1

N / [ —
+ZC(a)/ |E5 [P (Th (n) — Ti(w)) T w, 770
i=1 {

—(m+1)<up<—m}

0 X
D) ; /{_ |05tn [P w i (Th (ug) — Th(u))*.

(m+1)<un<-m}

1 , 1
Since 0< | B (Tulan) = Tuw) o, ™ < [ R a) = Tela)) 0, 7 D) =
{m<u,<m+1} Q

’ 1 ’ _ 1
Ti(u) ae. in Q as n— oo and |F|P* (Ty(un) — Th(u))Tw, """ <2k|F|" w, " " € L'(Q) we have

N
lim > / |F;
nHJrooi:l {m<un<m+1}

1

Pi(Th(un) — Tr(w)tw, 7T =0 (4.17)

Similarly, we have
1

N
. FP (Ty) ~ (), 7 =0 19)
i—1 A= (m+D)<up<—m}

n—-+o0o

Using (3.1), (4.14), (4.15) and Lebesgue’s theorem, we obtain

Pi(Th(upn) — Tr(u) T wi(x) dz = 0, (4.19)

N
lim  lim / |0t
m—+00 Nn—+00 ; {—(m+1)<up<-—m}
and

Pi(Ty(up) — Ti(u)) " w; de = 0. (4.20)

N
lim  lim E / |0un,
m—+00 n—+00 Pt {m<u,<m+1}

Combining (4.17)-(4.20), we have the third integral on the right hand in (4.16) converges to zero as n
and m tend to +oco. We conclude

N
lm  lm Y / a5, s Viin)Ds (T (i) — To(w)) o (1) < 0,
i=179

m—r—+o0 n——+00

as results

N
lim  lim Z/ ai (2, Upn, Vup)0i(Tk(un) — Tr(w)) o (un) da
i1 AT (un) = Th (u) >0, |un | <k}

m——+oo n—-+oo

N
— lim  lim Z/ a;(z, Un, Vup)0; T (w)hy, (u,) dz < 0.
i=1 {Tlc(un)ka(u)207|u’n‘>k}

m—+00 n—+0o0 4
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Since A, (un) =0 in {|u,| > m + 1}, we have

N

/ ai(z, wpn, V)0 Tk (w)hy, (uy,)dx
i1 ATk (un) =T (u) >0,|un| >k}

N
=> / ai(®, Trs1(tn)y Vi1 ()i Th(w) o (un ) da.
i1 ATk (un) =T (u) >0, |un | >k}

Since (ai(z, Tmt1(un), VImt1(un)))n>0 is bounded in LPi(Q,w?%) we have a;(z, Tyt (un), VT (1))
converges to Y}, weakly in LP: (€, w*). Hence

N
lim  lim )~ / ai(®, Trm1(tn); Vi1 ()0 Th(w) o (un) dz
i=1 {Tk (un) =Tk (u) >0, |un [ >k}

M—+00 N—+00 4

N
— m S / Y 04T (u)hon () dz = 0,
i—1 J lul>k}

m—+00

which implies that
N

lim  lim E
m—+00 n—r+400 4

/ ai(x, Ti(un), VIE(un))0i(Ti(un) — Tk(w))hm(uy) de < 0. (4.21)
i=1 7 ATk (un) =Tk (u) >0}

Moreover, we have a;(z, Ti(un), V() hm(un) — ai(x, Te(u), VTi(u))hm(u) in LPi(Q,w*) and
0i(Ti(up) — Ti(u)) converges to 0 weakly in LP*(Q,w;) then

N

mlirilm nll)llloo Z (, Tr(un), VT (w))0i(Ti(un) — Tr(w)) hm (uy) de = 0. (4.22)

J
i=1 {T% (un)—Tx(u)>0}
Using (3.3), (4.21) and (4.22), we deduce

m——+o00 n—+400

N
lim  lim / (ai(z, Tk(un), VIg(un)) — ai(x, Ti(u,), VTi(u)))
; {Th(n) ~Th ()20} (4.23)

O0i(Tk (un) — Ti(w)) b (up )dz = 0.
Similarly, we consider ¢ = u, + (Tk(un) — Tk(w)) " hm(u,) as test function in approximate problem
(4.2), we have

