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Accelerated Extragradient Algorithm for Equilibrium and Fixed Point Problems for

Countable Family of Certain Multi-valued Mappings

H. A. Abass and O.T. Mewomo

abstract: In this paper, we introduce a viscosity-type extragradient algorithm for finding a common point
of the solution of a pseudomonotone equilibrium problem and a fixed point problem of an infinite family of
multi-valued quasi-nonexpansive mappings in a real Hilbert space. Using our algorithm, we state and prove
a strong convergence result of our iteration sequences. An application to variational inequality problem was
considered. Lastly, we give a numerical example of our main result. The result presented in this paper extends
and complements some recent results in literature.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H . We denote by CB(C) and
K(C) the family of nonempty closed bounded subsets and nonempty compact subsets of C respectively.
The Hausdorff metric distance on CB(C) is defined by

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for A, B ∈ CB(C),

where d(x, C) = min{||x − y|| : y ∈ C}.
Let T : C → CB(C) be a multivalued mapping, then PT x = {u ∈ T x : ||x − u|| = d(x, T x)}. A point
x ∈ C is called a fixed point of T if x ∈ T x. However, if T x = {x}, then x is called a strict point of T .
We denote the set of fixed point of T by Fix(T ). A multivalued mapping T is said to be L-Lipschitzian
if there exists L > 0 such that

H(T x, T y) ≤ L||x − y||, x, y ∈ C. (1.1)

In (1.1), if L ∈ (0, 1), then T is called a strict contraction while T is called nonexpansive if L = 1.
T is said to be quasi-nonexpansive if F (T ) 6= ∅ and

H(T x, T y) ≤ ||x − y||, ∀ x ∈ C, y ∈ F (T ),

Let g : C × C → R be a bifunction. The equilibrium problem (EP) is to find

x∗ ∈ C such that g(x∗, y) ≥ 0, ∀ y ∈ C. (1.2)
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We denote by Ω, the set of solution of problem (1.2).
The application of EP have been found in practical problems arising from physics, engineering, game
theory, transportation, economics to mention a few and network, (see [1,2,3,4,5,6,9,11,23,24,31,30] and
other references contained in). Many authors have considered approximating solutions of fixed point
problem together with EP (C, g). For instance, in 2013, Anh [7] introduced the following extragradient
method for approximating solutions of pseudomonotone EP as follows:











yn = argminy∈C

{

1
2 ||y − xn||2 + λng(xn, y)};

tn = argmint∈C

{

λng(yn, t) + 1
2 ||t − xn||2};

xn+1 = αnx0 + (1 − αn)T (tn);

(1.3)

where {λn} ⊂ (0, 1], x0 ∈ C, αn ∈ (0, 1) such that
∑∞

n=1 αn = ∞ and limn→∞ αn = 0, f(x, y) =
〈F (x), y − x〉, T a nonexpansive mapping and g satisfies a Lipschitz-type property. The author showed
that (1.3) converges strongly to x∗ in Sol(F, C) and Fix(T ) (see [7] for more details of their iterative
sequence).
In 2012, Vuong et al. [14] employed a hybrid projection algorithm for approximating a common ele-
ment of fixed point set of a pseudo-contractions and solution set of an equilibrium problem involving
pseudomonotone bifunction g in the following manner: x0 ∈ C and







































yn = argminy∈C

{

λng(xn, y) + 1
2 ||y − xn||2};

zn = argminy∈C

{

λng(yn, y) + 1
2 ||y − xn||2};

tn = αnxn + (1 − αn)βnzn + (1 − βn)Szn;

Cn =
{

z ∈ C : ||tn − z|| ≤ ||xn − z||
}

;

Dn =
{

z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0
}

;

xn+1 = PCn∩Dn
x0;

(1.4)

where {αn}, {βn}, {λn} ⊂ (0, 1) and g satisfies a Lipschitz-type property. They proved a strong conver-
gence theorem.
A very good approach to fasten up the convergence rate of iterative algorithms is to combine the iterative
scheme with the inertial term. The inertial type iteration process originate from the heavy ball method
of the two order dynamical system which is a two-step method for minimizing a smooth convex function.
Polyak [27] was the first author to propose the heavy ball method, Alvarez and Attouch [8] employed
this to the setting of a general maximal monotone operator using the PPA, which is called the inertial
PPA, and is of the form:

