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The Continuous Generalized Wavelet Transform Associated with ¢-Bessel Operator

M. M. Dixit, C. P. Pandey and D. Das

ABSTRACT: The continuous generalized wavelet transform associated with g-Bessel operator is defined, which
will invariably be called continuous ¢-Bessel wavelet transform . Certain and boundedness results and inversion
formula for continuous g-Bessel wavelet transform are obtained. Discrete g-Bessel wavelet transform is defined
and a reconstruction formula is derived for discrete g- Bessel wavelet.
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1. Introduction

A complex-valued continuous function ¢ with the property

/Ooo $(t)dt = 0, (1.1)

is called a wavelet. The wavelet transform of a function f € L?(R) with respect to the wavelet ¢ € L%(R))
is defined by

“+o0
(Wg)(b,a) = / ft)by o (t)dt, b€ R, a >0, (1.2)
where
Gpa(t) = a”2((t — b)/a). (1.3)
In terms of the translation 7} defined by
Tyo(t) = ot —b), be R (1.4)
and dilation D, defined by
Dag(t) = |a| "/ ¢(t/a), a # 0, (1.5)
we can write
®p.a(t) = ToDag(2). (1.6)
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We can also express (1.2) as the convolution:

(We f)(b,a) = (f * go,a)(b), (1.7)
where
g(t) == (=) . (1.8)
2. The ¢-Bessel operator and ¢-Bessel function

The ¢-Bessel operator defined by

Ngof(z) = WlJrqu [an“Dqﬂ (qilx) , (2.1)
where
D,f (0) = KL oo, 21 (2.2

For a,q € C, the ¢-shift factorial (a;q)x is defined as a product of k factors
(a;9),=1—-a)(1—agq)... (1 — aqkil) , ke N*, (a;q), = 1. (2.3)

If | ¢ |< 1, this definition remains meaningful for k = 400 as a convergent infinite product:

o0
(a;q) = H (1 — aqk) . (2.4)
k=0
We also write (a1, ..., a,;q)x for the product of rg-shifted factorials:
(@1, ar;q), = (@1;9) - - - (ar;q),, k€ Nork = oo. (2.5)
A g-hypergeometric series is a power series (for the moment still formal) in one complex variable z with
power series coeflicients which depend, apart from ¢, on r complex upper parameters ai,...,a, and s
complex lower parameters by, ..., bs as follows:

2%, forr,s € N. (2.6)

> al,.. ar,q) ko k(k=1) 14+s—r
S B
0 Tyevns q;q

The ¢-Bessel function is defined by

o0 _1\k k(k—1) 2 2k
o (2:¢%) =T (a—i—l)z (=1) g ( ) . (2.7)

kZOqu(k‘—Fl)qu(a—Fk—i—l) 1+4q
This function is bounded and for every x € R, and o > —3, we have

lja (z54%)] < ! - (2.8)

(4:0%)%

(1-q) .
( > ¢*) = ~{ = parzylat (¢7:4°), (2.9)

2 _(1_q2)2(a 1) L2

(520) (2 (o)) = Sk (i), 210
| Dyjo (2:¢%)] < zil~9) (2.11)

(1 — q2+2) (¢;q2)°,
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We remark that for A € C , the function j, (A, ¢?) is the unique solution of the g-differential system

{ AQ,(MU(x7Q) = _)‘QU (x7Q)
U(0,9) =1; DgaU (2,q) [2=0 =0,

where A, , is the g-Bessel operator defined by
1

Aq,af(x) = W‘Dq [x204+1qu] (q_lx)
_ 2““Af()+£Df(*l)
1 N R P

where
Agf (x) = A'Dif (x) = (Dif) (¢ ')
and for £k € N and A € Ry +
Al o (Miq?) = (=1)" Ajo (i) -
3. ¢-Functional spaces
We begin by putting
Ryt ={+¢", k€ Z}, Ry = {+d¢", k€ Z} U{0}

and we denote by L%  (Rq+), p < [0,00[, (resp.L3, (Rq4))the space of functions f such that,

s = ([ @ i (x))% < +oo,

resp. || f| .., = ess. sup |f ()] < +oo,
rzeR4
1+ "

2a0+1 _ 2a+1
7Fq2 (ot 1)x dgr = by g7 dgz.

dqo (z) =

4. g-Bessel translation operator

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(3.1)

T, © € Ry is the g-generalized translation operator associated with the g-Bessel transform is

q,T?
introduced in [12], is defined as follows

+oo
¢ (x,y) =T, f (x) = /0 f(@t)Dag(x,y,t)dgo (t), a > —1,

with e
Do (2,y,2) = /0 Jo (2t;6°) jo (Yt 6°) Ja (2t:¢7) dgo (2)

and
—+o0

Dag (z,y,2)dgo (2) = 1.
0

In particular the following product formula holds
T i (1 @°) = ja (2:0%) ja (i 47) -
It is shown in [12] that for f € Lh (Rg+)

HT;jer S ”f”p,a,q’

p,o.q

and the map y — T, f is continuous from (0, o0) into (0, c) .

