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A Generalization of Lucas Sequence and Associated Identities *

Neeraj Kumar Paul and Helen K. Saikia

ABSTRACT: In this paper, we attempt to generalize Lucas sequence by generating certain number of sequences
whose terms are obtained by adding the last two generated terms of the preceding sequence. Lucas sequence
is obtained as a particular case of generating only one sequence. Moreover we prove some of the results which
can be seen as generalized form of the results which hold for Lucas sequence. We obtain Cassini-like identity
for these generalized Lucas sequences.
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1. Introduction

Fibonacci sequence (Fy) is generated in [2,6] by the recursive formula Fj, = Fy,_1 + Fj_o for k > 3
with Fy; = 1, F5 = 1. That is, each term in the sequence (third term onwards) is the sum of the two that
immediately precede it. The Fibonacci sequence is the first known recursive sequence in mathematical
work. First few terms of the sequence are 1,1,2,3,5,8,13,21,.... Many generalizations of the sequence and
hence its properties are available in the literature. Some of these can be found in [3,4,8,9,12].

Younseok Choo [3] derived identities for a generalized Fibonacci sequence defined by the recurrence
relation Fy = aFi_1 + bFp_o,n > 2 with initial conditions Fy and Fy. Fy = 0,F; = 1,a = 1,b=1
generate the classical Fibonacci sequence whereas Fy = 2, F; = 1,a = 1,b = 1 generate the classical
Lucas sequence.

Miles [9] defined k-generalized Fibonacci numbers (k > 2) in such a way that for k& = 2, ordinary
Fibonacci numbers are generated. The k-generalized Fibonacci numbers f; ;. are defined as

k
fik=0,0<j<k-2, Je—1k =1, fik =Y Finks 3>k

n=1

When k = 2, the numbers f; 2 or simply f; are the ordinary Fibonacci numbers.
Stakhov [12] mentioned so-called Fibonacci p-numbers which are given by the recurrence relation

Fy(n)=Fy(n—1)+F,(n—p—1)forp=0,1,2,3,... withn >p+1
with the initial terms
F(1) = Fp(2) = ... = Fy(p) = Fy(p+1) = 1.

For p = 1, the recurrence relation generates the classical Fibonacci numbers Fj(n) or simply F,.
In 2016, Kwon [8] introduced a new sequence, called the modified k-Fibonacci-like sequence (My ),
defined by the recurrence relation
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Mk,n - kMk’,n—l + Mk',n—Q for n > 2

with Mj,0 = 2 and M},; = 2 where k is any positive real number.

The above generalizations available in the literature give us a single sequence. Akbulak et al. [1] men-
tioned some generalizations of Fibonacci sequence along with a generalization which generates multiple
sequences. k sequences of the generalized order-k Fibonacci numbers are generated [5] by the recurrence
relation

g =c1gb 1+ el o4 ... +ceggl forn>0and1<i<k

with initial conditions

) lifi=1-n,
gy, = ) for1—k<n<0
0 otherwise,
where c1, ¢a, ..., ¢ are constant coefficients and ¢?, is the n” term of the i*" sequence.
Akbulak et al. [1] defined m sequences of the generalized order-m Fibonacci k-numbers for n > 0,k,t >
land1<i<m

Fli,n = kFli,n—l + tFZ’,n—Q + Fli,n—l} tot Fli,n—m

with initial conditions

kn —

. forl—m<n<0
0 otherwise,

. {1 ifn+i=1,
where Fj is the n'" term of the i*" generalized Fibonacci k-sequence.

In [10], m number of sequences are generated following certain recursive rules as follows. When the
number of sequence is one, i.e. m = 1, these rules coincide with those generating Fibonacci numbers and
we get the Fibonacci sequence.

We consider m interconnected sequences

(Sl,k) ) (52,]@) ) (53,1@) Yo (Sm,k)

which can be generated according to the following rule

Sip=58,1=91=...=%.,1=1,51.2=1,
Sik = Si—1,k—1+ Si—1,k; 1<i<m,k>2
S1,k = Smk—1 + m. k-2, k>3

Table 1: Columns show the terms in six sequences (i.e. m = 6).

[k [ Siw ]| Sok| Ssa| Sar| Ssk| Seux |
1 1 1 1 1 1 1
2 1 2 3 4 ) 6
3 7 8 10 13 17 22
4 28 35 43 53 66 83
) 105 133 168 211 264 330
6 413 518 651 819 1030 1294
7 1624 | 2037 2555 3206 4025 5055
8 6349 | 7973 | 10010 | 12565 | 15771 | 19796

To illustrate the rule, we consider m = 6 and generate six sequences. We start with 1 as the first
term of all the sequences and 1 as the second term of the first sequence. Hereafter the terms (rowwise)
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are obtained by adding two latest terms of the sequence immediately preceding the sequence where the
former term belongs. When the term in the first sequence is to be obtained two latest terms of the last
sequence are added.