{

yn = xn + θn(xn − xn−1),

xn+1 = (I + rnB)−1yn, n ≥ 1.
(1.5)

They proved that if {rn} is non-decreasing and {θn} ⊂ [0, 1) with

∞
∑

n=1

θn||xn − xn−1||2 < ∞, (1.6)

then the sequence generated by Algorithm (1.5) converges weakly to a zero of a maximal monotone
operator B.
The introduction of the term θn(xn − xn−1) in (1.5), represents a remarkable tool employed in improving
the performance of algorithms which in turn provides some remarkeable convergence properties (see
[27] and the references therein). Motivated by the works of Trans et al. [13], Vuong et. al. [14] and
other related works in literature, we introduce a viscosity type algorithm together with an inertial term
to approximate a common solution of an EP involving a pseudomonotone bifunction and a fixed point
problem of an infinite family of quasi-nonexpansive multi-valued mappings in the framework of real Hilbert
spaces. We prove a strong convergence result and give application of our main result to variatioanal
inequality problem. The result presented in this paper extends and complements the result of [14] and
other related results in literature.
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2. Preliminaries

We state some known and useful results which will be needed in the proof of our main theorem. In the
sequel, we denote strong and weak convergence by ”→” and ”⇀” respectively.

Definition 2.1. The bifunction g is called (i) monotone, if

g(x, y) + g(y, x) ≤ 0, ∀ x, y ∈ C;

(ii) pseudomonotone, if

g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0, ∀ x, y ∈ C;

(iii) Lipschitz-type continuous with constants c1 > 0 and c2 > 0 if

g(x, y) + g(y, z) ≥ g(x, z) − c1||x − y||2 − c2||y − z||2, ∀ x, y ∈ C.

To solve an EP involving a pseudomonotone bifunction, the following assumptions are needed:
(L1) g(x, x) = 0 for all x ∈ C and g is pseudomonotone on C;
(L2) g is Lipschitz-type continuous on C; with constants c1 and c2.
(L3) for each x ∈ C, y → g(x, y) is convex and subdifferentiable;
(L4) g(x, y) is jointly weakly continuous on C × C.
Let C be a nonempty, closed and convex subset of a real Hilbert space H and x be an element in H. We
know that for each x ∈ H, there is a unique PCx ∈ C such that

||x − PCx|| = inf{||x − y|| : y ∈ C}. (2.1)

The operator PC so defined is referred to as the nearest point mapping or the metric projection onto C.
It is known that

〈x − PCx, y − PCx〉 ≤ 0, (2.2)

holds for all x ∈ H and y ∈ C (see [10,32]).
Given a proper and convex function h : H → R ∪ {+∞}, the subdifferential of h as x ∈ H is defined as
(the set of all subgradients of h a x);

∂h(x) = {w ∈ H : h(y) − h(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

The function h is said to be sub-differentiable at x if ∂h(x) 6= ∅.

Definition 2.2. Let H be a real Hilbert space and T : H → CB(H) a multivalued mapping. Then, T is
said to be demiclosed at the origin if for any sequence {xn} ⊂ H with xn ⇀ x∗, and d(xn, T (xn)) → 0,
we have x∗ ∈ T x∗.

Lemma 2.3. [20] Let H be a real Hilbert space, then ∀ x, y ∈ H and α ∈ (0, 1), we have

(i) 2〈x, y〉 = ||x||2 + ||y||2 − ||x − y||2 = ||x + y||2 − ||x||2 − ||y||2,

(ii) ||αx + (1 − α)y||2 = α||x||2 + (1 − α)||y||2 − α(1 − α)||x − y||2,

(iii) 〈x, y〉 = 1
2 ||x||2 + 1

2 ||y||2 − 1
2 ||x − y||2.