(4.4)

(4.5)



4 M. M. Dixit, C. P. PANDEY AND D. DAS

5. g-Convolution and ¢-Bessel Fourier transform

The ¢-Bessel Fourier transform F,, ; and the g -Bessel convolution product are defined for suitable
functions f, g as follows

Faa (V) = / @) g O ) dyor (), (5.1)

+oo
Froag@= [ Touf 0)a)deo ). 6:2)
0
It is shown in [11], that the g-Bessel Fourier transform Fi, , satisfies the following properties:

Theorem 5.1. If f € L), (Ry ) then Fo (f) € Cyuo (Ry+) and

| fo]| < Baa 1 (5.3)
where ) o stz o
1 —q°; —q“eTe
Ba’q — ( q q )002( Qq q )oo. (5.4)
(1-q) (%5 4%)
Theorem 5.2. Given two functions f,g € L}, , (Ry y),then
[*aq9 € L(lx,q (Rg,+) (5.5)
and
Foq(f *a,q9) = Faq () Fa,q(9) - (5.6)

Theorem 5.3. (Inversion formula): If f € L.  (Rqy) such that Foq(f) € LY, ,(Rq),then for all
x € Ry 4, we have

F@) = [ Foa (D W (29 67) dyo () (57)
Theorem 5.4. (q-Plancherel theorem) If fa,q is an isomorphisom of Li’q (Rg,+),we have
[ O, =Wy Jor f € L2, (Ry) and FZ} () = Fug (7). (5.8)

Theorem 5.5. (i) For f € L}, ,(Rq4), p€[l,00] , g € L}, , (Rq,1), we have

f *a,q g € Lg,q (Rqﬂ’) a’nd Hf *017(1 g”p’a’q S ||f||p7a7q ||g| 1l,,q °

oo

i) [ Faa (DO dr© = [ £OFus@)©do©). fo€ Ly Ry,
(Z“)Fa,q (qufwf) (5) = jOt (fxv (]2) Fa,q (f) (5) 9 f € L}y,q (RQHr) .
6. The continuous generalized wavelet transform associated with ¢ -Bessel operator

Let ¢ € L (Ry,+), 1 < p < oo be given. For b > 0 anda > 0 define the ¢-Bessel wavelet

’
a a

04 (1) i= DT (x) = Dot (b, 2) = =22 (9 f) 6.1)

_ g2 /0 " Dy (g : z> ¥ (2) dyo (2), (6.2)

the integral being convergent by virtue to (4.5).
Using the wavelet wzf, we now define the continuous g -Bessel wavelet transform which will send each
LP-function defined on the positive half line to a function B 4 (b, a) on the first quadrant as follows.

Bag(b,0):= (B3F) (b.a) = (£ (1), 05 () = / T D (1) (6.3)
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202 /0 b /0 )T Da. <222> d,o (2)dyo (1), (6.4)

provided the integral is convergent; see Theorem 5.3 for existence.

Theorem 6.1. Let i € L5,  (Ry 1), 1 <p<oc. Then fory >0,

(i) the map y — T,»9) is continuous from L%,  (Rg ) into L7 (Rg4).
(ii)the function wb’q is defined almost everywhere on [0,00), and

(@)

Proof. We can write, for % + % =1,

< a®HG) |y (6.5)

p,oq

1 ()] = |TE0 ()] = ] [ v DYy ) D ()| o 2

< ([ W@l Das ) o (2)) v ([ Postenardio ) "

Therefore, in view of the property (4.3), we have

pars [ T () Dy (@1, 2) do (2)

so that

| wenrde@ < [TwErao e [ D s de @),
Thus, we get the following boundedness property of the g-Bessel translation operator
19 (s 9y < 6l s 1< P < 000 (6.6)
Now applying the above method of proof to (6.2) we find that

ol (@)