For m = 1, we identify the only sequence (Sij) as the Fibonacci sequence (Fy). We obtain it
by starting with 1 as the first term in the only sequence and 1 as the second term of the first sequence
(which is the only sequence). Hereafter the terms are obtained by adding two latest terms of the sequence
immediately preceding the sequence (that is the same sequence) where the former term belongs.

Notation: S, , denotes the ¢'* term of the p'* sequence.

With this definition, the following results for Fibonacci sequence are generalized in [10], along with
others.

o I+ Frp1 = Fiqo
Generalization: Sum of k*" terms in all the sequences and (k+ 1) term in the first sequence equals
the (k + 2)™ term in the first sequence.

. ZFk =Fho—1
k=1

Generalization: Sum of first n terms of all the sequences is one less than the (n + 2)** term of the
first sequence.

n—1
o Y Poyr = Fon
k=0
Generalization: Sum of all the terms in odd positions (upto (2n+ 1) position) in all the sequences
equals the (2n)™" term of the last sequence.

n

. Zsz = Fopy1 —1

k=1

Generalization: Sum of all the terms in even positions (upto (2n)*" position) in all the sequences

is one less than the (2n + 1) term of the last sequence.

S.

e lim 2ik+1
k—o0 ik
generalization of the fact that the golden ratio is a root of the equation 22 —x — 1 = 0.

is a root of the equation ™™ — (z + 1)™ = 0 for i = 1,2,...,m, which is the

In [11], a recurrence relation is obtained to generate one of the m sequences without using the terms
of the remaining sequences. Consecutive pair of Fibonacci numbers are relatively prime is generalized
as ged of m + 1 consecutive numbers in any of the generated sequences is one. A generalized Cassini’s
identity was also obtained along with the generalization of the identity F,, = Fp1Fy + F,Fy—1 related
to Fibonacci numbers.

In this paper, we generalize Lucas sequence in a similar fashion and generalize some of the identities
related to Lucas numbers. Lucas sequence (Ly) is generated by the recursive formula Ly = Li—1 + Li_2
for k > 3 with Ly = 1, Ly = 3. That is, each term in the sequence (third term onwards) is the sum of the
two that immediately precede it. An identity that establishes a relation between Fibonacci and Lucas
numbers is Ly = Fiy—1 + Fr+1. Using this identity and extending the Fibonacci sequence backwards to
negative indices, the first few terms of the Lucas sequence for n > 0 are 2,1,3,4,7,11,18,29,....

Using the identity Ly = Fy_1 + Fx11, we generalize Lucas sequence by generating m sequences

(Ll,k) ; (LQJC) ) (L3,k) Yo (Lm,k)

by defining L; , = Si -1+ Sik1 Vkand 1 <7 <m.

For m = 1, we identify the only sequence (L1 1) as the Lucas sequence (Ly).

Notation: L, , denotes the ¢*" term of the p* sequence.

With this definition, we generalize some of the identities related to Lucas numbers, as obtained for
generalized Fibonacci numbers including Cassini-like identity. The ged of m 4 1 consecutive terms of any
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Table 2: Columns show the terms in six sequences (i.e. m = 6).

|k || Lix| Low]| Lsk| Lax| Lsk| Lok |
1 1 2 3 4 5 6
2 8 9 11 14 18 23
3 29 37 46 57 71 89
4 112 141 178 224 281 352
5 441 553 694 872 1096 1377
6 1729 2170 2723 3417 4289 5385
7 6762 8491 | 10661 | 13384 | 16801 | 21090
8 26475 | 33237 | 41728 | 52389 | 65773 | 82574

of the m sequences is also found to be 1 as in case of generalized Fibonacci numbers. These sequences
can also be generated by the definition used to generate generalized Fibonacci sequences with a change
in the initial terms of the sequences. That is, terms are obtained by adding the last two generated terms
of the preceding sequence.

2. Preliminary Results

We restate here the definitions for the generalized Fibonacci sequences and Lucas sequences.

Definition 2.1 (Generalized Fibonacci sequences). m generalized Fibonacci sequences (S; 1), viz.
(S1k),(S2.k),(S3k) 5., (Smk) are generated by the following rule

Fori=1, Si = Smk—-1+ Smk—2, k>3
Forl<i<m, Sir=5Si—1p-1+Si—1k, £>2

with 51’1 = 52’1 = 53’1 =...= Sm,1 =1, 51,2 =1

It is shown in [11] that each sequence of the generalized Fibonacci sequences can be generated inde-
pendently by a recurrence relation given by

Sik= "CoSik—1+ "C1Sik—2+ "C2S;ik—3+ ...+ "CpnSik-m-1

with initial terms being
forl<i<mand —(m+1)<k<-1

Sl',k’ _ (_1)i+k+m+1 (7k710m—1')

Also S0 =0 for 1 <4 < m. These initial terms and the recurrence relation are used to establish what
follows.