Lemma 2.4. [21] Let E be a uniformly convex real Banach space. For arbitrary r > 0, let Br(0) :=
{x ∈ E : ||x|| ≤ r}. Then, for any given sequence {xi}∞

i=1 ⊂ Br(0) and for any given sequence {λi}∞
i=1,

in (0,1) with
∑∞

i=1 λi = 1, there exists a continuously strictly increasing convex function

g : [0, 2r] → R with g(0) = 0,

such that for any positive integers i, j with i < j, the following inequality holds

||
∞

∑

i=1

λixi||
2 =

∞
∑

i=1

λi||x||2 − λiλjg(||xi − xj ||).
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Lemma 2.5. [15] Assume that f satisfies (L1)-(L4) such that EP(f) is nonempty and 0 < λ <
min

(

1
2c1

, 1
2c2

). If x0 ∈ C and y0, z0 are defined by

{

y0 = argminy∈C{λf(x0, y) + 1
2 ||y − x0||2};

z0 = argminy∈C{λf(y0, y) + 1
2 ||y − x0||2};

then,
(i) λ[f(x0, y) − f(x0, y0)] ≥ 〈y0 − x0, y0 − y〉, ∀ y ∈ C;
(ii) ||z0 − p||2 ≤ ||x0 − p||2 − (1 − 2λc1)||x0 − y0||2 − (1 − 2λc2)||y0 − z0||2, ∀ p ∈ EP (f).

Lemma 2.6. [17] Let C be a nonempty, closed and convex subset of a real Hilbert space H and T : C →
K(C) be a quasi-nonexpansive multi-valued mapping. Let {xn} be a sequence in C such that xn ⇀ p and
limn→∞ d(xn, T xn) = 0, then p ∈ T p.

Lemma 2.7. [19] Assume {an} is a sequence of nonnegative real sequence such that

an+1 ≤ (1 − σn)an + σnδn + γn, n > 1,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that
(i)

∑∞

n=1 σn = ∞,
(ii) lim sup

n→∞

δn ≤ 0,

(iii) γn ≥ 0, (n ≥ 1) and
∑∞

n=1 γn < ∞.
Then limn→∞ an = 0.

3. Main Results

In this section, we introduce an iterative algorithm for approximating a solution of pseudomonotone
equilibrium problem and the set of fixed point problem of an infinite family of quasi-nonexpansive multi-
valued mappings.
Algorithm 1:
Initialization: Choose x1 ∈ H and i ∈ 1, 2, the sequences {αn}, {βn,0} and {βn,i} in (0, 1) such that











































(i) lim
n→∞

αn = 0,
∑∞

n=0 αn = ∞;

(ii) lim inf
n→∞

βn,0βn,i > 0,
∑∞

i=0 βn,i = 1, ∀ i;

(iii) 0 < µ ≤ µn ≤ µ < min
(

1
2c1

, 1
2c2

)

;

(iv)
∑∞

n=1 θn||xn − xn−1|| < ∞;

(v) lim
n→∞

θn

αn
= 0.

Set n = 0 and go to step 1,
Step 1: Compute

wn = xn + θn(xn − xn−1);

Step 2: Compute

tn = argminu∈C

{

µng(wn, u) +
1

2
||wn − u||2

}

;

zn = argminu∈C

{

µng(tn, u) +
1

2
||wn − u||2

}

;

Step 3: Let hn be defined by:

hn = βn,0zn +
∞

∑

i=1

βn,iq
i
n where qi

n ∈ Tizn;
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Step 4: Compute

xn+1 = αnf(xn) + (1 − αn)hn.

Step 5: If xn+1 = xn, then stop. Otherwise, set n := n + 1 for n ≥ 0 and go to step 1.

Theorem 3.1. Let C be a nonempty, closed and convex of a real Hilbert space H and f : C → C
be a contraction with constant ρ ∈ (0, 1). Let g : C × C → R be a bifunction satisfying (L1)-(L4)
and {Ti}∞

i=1 : C → K(C) be an infinite family of multi-valued quasi-nonexpansive mappings. Assume
that Γ := ∩∞

i=1Fix(Ti) ∩ Ω 6= ∅, then the sequence {xn} generated by Algorithm 1 converges strongly to
x = PΓf(x), where PΓf is the metric projection from f(x) onto C.