N

lim lim / ai(z, Tp(un), VIp(u,)) —ai(x, Tr(uy), VIe(u
WH%O?HW); {Tk(un)_Tk(u)So}( ( (un) (un)) — ai( (un) (w)) (4.24)

i (T, (un) — Th(uw)) hop (up,)dx = 0.
Using (4.23) and (4.24), we get

N
lim  lim Z;/Q(ai(x, Ty (un), VTi(un)) — ai(z, Tr(un), VTi(u)))

m—+00 n—+00 (4.25)
0i(Tr (un) — Th(w)) b (up,) dx = 0.
Now, we prove
N
it 3 [ (o, T, i) =i, Tulun), VT) Loy

Oi(Tk(up) — Ti(w)) (1 — hpp(uy)) dz = 0.
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Let ¢ = up, + Ti(upn) (1 = Ry (uy)) as test function in approximate problem (1.1), we have

N N
_Z/Qai(a:, U, V)0 Th(un) ™ (1 —hm(un))dZ"FZ/Qai(fE, Uy V)0t Tio(un) "R, () dz
N N
_ ; /Q ¢ (un)0i T (un) ™ (1 — hom(un))dz + ; /Q &; (un) T (un) ™ Ostun B, () da
N
- /Q f"Tk(u”) (1 - hm(un))dx - ; /Q F; 81’Tk’(un) (1 — hm(un))da:

N
+ Z /Q F; Ty (up) ™ Oiup W, (uy)dx
i=1

(4.27)

According to (4.14) and (4.15), we have

N
lim lim Z/ a;i(z, Up, Vup)0iunTx(u,)” bl (uy)dx = 0.
Q

m—+00 n—+00 4
i=

Then the second integral in (4.27) converges to zero as n and m goes to +oo. Since 0;T)(up)”™ —
0:iTi(u)” in LP(Qw;) and ¢;(Th(un))(1 — hm(un)) = ¢&;(Th(u))(1 — hy(u)) strongly in LPi(Q, w?),
we get

N
JEWQQ;AQWMMMJOJMwWw
~ lim 2/@ (T ()T (1)~ (1 — b (1)) da

m——400

Thanks to Lebesgue’s theorem, we obtain

m——+00

lim Z/qﬁ (T () To(w)~ (1 — o (u))dar = 0.

Hence the third integral in (4.27) converges to zero as n and m tends to +oo. We set ®I'(t) =

/ ¢:(s)Tk(s)”hl,(s)ds, in view to Green’s Formula, we have
0

N N
;AQW)uﬂW)(Mx ;L<wmx 0

Then the fourth integral in (4.27) converges to zero as n and m tend to +oo. Using to Lebesgue’s
theorem, we get the integral on the right hand in (4.27) converges to zero as n and m goes to +oo.
Since F; (1 — b (un)) — Fi(1 = hyp(u)) in LPi(Q,w?) and 8;Tk(un) — 9;Th(u) in LP(Q,w;) as n
tends to 400, we have

nETOQZ/FaT’“ uy) (1 — Z/F@Tk (1 = hyn(u)).

Also, we have Fy(1 — hy,(u)) = 0 in LPi(Q,w*) as m tends to +oo and 9;Tx(u)~ € LP(Q,w;)
thus the second integral on the right hand in (4.27) converges to zero as n and m tend to +o0o. Using
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Young’s Inequality and (3.1), we get

=1 1

N
> [ R D) oy T
=1 Q
N
<c@) [ Ik
=179

N 1 N
S C(Q)ZA |‘Fi|piTk(un)_X{f(erl)gunSfm}wi ret +k2/{ ai(x7 Un, Vun)azun
i=1 =1 -

1 N
) B ), 40D [ w0 L) i ()
i=179

(m+1)<up<-m}

In sight to Lebesgue’s theorem and (4.14), we obtain the third integral on the right hand in (4.27)
converges to zero as n and m tend to o0, we conclude

N
lim  lm Y / 052, tn, Vun)0iTe(tn) (1 — hon (1)) dz = 0. (4.28)
i—1 7/ {un <0}

m——+o00 n—+400

Next, for 1 small enough, we choose ¢ = u, —nT)(u} =) (1—hy,(uy)) as test function in approximate
problem (4.2), we have