Definition 2.2 (Generalized Lucas sequences). m generalized Lucas sequences (L; 1), viz.
(Lik), (Lok) s (L3 k) s- -, (Lmx) are generated by the following rule

For1<i<m, Ly = Sip-1+ Sik+1 for k> —m.

Proposition 2.1. First term of ith sequence is i, i.e. fori=1,2,3,...,m, L1 =1.
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Proof. By definition, Si1 2 =1 and for i =2,3,...,m,

Si2 =511+ Si—1,2
=851+ Si—21+ Si—22

=811+ Si—21+Si—g1+...+521+S11+S12
=14+1+14+...+14+1+1

=
Thus Li1 = Sio+Si2 =0+ 52 = 82 =1. O

Proposition 2.2. Second term of first sequence is m 42, i.e. Lio=m + 2.
Proof.
Lio=511+S513

=14+ ("CpS12+ MC1S11+ "CS 10+ ...+ "CnS12-m)
=14+ (Si2+mSi1+0+...40)

=14+1+m.1l
=m+2
O
Theorem 2.3. For 1 <i<m andVk >0,
Lip= "CoLij—1+ MCiLjp—o+ "CoLijp_34+ ...+ "CpLik—m—1.
Proof.
Lip =Sik—1+ Sik+1
=("CoSip—2+ "C1Sip—3+ "C2Sijp—a+ ...+ "CnSik—m—2)
+("CoSikp+ "C1Sik—1+ "C2Sik—2+ ...+ "CnSik—m)
="Co(Sik—2+ Sik)+ "C1(Sik-3+ Sik—1)+ "C2(Sik—a+ Sik—2)
+.ooF "Cwu(Sik—m—2+ Sik—m)
="CoLij—1+ "C1Lig—2+ "CoLljp—s3+ ...+ "CunLig—m-1
O

Theorem 2.4. For 1 < i < m, each term in it" sequence of the generalized Lucas sequences is sum of
four consecutive terms in (i — 1)*" sequence of the generalized Fibonacci sequences. That is,

Lip=Si—1ip—2+ Si—i k-1 + Sici,k + Si—1,k+1

Also each term in first sequence of the generalized Lucas sequences is sum of four consecutive terms in
last sequence of the generalized Fibonacci sequences. That is,

Ly = Sm -3+ Smk—2+ Smk—1 + Sm.k
Proof. For 1 <1 <m,

Lir =Si -1+ Sikt1
=Si 1 k—2+ Si—1 k-1 + Si—1.k + Si—1,k+1
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Also for i =1,

Ly =516—1+ S1,k+1
—m,k—3 + Sm,k—Q + Sm,k—l + Sm,k

Corollary 2.5. Ly = Ly p—2+ Ly -1 and for 1 <i <m,L;, = L;_1 -1+ Li—1-

Proof. For i =1,

L1k =(Sm.i—3 + Sm.ki—2) + (Sm.k—1 + Sm.k)
=(Sm.k—3 + Sm.k—1) + (Sm k=2 + Sm k)
:Lm,k—Q + Lm,k—l

For 1 <i<m,
Lix =(Si—1,5—2+ Si—1h—1) + (Sic1,6 + Si—1,k+1)

=(Si—1,k—2 + Si—1.6) + (Sic1,k—1 + Sic1,6+1)
=Li 11+ Li1x

O

Corollary 2.5 gives an alternative definition to generate generalized Lucas sequences. Here terms are
obtained by adding the last two generated terms of the preceding sequence. This definition coincides

with the rule to generate generalized Fibonacci sequences.
Proposition 2.6. L,, 0 =2, Ly, 1 =—-1and fori=1,2,3,.... m—1, Lo =1.

Proof. Lo = Sm,—1+Sm1=1+1=2
Ly -1=Lig—Lpo=1—-2=-1
Lig=5i-1+5:=0+1=1

Theorem 2.7. For each of the m sequences, ged of (m + 1) consecutive terms is one.

Proof. We first write m + 1 consecutive terms of a particular sequence as below.

L = "CoLj k-1 + "C1L; -2 + MCoL; k-3 + ..+
Li 11 = "CoL; + "C L1 + "CoLi g2 + ...+
Lig+2 = "CoLijks1 + "CiLig + "CoLi g1 + ...+

Litim-1 = "CoLiktm-2 + "CiLigtm—3s + "CoL;pim-a + ... +
Liktm = "CoLijptm— + "Ciligym—2 + "Colipim—3 + ... +

Suppose g divides all the above terms. Then from the last expression, we can write
"CmLik—1 = Ligym — "CoLi kym—1— "Ci1Lijtm—2— "CoL; fym—3—...—

which implies that g divides L; ;.