Let p ∈ Γ, then we have from Lemma 2.5 and Algorithm 1 that

||zn − p||2 ≤ ||wn − p||2 − (1 − 2µnc1)||wn − tn||2 − (1 − 2µnc2)||tn − zn|| (3.1)

which implies

||zn − p||2 ≤ ||wn − p||2,

using this and Step 1, we have

||zn − p|| ≤ ||wn − p||

= ||xn + θn(xn − xn−1) − p||

≤ ||xn − p|| + θn||xn − xn−1||. (3.2)

From step 3 of Algorithm 1 and (3.1), we have

||hn − p|| = ||βn,0zn +

∞
∑

i=1

βn,iq
i
n − p||

≤ βn,0||zn − p|| +

∞
∑

i=1

βn,i||q
i
n − p||

≤ βn,0||zn − p|| +

∞
∑

i=1

βn,id(qi
n, Tip)

≤ βn,0||zn − p|| +
∞

∑

i=1

βn,iH(Tizn, Tip)

≤ βn,0||zn − p|| +

∞
∑

i=1

βn,i||zn − p||

= ||zn − p||

≤ ||xn − p|| + θn||xn − xn−1||. (3.3)

Now, we have from Algorithm 1 and (3.3) that

||xn+1 − p|| ≤ αn||f(xn) − p|| + (1 − αn)||hn − p||

≤ αn

[

||f(xn) − f(p)|| + ||f(p) − p||
]

+ (1 − αn)||xn − p|| + (1 − αn)θn||xn − xn−1||

= αnρ||xn − p|| + αn||f(p) − p|| + (1 − αn)||xn − p|| + (1 − αn)θn||xn − xn−1||

≤ (1 − αn(1 − ρ))||xn − p|| + αn(1 − ρ)
||f(p) − p||

1 − ρ
+ (1 − αn)θn||xn − xn−1||

≤

{

max
{

max ||xn−1 − p||,
||f(p) − p||

1 − ρ

}

+ θn−1||xn−1 − xn−2||,
||f(p) − p||

1 − ρ

}

+ θn||xn − xn−1||

= max

{

||xn − p||,
||f(p) − p||

1 − ρ

}

+ θn−1||xn−1 − xn−2|| + θn||xn − xn−1||.
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Let M =
∑n

i=1 θi||xi − xi−1||, we obtain that

||xn+1 − p|| ≤ max
{

||x1 − p||,
||f(p) − p||

1 − ρ

}

+ M.

Therefore, {xn} is bounded. Consequently, {tn}, {zn} and {hn} are all bounded.
From (i) and Lemma 2.3(iii), we have that

||wn − p||2 = ||xn + θn(xn − xn−1) − p||2

= ||xn − p||2 + 2θn〈xn − p, xn − xn−1〉 + θ2
n||xn − xn−1||2

= ||xn − p||2 + θn(||xn − p||2 + ||xn − xn−1||2 − ||xn−1 − p||2) + θ2
n||xn − xn−1||2

≤ ||xn − p||2 + θn(||xn − p||2 − ||xn−1 − p||2) + 2θn||xn − xn−1||2. (3.4)

We conclude from (3.1) and (3.4), that

||zn − p||2 ≤ ||xn − p||2 + θn(||xn − p||2 − ||xn−1 − p||2) + 2θn||xn − xn−1||2

− (1 − 2µnc1)||wn − tn||2 − (1 − 2µnc2)||tn − zn||2. (3.5)

Using (3.5) and Lemma 2.4, we have that

||hn − p||2 = ||βn,0zn +

∞
∑

i=1

βn,iq
i
n − p||2

≤ βn,0||zn − p||2 +
∞

∑

i=1

βn,id(qi
n, Tip)2 − βn,0βn,ig(||zn − qi

n||)

≤ βn,0||zn − p||2 +

∞
∑

i=1

βn,iH(Tizn, Tip)2 − βn,0βn,ig(||zn − qi
n||)

≤ βn,0||zn − p||2 +
∞

∑

i=1

βn,i||zn − p||2 − βn,0βn,ig(||zn − qi
n||)