N N
Z/ai(x, Un, Vg )d:iTr(u) — ) (1 —hm(un))dx—Z/ ai(z, Un, Vun)ditwn T () — ) h, (un)dz
i=1 7 i—1 70
B v
3 [ 0T =)0 e = 3 [ 0Tt 0 )
i=1 7% -1 /9
N
< / faT(uf — ™)1 - hm(un))dﬂf+2/ FidiTi(uf =) (1 = hin(un))da
Q = /e

N
- Z/ F;0 sun T (ut — )R, (un)dz
i—1 Q
(4.29)

thanks to (4.14) and (4.15), we have the second integral in the left hand in (4.29) converges to zero as
n and m tend to +oo. For the third integral in the left hand in (4.29), we obtain

al N
i\Un )0 qu_ * — nmu)) = A\ Up iqu — Nm (Un
;/ﬂm O — 6L = () 2_:/{ () (L — B ()

upy, =t <k}
N
>/ 04 )0t (1 By ().
i1 J{ul —y <k}

We set ®;(s) = [ ¢5(t) (1 — hm(t)) X{t—w+ <k}x{t>0} and by Lemma 3.3, we have

N
3 /{ux_wk} ()05t (1 — P ()

i=1
thanks to Lebesgue’s theorem and (3.4), we get

N
lim lim Z/ & (un)0iun Tie (ut — b ™)h! (up)dx = 0.
{udt =9+ <k}

m—+00 n—+0o0 4 ]
i=
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Then the fourth integral in the left hand in (4.29) converges to zero as n and m tend to +oco. In
addition, by the Lebesgue’s theorem, we obtain the first integral in the right hand in (4.29) converges to
zero as n and m tend to +oo. Using the Young’s inequality, we have

N
> [ RoT s — 01 = ho(w)
i=1 v/«
N . N
= Fiaiu;[w;p_iw? 1—hp(uy)) — / F;0;0 (1 = hyp(un
;/ui_wk} 0=t =3 [ B (1~ B (1)

P <k}
N
<e@d [ Ik
i=1 1%

w =yt <k}

1 N
A T () +a Y [ Bt 1P (1= hyn (1))
— J{u

w =yt <k}

N
+ F; 0 (1 = hup (uy,
2_:/{ (1= B (1))

» =t <k}

N L N
NN ) +\ipi o, (1
< C(a);/{u:_wgk} 7w, 7 (1= B () +a;/Q |03 Thoep )] o (U )P Wi (1 = g (1))

N
+ / Fi0iT (1 — hyn(un)).
; {un —y* <k} o (o)

By Lebesgue’s theorem, we have

N 1
3 3 E f p',i 7F — =
mll};rrloo nll}llloo =1 /{UI —¢+§k} |Fl| Wi (1 hm (un)) 0

and
N

lim  lim / Fi0i " (1 = by (un)) = 0.
2 {uf —y+ <k} ( o))

m—+00 n—+0o0 4 ]
i=

Since  OiTipp|. (U) = OiTq |y (u) weakly in LPi(Q,w;) and (1 — hp(un)) = (1 — hp(u))
strongly in L% (Q,w*) we have
n——+oo 4

N N
lim ;/QWimeu(UI)I’”wz'(l—hm(un)) =;/QI@TIHMMOQ(W)IPWG—hm(U)) :

Thanks to Lebesgue’s theorem again, we have

m——+00

N
i=1

Thus the second integral in the right hand in (4.29) converges to zero as n and m tend to +oc.
Furthermore, by Young’s inequality, we obtain

N N 11
Z/ F;0u, T, (u) — ¢+)h;n(un) = —Z/ Fw, " wl O sun Ty (u) — ¢+)
i=1 7% o1 JAm<u, <m+1}
N 1 N
<)y [ BT Tl v +a ) [ Brtunl? @i T — 9+).
— Jim<u,<mi1) — Jim<un<min)