Now considering the fact that g divides the m + 1 consecutive terms L; x—1, Lik, Lig+1, Lik+2, --

mCmLi,k—m—l
mCmLi,kfm
mCmLi,kferl

MCmLi k-2

" ChLi k1

MCm—1L; 1

)

L; 14+m—1, we proceed as above to get g divides L; j_». Continuing in similar fashion, we obtain that g
divides L; o =1 fori=1,2,3,...,m — 1 and g divides L,, 1 = —1. This implies g = 1.

O
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Theorem 2.7 is generalization of the fact that pair of consecutive Lucas numbers are relatively prime.
Lemma 2.8. Zeroes of the polynomial x(z + 1)"™ — 1 are simple.
Proof. Suppose « is a multiple root of f(x) = z(x + 1)™ — 1. Then f/(a) = 0. That is,

(a+ D)™ +mala+1)""t=0
or (a+1D)™ Y a+1+ma)=0

sothat a+1=0o0r 14 (m+1)a=0.

But neither « = —1 nor o = —

satisfies f(z) = 0. Hence there is no multiple root. O

Consider f(z) = z(z+1)™ — 1 and g(z) = 2™ — (z + 1)™, then it is easy to see that g (1) = f(x).
Therefore the zeroes of g are also simple.

L.
Theorem 2.9. Fori=1,2,...,m, klim % s a root of the equation 2™t — (z +1)™ = 0.
=00 L j—1

Proof. The equation can be written as
™ 4 aa™ + ax™ 1t + L+ apr — 1 = 0 where a; = — ™Cj_.

By Bernoulli’s Tteration in [7], the ratio e tends to the largest root in magnitude, where
HE—1

P+ arpiy_y +asply_o + o Qmpty gy = fipy—1 =0
or, M = —01flg_q — G2flp_9 — - — Gl T P
or, e = "Copp—r + "Crppp_g + ...+ "Crmipyy + " Ol

Identifying p;, by L; 1, we get
Lipy = "CoLjg—1+ "CiLlig—o+ ...+ "Cun1Lit—m + "CnLik—m-—1

L
which is true by theorem 2.3. Since L;j are positive for & > 0, L;k tends to the only positive root

ik—1
(by Descartes’ rule of signs) of the equation. O
. i Lk i Ly
Remark 2.10. For Lucas sequence, m = 1, ¢ = 1 and therefore lim = lim = Golden
k—oo L |—1 k—oo L1
ratio, which is a root of the equation z* — (x + 1) = 0.
Theorem 2.11. Fori=1,2,...,m, lim vk s a root of the equation z(x +1)™ — 1= 0.
k—oo Lij k41
. : ik . . . Lig— . 1
Proof. Since lim ~— exists and is nonzero, lim — also exists and equals ——— =1,
k—oo Lj 1 k—oo L limg_, o L—kkl
say. .
1
Now 7 is a zero of g(x) = ™ — (z 4+ 1)™. Hence [ is a zero of g(1) = f(z) = z(z + 1)™ — 1. Also
L; L L;
lim —2E = lim 2252 — 7 Thus, lim —2% is a root of the equation z(z+1)™—-1=0.
k—o0 L¢7k+1 k—o0 Livk k—oo ik+1
Alternatively,
Lik—1 +1
Lit1 . Lix—1+Liyg . Lin I+

lim —" = lim —/"——"% = lim =
k—=oo Liy1 k1 k—oo Ljgp+ Ligy1 koo 1 4 —LE"'“ 1+ 74
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. Ly . Lo, . Loy
so that lim —— = lim P — = lim /%
k—o00 L1’k+1 k—o0 L2’k+1 k—o0 Lm,k+1

Now combining the rules for the interconnected sequences, we get,

=1

Lijg+1 = Ly -1+ Lo i
= (mel,k72 + mel,kfl) + (mel,kfl + mel,k)
=Lp—1k—2+2Lp—1x—1+Lm—1

= amLi g+ am—1Li -1+ am—oLli g2+ ... +aoLlip—m

where a; = ™Cj.

Thus,
. Lipa . Ly
lim ———— = lim
k— o0 Ll,k k— o0 L1’k+1
Ly L
= lim ZLk-1 lim Lk
k—oo Ly k—oo L1k + am_1L1g—1+ @m—2Lli g2+ ... +aoL1x—m
Ly g 1
= khm _27k "= khm L1k L1k Lik—2 Lik—m
—00 1,k =0 Gy, Lljk + Am—1 LYl,k + Am—2 Lyl,k +...+ aOT,k
or,
- ! Ny Sl =1
T G+ A1l Q2?2+ ...+ agl™ ITENE a
Therefore [ is a root of the equation z(z + 1)™ — 1 = 0. O
. . Ly . Ly
Remark 2.12. For Lucas sequence, m = 1, i = 1 and therefore lim = lim = (Golden

k—o0 L17k+1 k—oo L1
ratio)~Y, which is a root of the equation z(x +1) — 1 = 0.