= ||zn − p||2 − βn,0βn,ig(||zn − qi
n||)

≤ ||xn − p||2 + θn(||xn − p||2 − ||xn−1 − p||2) + 2θn||xn − xn−1||2

− (1 − 2µnc1)||wn − tn||2 − (1 − 2µnc2)||tn − zn||2 − βn,0βn,ig(||zn − qi
n||) (3.6)

From Algorithm 1 and (3.6), we have that

||xn+1 − p||2 ≤ αn||f(xn) − p||2 + (1 − αn)||xn − p||2 + θn(||xn − p||2 − ||xn−1 − p||2)

+ 2θn||xn − xn−1||2 − (1 − αn)(1 − 2µnc1)||wn − tn||2 − (1 − αn)(1 − 2µnc2)||tn − zn||2

− βn,0βn,ig(||zn − qi
n||). (3.7)

CASE A: Suppose there exists a natural number N such that ||xn+1 − p|| ≤ ||xn − p|| for all n ≥ N. In
this case, ||xn − p|| is convergent. Since {xn} is bounded, then

lim
n→∞

||xn − p|| = lim
n→∞

||xn+1 − p||.

From (3.7), conditions (i), (iii) and (iv) of Algorithm 1, we have that

lim
n→∞

||wn − tn|| = 0, (3.8)

and

lim
n→∞

||tn − zn|| = 0. (3.9)
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Furthermore, by applying Lemma (2.4) to (3.7), we obtain

lim
n→∞

||zn − qi
n|| = 0 = lim

n→∞
d(zn, Tizn). (3.10)

From Algorithm 1, we have that

||hn − zn|| ≤
∞

∑

i=1

βn,i||q
i
n − zn||. (3.11)

Hence, using (3.10), we obtain that

lim
n→∞

||hn − zn|| = 0. (3.12)

Also, from Algorithm 1 and condition (iv), we have that

||wn − xn|| ≤ θn||xn − xn−1|| → 0, n → ∞. (3.13)

Again from Algorithm 1 and condition (i), we get

||xn+1 − hn|| ≤ αn||f(xn) − hn|| → 0, n → ∞. (3.14)

From (3.8) and (3.9), we have

||wn − zn|| ≤ ||wn − tn|| + ||tn − zn|| → 0, n → ∞. (3.15)

It follows from (3.12) and (3.15), that

lim
n→∞

||hn − wn|| = 0. (3.16)

From (3.13) and (3.16), we have that

lim
n→∞

||hn − xn|| = 0. (3.17)

Therefore, by (3.14) and (3.17), we obtain

lim
n→∞

||xn+1 − xn|| = 0. (3.18)

Since {xn} is bounded, there exists a subsequence {xnj
} of {xn} such that {xnj

} converges weakly to
x ∈ H . From (3.10) and Lemma (2.6), we obtain that x ∈ ∩∞

i=1F (Ti). We now show that x ∈ Ω. Using
(3.8) and (3.13), we easily observe that the subsequences {wnj

} and {tnj
} which converges weakly to x.

Hence, from Lemma 2.5, we have that

µnj
[g(wnj

, u) − g(wnj
, tnj

)] ≥ 〈tnj
− wnj

, tnj
− u〉 ∀ u ∈ C

≥ −||tnj
− wnj

|| ||tnj
− u||, ∀ u ∈ C;

this implies that

g(wnj
, u) − g(wnj

, tnj
) +

1

µnj

||tnj
− wnj

|| ||tnj
− u|| > 0, ∀ u ∈ C;

Letting j → ∞, by the hypothesis on {µn}, (3.8) and condition L2 on g, we obtain that

g(x, u) ≥ 0, ∀ u ∈ C.

This implies that x ∈ EP (g), that is x ∈ Ω. We therefore conclude that x ∈ Γ.
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We now prove that {xn} converges strongly to x. Firstly, we show that lim sup
n→∞

〈f(x) − x, xn+1 − x〉 ≤ 0.

Indeed, let {xnj
} be a subsequence of {xn} such that xn ⇀ x∗ and

lim sup
n→∞

〈f(x) − x, xn+1 − x〉 = lim
j→∞

〈f(x) − x, xnj +1 − x〉.