< aPDG) ) 1< p < oo
p,a,q p,a,q

O

Theorem 6.2. Let f € Lb (Rq+) and ¢ € L{)’;q (Rg+) with 1 < p,p' < oo and % + % =1, and
B, 4 (bya) = (B;Z’qf) (b, a)be the continuous q- Bessel wavelet transform (6.4). Then
(1) Ba g (b,a) is continuous on (0,00) x (0,00) .
a.,q (2a+2)/r 1_1
) (2270 0| < 0l [ 0 £ = 43
| (mEes) ] <O Ul ol 4
Proof. (i) Let (bg, ag) be an arbitrary but fixed point in (0,00) X (0,00) . Then by Holder’s inequality,
|Baq(b a aq bo,a0)|

a—20- 2/ / If(t Dyq(b/a,t/a,z) — Da.q (bo/ao,t/ao, 2)]| dgo (t) dgo (%)
1/p
0202 (/ / (O)]” |Da,qg (b/a,t/a, z) — Dg.q (bo/ao,t/ao, 2)| dgo (t) dqg(z))

(/ / |p |Daq (b/a,t/a, z) — Da.q (bo/ao, t/ag, z)| dgo (t) dyo (z)) 1/p' |
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Since

/ |Da.q (b/a,t/a,z) — Da.q (bo/ao,t/ao, z)| dgo (2) < 2,
0
by dominated convergence theorem and continuity of Dy 4(b/a,t/a, z) in the variable b and a, we have

lim |Bg,q (b,a) — Ba,q (bo,ao)| = 0.
b*)bo

a—ag

This prove that B, 4 (b, a) is continuous on (0, 00) x (0, 00).

ity (Bg"r) o) =0 [© [T 500G Doy bastfa ) dio (04,0 )
a—20-2 / / F () (2) DY/P (b/a,t/a,z) DYE (bfa,t/a,z)deo (t) dgo (2).

Therefore, by Holder’s inequality, we have

‘(Bgﬁqf) (b,a)‘ e </OO /OO |f () Daq (b/a,t/a,z) dgo (t) dgo (2)) "
(/ / [ (" Daq (b/ast/a, 2)dgo (t) dyo (2 >>W
<a %0 If ()P dyo (£) Daq (b/a,t/a, ) dyo () 1/p
([ vorase [ )
x (/OOO ¥ (2)|" dgo (Z)/O Dy (b/a»t/a,z)dqg(t)>l/p

<a@ 200 ([Tirwraom) v ([Twer aoe) "

|(B27f) ()] < a0 gy

Thus

prosa [Pl

This proves (iii).
The inequality (ii) follows from Theorem (5.3).

7. An Inversion formula

Theorem 7.1. Let i) € wa (Rq.+) be a basic wavelet which defines the continuous q - Bessel wavelet
transform (6.4). Then, for

Cyl= /00 w22 ‘{b (w)‘2 dqo (w) >0, (7.1)

0

/OOO /OOO (Biz’qf) (b,a) (BIZ"IQ) (b,a)a=**"2dyo (a) dgo (b) = Co (f,9) 0 q> ¥V o9 € LRy 1) .
(7.2)
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Proof. Using the representation (6.4) we have

(57) o) =a [ [ 100D (4 1.2) s ()i )
:a*h*?/ / / FO) D (2)ja ?(f)ja (%;qQ)ja (22;¢%) dyo () dqo (2) dgo (t)
g / / foa (2) T e (2547 G (221 0°) daor (@) door (2)
_ g2 /0 fa,q(g)@a,q(x)ja(bx,q)d (2)

_ / ) T @) (4107 oo (©)

= (foua © Dy (00)) " ®).

Applying Parseval identity for g-Bessel Fourier transform, we have
|| (B27) 00 (B57%) 00| dro 0
-/ (fa 06) D (09) " 1) (G0 (€) Dy (0)) A (0)dg (1)
0 -
/ Fait (€) Doy (06 (€) Dy (aE)dge (€)

Now multiplying by a=2*~2d,0 (a) and integrating, we get

/ / {B“qf )W} a2 2d,0 (a) dyo (b)

- / [/ Fara (€) Dy (0)d1rg (€) D (a&)dmf)} 024,05 (a)

oo

/ Forg () Fog ©dao () [ Day (a6) Dy (a€)a~22dyor (a)

|
/ Foa (€ f)da(&)/ooo J
|

Doy (@6)] 072240 (0)
[ G @00 @io @ [ [y @] w20 )