3. Generalized Identities

Theorem 3.1. Sum of k" terms in all the sequences and the following term, i.e. (k+ 1) term in the
first sequence equals the next i.e. (k+2)™" term in the first sequence.
m

Symbolically, Z Lig+ Ligy1 = L ggo Lucas equivalent: Ly + L1 = Lgo
i=1

Proof.

> Lik+Liksr = (Lig+ Lok + Lk + -+ Ln-1k + Limk) + L1 ki1
i—1
= Lmpk+Lm—1k+...+Lap+Lox+ Lig)+ L1 g
=(Lmpr+Lm—1x+...+Lap+Lox)+ (Lix+ Liky1)
= Lmpk+Lm—1x+...+Lar+ Lox)+ Lo ps1
= Lmgk+Lm—1k+...+ Lax)+ (Lo + Lo ps1)

= Lm,k + Lm,kJrl

= L1 p42

Columns in the table below show the terms in six sequences (i.e. m = 6). The result is illustrated for
k =2 and k = 6, where the summands are bold and the sum is italicized.
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1 2 3 4 5 6

9 11 14 18 23

29 37 46 o7 71 89
112 141 178 224 281 352
441 553 694 872 1096 1377

1729 2170 2723 3417 4289 5385
6762 8491 10661 13384 | 16801 | 21090
26475 33237 | 41728 | 52389 | 65773 | 82574
103664 | 130139 | 163376 | 205104 | 257493 | 323266

When m = 1, we get,

m 1

E Lig+ L1 g1 = L1 gyo or E Lijp+ L1 jgy1 = L1 k42 or  Lig+ Lijgy1 = Lijyo
i—1 i—1

ie. L+ Ly+1 = Ligto O

Theorem 3.2. Sum of first n terms of all the sequences is m +2 less than the (n+2)*" term of the first
sequence.

m n n

Symbolically, Z Z Liy=Lipso— (Mm+2) Lucas equivalent: Z Liy=Lnpt2—3
i=1 k=1 k=1

Proof.

Ll,n = L2,n+1 - Ll,nJrl Ll,nfl = L2,n - Ll,n Ll,n72 = L2,n71 - Ll,nfl

Lo, = L3 nt1 — Lapni Lyy_1=L3y— Loy Loy—o=L3p1—Lop_1

L3, = Lapnt1 — L3 pi1 Ls,—1=1L4yyn— L3y L3y—2=Lsgp-1— L3n_1

Lm72,n = mel,nJrl - Lm72,n+1 Lm72,n71 = mel,n - Lm72,n Lm72,n72 = mel,nfl - Lm72,n71

mel,n = Lm,nJrl - mel,nJrl mel,nfl = Lm,n - mel,n mel,n72 = Lm,nfl - mel,nfl
Lm,n = Ll,n+2 - Lm,nJrl Lm,nfl = Ll,nJrl - Lm,n Lm,n72 = Ll,n - Lm,nfl
Lis=1Ls3— L3 Lig=Lss—Lip
Los=1L33— Lag3 Lay=L3s—Lao
L3o=Ls3—L3s L3i=Lss—Lss
Lim—22=Lpn_13—Lpn_23 Lip21=Lm-12—Ln_22
Lm—12=Ln3z—Ln_13 Lip—11=Lma2—Lm_12
Lypo=Lia—Lygs Lmi=Li3— Lo
Thus,
m m m
E Lin=Linto—L1nt1 E Lin-1=Lipy1—Lin E Lin—o=Lin—Lin-1
im1 i—1 i=1
m m
E Lio=DL14—1L13 g Liy=Li3— L2
i1 i—1
m n
Therefore E E le = L17n+2 — LLQ = L17n+2 — (m + 2)

i=1 k=1
The result is illustrated in the table for m = 6,n = 6, where the summands are bold and the sum is
26467, which is (6 + 2 = 8) less than the italicized term.
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1 2 3 4 5 6
8 9 11 14 18 23
29 37 46 57 71 89

112 141 178 224 281 352
441 553 694 872 1096 1377
1729 2170 2723 3417 4289 5385
6762 8491 10661 13384 | 16801 | 21090
26475 33237 | 41728 | 52389 | 65773 | 82574
103664 | 130139 | 163376 | 205104 | 257493 | 323266

When m = 1, we get,

m n 1 n n
Z ZLi’k = L1’n+2 — (m + 2) or Z Z L1’n+2 -3 or ZLl’k = L1’n+2 -3

i=1 k=1 i=1 k=1 k=1
n

ie. > Li=Lng—3 O

Theorem 3.3. Sum of all the terms in odd positions (upto (2n — 1) position) in all the sequences is
two less than the (2n)!" term of the last sequence.