According to (3.1) and (4.15), Lebesgue’s theorem, the third integral in the right hand in (4.29) converges
to zero as n and m tend to +oc.
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Hence, the first integral in the right hand in (4.29) satisfies that
N
Z/ 01, s V)T (uF — ) (1 = b (un)) < e1(n, m),
i=179

then, we have

N

<e€1(n, m)+ Z/ ai(z, Un, Vup)0ipT (1 — h(up)).
i—1 Y {un —¢ <k}

Using (3.1), Young’s inequality and Lebesgue’s theorem, we have

Z/ (2, Un, Vun)0iut (1 — hp(un)) < e1(n, m)+ ea(n, m).
{urt - w+<k}
Thus, since {u}f <k} C {uf — ¢ <k}, we get

m—~+00 n—+00

lim lim Z/ 51/' Un Vun)au (1_hm(un)) =0,
{u Sk}

which implies that

lim  lim Z /{0%} 05z, U, Vtn)OTo(tn)(1 — hon () = 0. (4.30)

m——+o0 n——+00

Using (4.28) and (4.30), we have

lim  lim Z/ ai(x, Un, Vuy)0iTh(un)(l — hp(uy)) =0. (4.31)

m——+oo n—-+oo

Furthermore, we get
N
Z/(ai(x, Tk (un), VT(uyn)) — ai(z, Tip(un), VTk(w))(0;Tk(un) — 0;Tk(w))

/ ai(x, Tp(upn), VTk(uy)) —ai(x, Tk(un), VIe(w)))(0iTk(un) — 0Tk (w)) hum (ur,)

HMZ

N
—I—Z/Q(ai(x, Ti(un), VTi(un))0iTi(un)(1 — by (un))

i=1

N
—Z/Q(az'(x, Tr(un); VTi(un))0iTh(u)(1 = hom (un))

N
- Z/Q(ai(% Tr(un), VTi(u)))(0iTk(un) — 0 Ti(u))(1 = hm(un)) -

Combining (4.25) and (4.31), the first and the second integrals on the right hand side converge to
zero as n and m tend to +oo. Since (a;(z, Tip(un), VTi(uyn)))n is bounded in LP:i(Q,w*)
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and  0;Ti(u)(1 — hy(u)) converge to zero in LPi(Q,w,;) as n and m tend to +oo. Then,
the third integral on the right hand side converge to zero as n and m tend to +oo. Also, since
ai(z, Ti(un), VTh(tn))(1=hp(u)) convergesto a;(x, Th(u), VTik(u))(1—hy(u)) strongly in L7 (Q,w*)
and  0;Tj(upn) — 0;Ti(u) weakly in LP*(Q2,w;) we obtain the fourth integral on the right hand side
converge to zero as n and m tend to +oco. Hence, we get (4.12).

By (4.11), (4.12) and Lemma 3.2, we have

Tk (un) — Tk (u) strongly in W(}’?(Q, W) and ae. in Q Vk > 0. O

Step 4: Passing to the limit. Let ¢ € K, N L>®(Q), we chose v =u, — T (u, —¢) as test function
in approximate problem (4.2), for n large enough (n >k + ||¢||e), we have

Z/aixun, Vu,)0; Tk (u dm—l—Z/qﬁ (un)0i Tk (u p)dx
g/fnTk(un—ap)dx—i—Z/ F; 0Ty (u, — @)dx
Q — /e

therefore,

N
Z/Qai(x, Tk+||¢||m(un), VTkHW”m(un))aiTk(un—gp)dw
N
#3° [ 1Tt ()0l ~ o)
i=1 7

N
< / fn Ti(upn — @)dx + Z/ Fi 0Ty (un — ¢)dz
Q =179

As Ty (up) — T'(u) strongly in Wol’?(ﬂ, W) and ae. in Q Vk >0, we get
ai(2, Tiyg) (Un)y Vi gl (n)) = @i (@, Tig gy (W), Vg gy () weakly in - LPH(Q,w?),

& (Tt ol (Un)) = 3(Thy o (w))  strongly in  LPi(Q,w%)
and
0iTk(up — ) = 0;Tk(u—¢) strongly in  LP(Q,w;).

we can pass to limit in

un€K¢

Z/ a;(z, Un, Vup)0; Ti(u dx+2/¢ (up) 0Tk (u p)dx
< / fn Tk(un—go)dx—kZ/ Fi 0Ty (un — ¢)dz
Q = Ja

Voe KyNL>®(Q) and VEk >0,

this completes the proof of Theorem 4.2.