Since ||xn+1 − xn|| → 0 as n → ∞, we have by (2.2), that

lim sup
n→∞

〈f(x) − x, xn+1 − x〉 = lim
j→∞

〈f(x) − x, xnj+1 − x〉

≤ 〈f(x) − x, x∗ − x〉

≤ 0. (3.19)

From Algorithm 1 and (3.6), we have that

||xn+1 − x||2 = ||αnf(xn) + (1 − αn)hn − x||2

≤ (1 − αn)2||hn − x||2 + 2αn〈f(xn) − x, xn+1 − x〉

≤ (1 − αn)2
[

||xn − x||2 + θn(||xn − x||2 − ||xn−1 − x||2) + 2θn||xn − xn−1||2
]

+ 2αn〈f(xn) − f(x), xn+1 − x〉 + 2αn〈f(x) − x, xn+1 − x〉

≤ (1 − αn)2||xn − x||2 + (1 − αn)2θn(||xn − x||2 − ||xn−1 − x||2)

+ 2(1 − αn)2θn||xn − xn−1||2 + 2αnρ||xn − x|| ||xn+1 − x|| + 2αn〈f(x) − x, xn+1 − x〉

≤ ((1 − αn)2 + αnρ)||xn − x||2 + αnρ||xn+1 − x||2

+ (1 − αn)2θn(||xn − x||2 − ||xn−1 − x||2) + 2(1 − αn)2θn||xn − xn−1||2

+ 2αn〈f(x) − x, xn+1 − x〉

≤ ((1 − αn)2 + αnρ)||xn − x||2 + αnρ||xn+1 − x||2 + θn[(1 − αn)2||xn − p|| + ||xn−1 − p||

+ 2(1 − αn)2||xn − xn−1||]||xn − xn1
|| + 2αn〈f(x) − x, xn+1 − x〉

≤ (1 − αn(2 − ρ))||xn − x||2 + α2
n||xn − p||2 + αnρ||xn+1 − x||2 + θn[(1 − αn)2||xn − p||

+ ||xn−1 − p|| + 2(1 − αn)2||xn − xn−1||]||xn − xn−1|| + 2αn〈f(x) − x, xn+1 − x〉. (3.20)

From (3.20), we obtain

||xn+1 − p||2 ≤

(

1 −
αn(2 − ρ)

1 − αnρ

)

||xn − p||2 +
αn(2 − ρ)

1 − αnρ

(

2〈f(x) − x, xn+1 − x〉 + αnM1

(2 − ρ)

)

+
θn||xn − xn−1||M2

(1 − αnρ)
(3.21)

where M1 = supn≥1 ||xn−p||2 and M2 = supn≥1((1−αn)2(||xn−p||+||xn−1−p||)+2(1−αn)2||xn−xn−1||).
Using (3.19), conditions (i),(iv) and Lemma 2.7, we obtain that limn→∞ ||xn − x||2 = 0, that is, xn → x.
CASE B: Assume that {||xn − x||} is not a monotone decreasing sequence. Then, we define an integer
sequence {σ(n)} for all n ≥ n0 (for some n0 large enough) by

σ(n) := max{k ∈ N; k ≤ n : ||xk − x|| < ||xk+1 − x||}.

clearly, σ is a nondecreasing sequence such that σ(n) → ∞ as n → ∞ and for all n ≥ n0. From (3.7) and
conditions (i)-(iv) of Algorithm 1, we have that

lim
k→∞

||wnk
− tnk

|| = 0,

lim
k→∞

||tnk
− znk

|| = 0,
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and

lim
k→∞

d(znk
, Tiunk

) = 0.