m n—1 n—1
Symbolically, Z Z Liokt1 = Lpm,on —2 Lucas equivalent: Z Logy1 = Loy — 2
i=1 k=0 k=0
Proof.
Lii=Loo— L1y Liz=Los— L4 Lis=Lss—Lis .
Ly2n—1 —L22n Lo,
Lo1=L32— Lap Lag=L34—Lag Los=L3g— Lag
Loon—1=L32n — La2n
L3y =Lyo— Lso L3z =Lyaq— L34 L3s=Liss— L3s

L3 opn—1 = Laon — L3op

Lyp11=Lm2—Lm-12 Lm-13=Lma—Lm—14 Lm-15=Lme—Lm—16
Lm71,2n71 = Lm,?n - mel,Qn

Limgi=L13— L2 Lpnsz=Lis—Lma Lims=Li7—Lmge

Lpyon—1 = Li2pn+1 — Limon
Thus,
ZLM = Lizg—Lio = L1+ Lma—Lip = m+ Lyo— (Mm+2)
Z L3 = Lis—Lig = Lys+Lima—Lmo—Lps = Lypa—Limp
Z L;s = Li7—Lig = Lys+Line— Lma—Lps = Lye—Lma
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m
§ Li,Qn—l = L1,2n+1 - L1,2n = Lm,Qn—l + Lm,Qn - Lm,2n—2 - Lm,Qn—l = Lm,Qn - Lm,2n—2
=1
m n—1
Therefore E E Liog+1 = Lppon — 2.
i=1 k=0

The result is illustrated in the table for m = 6,n = 4, where the summands are bold and the sum is
82572, which is two less than the italicized term.

1 2 3 4 5 (]
8 9 11 14 18 23
29 37 46 57 71 89
112 141 178 224 281 352

441 553 694 872 1096 1377
1729 2170 2723 3417 4289 5385
6762 8491 | 10661 | 13384 | 16801 | 21090
26475 | 33237 | 41728 | 52389 | 63773 | 82574

103664 | 130139 | 163376 | 205104 | 257493 | 323266

When m = 1, we get,

m n—1 1 n—1 n—1

E E Liok+1 = Ly on or E E Liop+1 = Li2p or E Ly oky1 = Lion

i=1 k=0 i—1 k=0 =0
n—1

i.e. E L2k+1 = Lgn O
k=0

Theorem 3.4. Sum of all the terms in even positions (upto (2n)t" position) in all the sequences is m
less than the (2n + 1)1 term of the last sequence.
m n

Symbolically, Z Z Lior = Lipony1 —m Lucas equivalent: Z Logp = Lopi1 — 1
i=1 k=1 k=1
m n m  2n m n—1
Proof. Z Z Liok = Z Z Lik— Z Z Ligk+1 = (L1gnt2—(m+2)) = (Lm2n—2) = Ly any1—m
i=1 k=1 i=1 k=1 i=1 k=0

The result is illustrated in the table for m = 6,n = 3, where the summands are bold and the sum is
21084, which is six less than the italicized term.

1 2 3 4 5 6

9 11 14 18 23

29 37 46 o7 71 89
112 141 178 224 281 352
441 553 694 872 1096 1377

1729 2170 2723 3417 4289 5385
6762 8491 10661 13384 | 16801 | 21090
26475 | 33237 | 41728 | 52389 | 65773 82574
103664 | 130139 | 163376 | 205104 | 257493 | 323266

When m = 1, we get,

n

m n n
E E Loy = L ont1 —m or E Liop = Lione1—1 or E Liok = Lijont1 —1
i=1 k=1 i=1 k=1 =1
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ie. > Log = Lon1 —1 O
k=1

4. Cassini-like Identity For Generalized Lucas Sequence

Cassini’s identity for Fibonacci numbers is given by Fyi1Fj_1 — F? = (—1)F. Cassini-like identity
for Lucas numbers is given by Ly L1 — Li = 5(—1)’““. In determinant notation, this identity can
Liy1 Ly

Ly  Lyp—
generalized Lucas sequences dealt in this paper.

be put as = 5(—1)**1. Below we establish a theorem which generalizes this identity for

Theorem 4.1 (Generalized Cassini-like identity for generalized Lucas sequences). For it" sequence,

Lirsr Lix Lis oo Lipime) (1) when m is even,
L Lik1 Lik—2 e Lik—m .
Lik1 Lij—2 L3 oo Lig—(many | _ (—1)mG-D|B] (=1)7=  when m is odd,
and k is even,
Lik—m-2 Lik—m-1)  Lik-m - Lik—(2m-2) (1)~ when both m
Li - (m-1) Lik—m Lig—(m+1y -+ Lik—(2m-1) and k are odd.
mCy MmCi1+1 MCy MOz MOy MCm—-1 "C |
1 0 1 0 0 0 0
0 1 0 1 0 0 0
where B= | 0 0 1 0 1 0 0
0 0 0 0 0 0 1
L 1 —mC() —mC’1 —mCQ _m03 _mcm_2 +1 - Cm—l