5. Appendix

Proof of lemma 4.3
Firstly, we will prove that the operator B,, is pseudo-monotone. Let (uy)r be a sequence in WO1 7 (Q, ﬁ)
such that
Up — U weakly W(}’?(Q, W)
Bur — x weakly in Wo_l’?, (Q, W)

limsup < Bpug,up > < < x,u > .
k— 400
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We will show that x = Bpu and < Bpug,ur >—< x,u > as k — +oo. Since W&’?(Q,ﬁ) ey
LP (Q), then wu, — u strongly in LP () and a.e. in Q for a subsequence denoted again (ug ).
Since (ug)r is bounded in Wol’?(ﬂ, W) by (3.2), we have (a;(z, up, Vug))x is bounded in L (Q,w?).
Then there exists a function ¢, € LPi (©,w*) such that

a;(x,ur, Vug) = ¢, as k— 4oo. (5.1)
Moreover, since (¢! (uy))y is bounded in LPi (2, w*%) and ¢7 (uz) — ¢7(u) a.e. in Q, we have
o () — ¢T(u)  strongly in  LPi(Qw;) as k— +oo. (5.2)
For all v € Wol’?(Q,ﬁ) using (5.1) and (5.2), we obtain

<x,v>= lim < Bpug,v>

k—-+oo
N N
= kETm;Aai(wyuk, Vuy)0;v dx+kgr+noo;/ﬂ¢?(uk)5w dx

N N
22/ cpiaivdx—FZ/ 7 (u)d;v du.
i=1 7% i=1 7%

Hence, we get

k—-+oo k—-+oo

N N
limsup < Bpug , up > = lim sup lZ/ ai(x, ug, Vug)0u dx + Z/ o1 (ug)0ug dm]
Q = Jo

i=1
N N
:limsupZ/ ai(z, ug, Vuk)aiukdx—FZ/ o7 (u)dude
k—+oo =7 Jo = Ja
< <xu>

N N
22/ wiaiudx—FZ/ o7 (u)dudx
i=179 i=179
as a result

N N
limsupZ/ ai(z,ug , Vug)0;ug de < Z/ p;0iudz. (5.3)
i=1 7% i=179

N
Thanks to (3.3), we have Z / (ai(z,up, Vur) —ai(z,ur, Vu))(d;ur — 0u)dxz > 0. Then
=179

N N N
Z/ ai(x, uk, Vug)0;u, de > — Z/ ai(x, ug, Vu)dyudr + Z/ ai(z,ug , Vug)o;udr
i=1 7% i=1 7% i=1 7%

N
+ Z/Qai(x, ug , Vu)o;ug dx.
i=1

By (5.1), we obtain

N N
lim inf /ai(x, ug, Vug)o;ugdx > /cpiaiudx. (5.4)
k—+4o00 ; Q ; Q
Using (5.3) and (5.4), we have
N N
lim /ai(x, ug , Vug)0;urde = / p;0;udz. (5.5)
k—~+o00 ; O ; Q
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Which implies that,

lim < Bpug,ur > = lim Z/aix ug, Vug)Oiugdr+ lim Z/qﬁ ug)Ouy dx

k—+o0 k—4o00 k—+o00
N
22/ goiaiudx—kZ/ o (u)0ude
=179 i=17/%
=< X, u>.

Moreover, since a;(x, u, Vu) converges to a;(z, u, Vu) strongly in L¥ (2, w;) by (5.5), we get
N
Z / (a;(x, up, Vug) — a;i(z, uk, Vu))(0;ur — d;u) dr = 0.
Q

By Lemma 3.2, we have uj convergesto u strongly in W&’?(Q,E?) and a.e. in Q, then a;(x, ug, Vu)
n

converges to a;(x, u, Vu) weakly in LPi (Q,w;) and ¢! (u) convergesto ¢ (u) strongly in LPi(€,w,).
Then for all v € W(}’?(Q, W) we obtain