= C’L(Z 4 <f7 >o¢7q
O
8. Discrete ¢-Bessel wavelet transform
In this section we assume that ¢ € L7 , (Rq,1) satisfies the so called stability condition
i R 2
P< Y ‘w(rms)‘ <Qae. (8.1)

for certain positive constants P and @, 0 < P < ) < co. Here fb denotes the g-Bessel Fourier transform
of 1. The ¢ € L2, , (Rq ) satisfying (8.1) is called dyadic wavelet.
We define the semi-discrete ¢ -Bessel wavelet transform by

(Bast 1) (6) = (27> (B3 ) (b, 2%) (8.2)
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_ (o2 /O T T Wy (1) (8.3)

=2"C) (f 0 V) ez - (8.4)
Now, using the Parseval identity stability condition (8.1) yields the following

o0

Plfl3as< Y I1BRfll5,, <QIfI5. feL?(Ry), (8.5)

m=—0o0

for the some constants P and Q.

Theorem 8.1. Assume that the semi-discrete q-Bessel wavelet transform of any f € Li,q (Ry.4) s
defined by (8.3). Let us define another wavelet 1" by means of its q- Bessel Fourier transform:

~

D= ——Yea® (3.6)
S5 oo [P (275
then -
F= 3 /0 (Bt 1) (6) (D (277) i (t036%) ) " (0) dyr (0). (8.7)
Proof. In view of (8.1) and (8.3), for any f € L? , (Rq,+), we have
= >~ B9 b 5* —me) o : 2 /\aq b qu b
m;@/@ (Bt £) 0) (Vg (277€) o (16:4%)) s (8) doo (B)
= /O (B f) " aq () (%q (27"n) ja (tf;q2))ja (tn; ¢%) dqo (n)
= mZOO/O (faa ) (Pig 27mm) )iy (277 0) i (0:6%) dye ()
o [ = Vag (2770) .
= > Jog (1)) ($aq (27m0) oo (10:.6°) dygor (1)
m——oo/O () )ZZ"_OO Dy (2k27mp)|
= /0 fora (1) G (t0; ¢%) dgor ()
=f(@).
The above theorem leads to the following definition of dyadic dual.
U

Definition 8.2. A function 1) € wa (Rg,+) is called a dyadic dual of a dyadic wavelet 1 if every
feL?, (Ryy) can be expressed as

Fo= > /OOO (B f) (0) (& (277€) Ja (t6:4°) "arq (b)) dgo (b) . (88)

m=—0o0

So far we have considered semi-discrete Bessel wavelet transform of any f € L(Qw (Ry,+) discretising
only variable a. Now, we discretise the translation parameter b also by restricting it to the discrete set
of points

n

2mb0, m € Z, n € No. (8.9)

bm,n
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where by > 0 is a fixed constant.
We write

Yty () =g (8) = 2P (nbo, 278) . (8.10)

m 77.70’771

Then the discrete Bessel wavelet transform of any f € L2 | (R4) can be written as

(BE) Gmansam) = (6505, n> . m€Z neN,. (8.11)

e )

The stability condition for this reconstruction takes the form

2
<QIfl g fELE, (Res), (8.12)

2
Pllfl3aq< >

meZ
neNg

(£ 05

&,

for certain positive constants P and @) satisfying 0 < P < ) < o0.

Theorem 8.3. Assume that the discrete q-Bessel wavelet transform of any f € L2 g Ryg,+) is defined by
(8.12) holds. Let T be a linear operator on L2, , (Rq ) defined by

Tf: Z <f wbomn> wbg,m n’ (813)
meZ
neNg
then
f= Z <f wboﬂn n> w;rt’qr?bo’ (8.14)
meZ o
neNg
where
o =Ty, m e Z. (8.15)
Proof. From the stability condition (8.12) it follows that defined by (8.13) is a one-one bounded linear
operator.
Set
g=Tf, fe I, (Ros). (8.16)
Then we have )
T Py = 20 [(F05n) (8.17)
meZ o
neNg
Therefore,
12
PIT |2, = PIfI ey TF Py
=(9.T""9),,
S ”9”2704,(1 ||T719H2,a,q ?
so that
177l < (8.18)

Hence, every f € Li,q (Rq,+) can be reconstructed from its discrete g -Bessel wavelet transform values
given by (8.11).
Thus

f=T7Tf =3 (F, ¢b0,mn>a Sl (8.19)

meZ
neNg
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Finally, set

Yt =Tl m e Z, n € Ny. (8.20)

a,q,bo bosm,n?

Then the reconstruction formula (8.19) can be expressed as follows:

_ «@,q m,n
f= Z <f’¢b0;m,n>aqw0uqybo'

meZ
neNg
[
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