Proof. We write

Li ktm =S ktm—-1 + Siktm+1
= Siktm—1+ ( "CoSif+m + "C1Siktm-1+ ...+ "Crn-1Sik+1+ "CnSik)
= "CoSifym +("C1+1)Siktm—-1+ ...+ "Cr1Sikt1+ "CnSik

Li kpm—1 = Siktm + Si ktm—2
Li kpm—2 =S ktm—1 + Siktm—3
Lj j41 = Siky2 + Sik
Li = Sikt1+ Sik—1
= Sikt1 + (Sigrm — "CoSiktm—-1—--.— "Cpm_2Sik+1 — "Cm-1Si k)
= Siktm — "CoSikam-1—-..—("Cpz2 = 1)Si 41 — "Crm-1Sik
so that ~ _
I mCy MCi+1 ™Cy  MCs ™C4 mCm—1 mC, g,
g 1 0 1 0 0 0 0 g
i, k+m—1 0 1 0 1 0 0 0 i, k+m—1
e = 0 0 1 0 1 o 0 0 e
Li7k+2 e e .« .. e .« .. ... .« .. ... Si7k+2
Lz’?“ 0 0 0 0 0o ... 0 1 Sg’?“
bk L 1 —"Ch -mCy =mCy —"C3 ... ="C,,_o+1 —mCm,l_ ik




Li,k+m Si,k+m
Li kym—1 Si k4m—1
_ 3
o Li kg2 Sikt2
Li k1 Si k1
L; Sik
'mCO mcl ch
1 0 0
0 1 0
where A= | 0 0 1
0 0 0
0 0 0
Now ) .
Z it
Z "Ci S h-1-j
;S
E_ Z 1,k—2—j
AY = =0
> "CiStk—(m-1)i
=0
Z "Ci S k-m—j
L j=0
Therefore
ORZA
7‘37‘:
Z CiLij—1—5
BAF = Z MO Ly g
=0
Z MO L k—m—j
Lj=0

or,
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= BA?

Si,k—i—m—l
Si,k+m—2
= BA
Sik+1
Sik
Si k-1
mCm—l mcm'
0 0
0 0
0 0
0 0
1 0 |
> MCiS k1
j=1
> mCiS k-
=1
Z Ci81 k—1—j
j=1

"CiL k(1)

Si,k+m—2
Siktm—3
Sik
Sik—1
Si k-2
> CiSt ke (m—1)—j Stk
j=m—1
> OISk +m-1—; Stk
j=m—1
> TCiS1 -2k m-1—j Stk
j=m—1
Z "C;81 k—j S1k—(m-1)
j=m-—1
Z Cslk (m—1)+m—j Sl,k—m
j=m—1 .
Z C Ll Jk+(m—1)—j LLk
Z "Ci Ly (k=1)+(m=1)—j L1k—1
Z CLl J(k—2)+(m—1)—j Ll,k72
j=m—1
> MCiLigk—m-tyim—j  Lik-m
j=m—1 e
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Lkt Z CiLa k15 Z " O L et (m—1)—j Ly
Jj=1 j=m—1
L1k Z "CiLa k-~ Z "CiLA, (k=1)4(m—1)—; Ly g1
i =t
pak = | T Z "Gl Y. "CiLi-rm-n-;  Lik-o
- j=1 j=m-—1
Ly j—(m—2) Z "C5 Ly k—(m—2)—j Z "C5 L k—j Ly k—(m-1)
j=1 j=m—1
Ll k— Z C Ll k—(m—1)—j Z ijLl,kf(mfl)ijfj Ll,k—m
L Jj=1 j=m-—1 i

[Note: The entries in the matrix are from the first sequence. We verify few entries of the matrix, for the

reader, in a remark to this theorem.|

so that
Ly g1 Z CiL1 41— Z "Ci LA ot (m—1)—j Ly
:1 :m
Ly > MCiLyk-; Z "CiLy (k-1)+(m-1)—j  Lik-1
7j=1 j=m—
k Ly -1 Z CiLik—1-; > MCiLyge-2yim-1-5  Lik-2
|BA | = j=1 j=m—1
Ly k—(m—-2) Z MO Ly f—(m—2)—j Z "Ci Ly g Ly j—(m-1)
=1 j=m—1
Ly k—(m-1) Z MO Ly k—(m—1)—j Z "CiLy k—m-1)+m—j  Lik-m
j=1 j=m-—1
Applying column operations, we get
Likyr Lik—m-1)  Lik—(m-2) Lk Lk
Ly Lig—m Ly g (m-1) Ly o Lyg—1
Ly g1 Ly g (mt1) Ly j—m Ly -3 Lig—2 |_ IBJ|A]* = (—1)™*|B|
Lig—(m-2 Lik—@m-2 Lir(2m-3) Lik—m  Lig—(m-1)
Lig—m-1) Ligr—@m-1) Lir—(@2m-2 Lik—m+1y  Lik—m
Rearranging the columns, we obtain
Ly g1 Ly Ly Lk (m-1)
Ly Ly j—1 Ly j—2 Lij—m N .
Lk Ly -2 Ly j—s3 Ly k—(mt1) | _ IB| (—1)7(1—1)m when m is even
. (—1)m2_ (—=1)™*  when m is odd
Lig—m-2 Lig—(m-1) Ligk-m Lk (2m-2)
Lig—(m-1) Lik-m  Ligp—(ms1) L1 k—(2m-1)
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Lyt
Ly j—2
Ly j—3