Following the same argument as in CASE A, we have that there exists a subsequence {xσ(n)} which
converges weakly to x ∈ Γ. Now, for all n ≥ n0, we have from (3.21) that

0 < ||xσ(n)+1 − x||2 − ||xσ(n) − x||2

<

(

1 −
ασ(n)(2 − ρ)

1 − ασ(n)ρ

)

||xσ(n) − p||2 +
ασ(n)(2 − ρ)

1 − ασ(n)ρ

(

2〈f(x) − x, xσ(n)+1 − x〉 + ασ(n)M1

(2 − ρ)

)

+
θσ(n)||xσ(n) − xσ(n)−1||M2

(1 − ασ(n)ρ)
− ||xσ(n) − x||2,

which implies that
(

ασ(n)(2 − ρ)

1 − ασ(n)ρ

)

||xσ(n) − p||2 <
ασ(n)(2 − ρ)

1 − ασ(n)ρ

(

2〈f(x) − x, xσ(n)+1 − x〉 + ασ(n)M1

(2 − ρ)

)

+
θσ(n)||xσ(n) − xσ(n)−1||M2

(1 − ασ(n)ρ)
.

Therefore,

||xσ(n) − p||2 ≤ 2〈f(x) − x, xσ(n)+1 − x〉 + ασ(n)M1 +
θσ(n)||xσn

− xσn−1||M2

ασ(n)(2ρ)
.

Since ασ(n) → 0 as n → ∞ and lim sup
n→∞

〈f(x) − x, xσ(n)+1 − x〉 ≤ 0, we have by condition (v) that

lim
n→∞

||xσ(n) − p|| = 0. (3.22)

Consequently, we obtain for all n ≥ n0, that

0 ≤ ||xn − x|| ≤ max{||xσn
− x||2, ||xσn+1 − x||2} = ||xσn+1 − x||2.

Thus, ||xn − p|| → 0 as n → ∞. Therefore, the sequence {xn} converges strongly to x.

Corollary 3.2. Let C be a nonempty, closed and convex of a real Hilbert space H and f : C → C
be a contraction with constant ρ ∈ (0, 1). Let g : C × C → R be a bifunction satisfying (L1)-(L4)
and T : C → C be a nonexpansive mapping. Assume that Γ := Fix(T ) ∩ Ω 6= ∅, then the sequence {xn}
generated by the following algorithm converges strongly to x = PΓf(x), where PΓf is the metric projection
from f(x) onto C. Initialization: Choose x1 ∈ H and i ∈ 1, 2, the sequences {αn}, {βn,0} and {βn,i} in
(0, 1) such that











































(i) lim
n→∞

αn = 0,
∑∞

n=0 αn = ∞;

(ii) lim inf
n→∞

βn(1 − βn) > 0,

(iii) 0 < µ ≤ µn ≤ µ < min
(

1
2c1

, 1
2c2

)

;

(iv)
∑∞

n=1 θn||xn − xn−1|| < ∞;

(v) lim
n→∞

θn

αn
= 0.

Set n=0 and go to step 1,
Step 1: Compute

wn = xn + θn(xn − xn−1);
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Step 2: Compute

tn = argminu∈C

{

µng(wn, u) +
1

2
||wn − u||2

}

;

zn = argminu∈C

{

µng(tn, u) +
1

2
||wn − u||2

}

;

Step 3: Let hn be defined by:

hn = βnzn + (1 − βn)T zn;

Step 4: Compute

xn+1 = αnf(xn) + (1 − αn)hn.

Step 5: If xn+1 = xn, then stop. Otherwise, set n := n + 1 and go to step 1.

4. Application

In this section, we apply our result to solve the Variational Inequality Problem (VIP). Recall that the
VIP consists of finding a point x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀ y ∈ C. (4.1)

with A a nonlinear mapping on a nonempty, closed and convex subset C of a real Hilbert space H. We
denote the solution of V IP (C, A) (4.1), by Sol(C, A). A is said to be pseudomonotone on H if, for all
x, y ∈ H, 〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ 0.
Suppose we define

g(x, y) :=

{

〈Ax, y − x〉, if x, y ∈ C

+∞, otherwise
(4.2)

with A : C → H , then the equilibrium (1.2) coincides with the VIP (4.1).
In this situation, Algorithm 1 provides a new method for solving a variational inequality problem and
fixed points of a nonlinear mapping.
A convergence result for solving pseudomonotone variational inequality problem and fixed point of an
infinite family of multi-valued quasi-nonexpansive mappings in a real Hilbert space is given below.