<x,v>= lim < Byug,v>

k——+oo
:kETOOZ/ ai(z,ug , Vug)ojvdx + EIJPOOZ/ o, (ur)Oiv dx
N
22/ a;(z, u, Vu)aivdx—FZ/ ¢;(u)0; vdx
i=1 78 i=179
=< Byu,v >

which implies that B,u = x. Secondly, it remains to show that the operator B,, is coercive. For all
u,v € WO1 ’?(Q, W) and by the generalized Holder’s type inequality inequality, we have

[ s 1ot >|p»wﬁ<x>dx> ([
Q|s|<n Q
/(sup |¢i(s)|+1)p; wzﬁ(x) dx) ' </ |8iv|p'iwi(x)dx) "
Q |s|<n Q
s&pnm(s)m) ([ w7 @)™ ([ o

|| ||Wc}v7(ﬂﬁ))

IN
1=
/—\/—\ ~/



20 A. ABBAssI, C. ALLALOU AND A. KASSIDI

| < ®pu,v > |

which implies that < C(n). Let vy € Ky, thanks to Holder’s inequality and (3.2), by the

following continuous embeddings Wy (2, w;) < LP(Q, w;), we have

N . N
| < Av,vp > | < Z/ ai(z,v, Vo)dwow? (z)w? (z)dx
Q

i=1
N _ L p; P_li 1 Pi [%
SZ </Q ai(z,v, Vo)w, " (x) dx) (/Q Oivow? () dx)
i=1
<BZ</Q RV (@) + [o[Piw i (x) + [0 v]P'w )dx) ' (/Q|8iv0piwi(x)dx)
i=1
S,BZ(Cl—i—Cg/ |0; vPrw dm—|—/ |0; v|PF w dx) ’ (/ |8¢v0’”w¢(x)dx)
Q

N 1 -
al Cy+1 v~ o
,8042 <1 + 22 Z/ |0; v|Pi wldx> (/ 10,007 wi(x) dm)
1=1 Q
N N i e
< BCy Z 1+ C3 <Z/ |8l'u|p’ wi(x) dx) ( |5iv0|1”i wi(x) dx)
— Q Q

IN

i=1

< BCy (1 +Cs <Z/Q |00 wi(x) dx) Z ( 5 |0;v0|"" w () dx)
i=1 =1

N o
< BCy[1+Cs 2_) /Q |0l wi(x) dw) o017 @25
Therefore
|0;v[P dx
|< Av,v — v >| / /804HU0||W5,7(Q73)
ol @) 1ollyy1.7 (0,23, 19l 22 0,2
_ BCyC5 / o s
||UHW1 ?(Q j) |8U| H/UO”WOL?(Q’Z?).
Then,

Pi g, g

pl ) ||'U0HW01? (Q’j)

Z/ |0;v
|< Av,v — vy >|

>« 1-— —C4C3 / |5 v
H’U”ng7(97ﬁ) HU”Wl 7(9 D))

ﬁc4|‘vo||wgvﬁ(ﬂ’ﬁ)

||UHW01’?(Q7?)
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Using to Jensen’s inequality, we obtain

> (o)’
> ([, oot dxff

lo]l? =
whT (@)

IN
Q R R

uMz M= i[M=

< / |8 vlPtw ) T,
where .
pt = { P if [|0iv]|Lei (0w, = 1,
S U L X
Then,

From (5.6), we have

N
Z/ |0iv|P* w; da
i=1 7/

||U||W01v7(g7a’)

N
— 400 and Z/Q |0;vP w; dx — +o0 as ||U||W01~?(Q,w) = Foo.

| < Av,v — vy > |

— 400 as ||v]|y 3.z — +oo.

||’U||W1’7(Q,ﬁ)
< d,v,0 > ’ < ®,v,v9 >
Since no ad are bounded, then we get
||’U||W01v7(97m>) ||’U||W01v7(Q7j)

< Bpv,v,—vo > < Av,v—wo > | < $pv,v, —vo >

= — +oo as ||v]] 1,7 — +00.
HUHng? (Q,3) ”’UHWOI’? (Q,%) ”’UHWOI’? (Q,3) Wo @)

We conclude that the operator B,, = A + ®,, is coercive.
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