Theorem 4.1. Let C be a nonempty, closed and convex of a real Hilbert space H and f : C → C be a
contraction with constant ρ ∈ (0, 1). Let A : C → H be a pseudomonotone operator and {Ti}

∞
i=1 : C →

K(C) be an infinite family of multi-valued quasi-nonexpansive mappings. Assume that Υ := ∩∞
i=1Fix(Ti)∩

Sol(C, A) 6= ∅, then the sequence {xn} generated by Algorithm 1 converges strongly to x = PΥf(x), where
PΥf is the metric projection from H onto C.

For each pair x, y ∈ C, we define the bifunction g by (4.2). From the theorem’s assumption, it is easily
observed that the conditions of Theorem 3.1 are satisfied. Note that ∂g(x, ·)(x) = Ax. By Theorem 3.1,
the sequence {xn} converges strongly to x ∈ Γ. This implies that the sequence {xn} converges strongly
to x ∈ Υ.

5. Numerical Example

We now display a numerical example to show the applicability of our main result.
Let H = R and define g : C × C → R by g(x, y) = M(x)(y − x), where

M(x) =

{

0, 0 ≤ x ≤ 1
80 ;

sin(x − 1
80 ), 1

80 ≤ x ≤ 1;
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where g satisfies (L1)-(L4) with c1 = 1 = c2. Define Ti : R → K(R) (i = 1, 2, 3, ...) by

Tix =

{

[0, x
2i

] x ∈ [0, ∞);

[ x
2i

, 0] x ∈ (−∞, 0];

where K(R) is the family of nonempty, closed and bounded subsets of R. Clearly, Ti is a multi-valued
quasi-nonexpansive mapping. Let f : R → R be given as f(x) = x

6 and take βn,0 = 1
2 , βn,i = 1

2i+1 , qi
n ∈

Tizn and αn = 1
n+1 . Then, conditions (i)-(v) of Theorem (3.1) are satisfied. Hence, Algorithm 1 becomes:

For arbitrary x1 ∈ R:































wn = xn + θn(xn − xn−1), n ≥ 1,

tn = wn − µnM(wn);

zn = tn − µnM(tn);

hn = 1
2 zn +

∑∞

i=1
1

2i+1 qi
n;

xn+1 = x
6(n+1) + n

n+1 hn.

(5.1)

In what follows, we consider varying values of x0, x1 and µ in the different cases presented. We then plot
a graph of errors against the number of iteration on a personal laptop Dell E6320 core i7 with MATLAB
version 2019b. The figures are included to show the difference in convergence rate of the accelerated
algorithm of Theorem 3.1 and an un-accelerated one.

Case 1:(a) x0 = 5/8, x1 = −3/4 and µ = 0.5.

(b) x0 = 5/8, x1 = −3/4 and µ = 0.25.
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Figure 1: Left: Case (1a); Right: Case (1b).

Case 2:(a) x0 = 5/8, x1 = −1/4 and µ = 2.

(b) x0 = 7/8, x1 = −1/4 and µ = 0.25.



12 H. A. Abass and O.T. Mewomo

0 2 4 6 8 10 12 14

Iteration numbers (n)

0

0.05

0.1

0.15

E
rr

o
rs

Accelerated algorithm

Unaccelerated algorithm

0 2 4 6 8 10 12 14

Iteration numbers (n)

0

0.05

0.1

0.15

E
rr

o
rs

Accelerated algorithm

Unaccelerated algorithm

Figure 2: Left: Case (2a); Right: Case (2b).

6. Conclusion

We introduce a viscosity-type extragradient algorithm for finding a common point of the solution of a
pseudomonotone equilibrium problem and a fixed point problem of an infinite family of multi-valued
quasi-nonexpansive mappings in a real Hilbert space. The iterative scheme considered in this article has
an advantage over the one considered in [14] in the sense that we do not use any projection of a point on
the intersection of closed and convex sets which creates some difficulties in a practical calculation of the
iterative sequence. The Halpern iteration considered in this article provides more flexibility in defining
the algorithm parameters which is important for the numerical implementation perspective. We prove a
strong convergence result for approximating the solution of the aforementioned problems and display a
numerical example to show the applicability of our result.
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