Ll,kfm

Lk (mt1)

Lk (m-1)

Ly k—m (—1)
Ll,k—(m+1) — |B| (_1)
Ly - (2m—2) (=1)
Lk 2m-1)

15

when m is even,

2 when m is odd, k is even,

2 when m and k are odd.

Thus far the identity has been established for the first sequence. Now we proceed to establish the identity

Thus,
Ly jy1 Ly
Ly Ly
Ly j—1 Ly j—2
Ll,k—(m—Q) Ll,k—(m—l)
Lig—m-1 Lik-m
for it" sequence.
Suppose
Likt1
Ly
Ljj—1
Lik—(m—2
Li,k—(m—l

By C; — Cj + Cjy1, for j=1,2,...,m

Also

Liy1k41
Liyak
Liy1k1

Lit1k—(m—2)
Lit1k—(m-1)

L
Lip—1
Lo
) Lik—(m-1)
) Lij—m

Liyk
Liy161
Liy1k2

Li1k—(m-1)

Litik—m

Livik = Liy1k+m
— (14" Co)Lit1,krm—1
+ (1 +™Co =" C1)Lit1 ktm—2

—(14™Co =" C1 4™ C2)Lit1 k+m—-3

+...

+ (=)™ 14mCy - CL 4+ Cy — .. 4™
+ (—1)™L;x

Ljj—1
Lo
L3

Li,k—m
Li,k—(m+1)

Liy1p1
Liy1k2
Liy1k-3

Lit1k—m
Lit1k—(m+1)

Lij—(m—2)
L j—(m-1)

i,k—m

Lip—(2m-3)
Li k—(2m—2)

L1 i—(m—2)
L1 i—(m—1)
Litik—m

Lit1k—(2m-3)
Lit1k—2m-2)

L k—(m—1)
Li,kfm
Li,k—(m—i—l)

Lip—(2m-2)
Li k—(2m-1)

Applying column operation on the last column as per the above formula, we get

Thus we generalize Cassini-like identity as

Li k1
L
L1

Ligp—(m-2)
Lij—(m-1)

Liv1 k—(m—2)
Liv1 k—(m-1)

Ly
Lip—1
Lo

L; - (m-1)
Li,kfm

Liy1 k41 Liy1k
Lit1k Lit1,k-1
Lit1,k—1 Lit1,k—2

L i—(m—1)
Lit1k—m

L1
Lo
L3

Li,k—m
Li,k—(m+1)

Liy161
Lit1,5—2
Lit1k-3
Litik—m
L1 i—(m+1)

L k—(m—1)
Li,kfm
Lip—(m+1)

L; - (2m-2)
Lik—(2m-1)

Lit1 k—(m—2)
Lit1k—(m-1)
Lit1k—m

Lit1k—(2m—3)

Liv1 k—(m-1)

Lit1k—m

Lit1k—(m+1)

Lit1k—(2m—2)

Li+1,k—(2m—2) Li+1,k—(2m—
(1%
g d (DT

= (~)"V|B|
(_l)mg»l

L p—(m—1)
Li,kfm
Li,k—(m—i—l)

Lip—(2m-2)
Lip—2m-1)

Cru—2)Lig1 k41

1)

when m is even,

when m is odd,
and k is even,
when both m
and k are odd.
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O

Remark 4.2. While forming the matriz B, we first write the first and last rows and fill the remaining
rows with Os and 1s according to the mentioned pattern. 1 is added to the entry in the second column of
the first row and to the entry in the m*™ column of the last row.

[3C, 30, +1 3C, 3Cy 1 4 3 1
1 0 1 0 1 0 1 0
Form=3,B=1 1 0 1 |7 lo 1 o 1
|1 30, 30141 =30, 1 -1 -2 -3
_200 201+1 202 1 3 1
Form=2 B=|1 0 1 | =110 1
|1 —2Co+1 —-2C 10 —2
_10() 1C1+1 1 2
Form—l,B—_l_'_1 gy | T .

Remark 4.3. Here we verify few entries of the matriz BA* for m =6 and k = 1.

1. Entry in the first row and second column:
From the product BA, the entry is ™Cy ™C, + ™Cy = SCy 6C1 + 6Cy = 1.6+ 15 = 21.

By substituting m = 6 and k = 1 in the corresponding entry in BAF, we get the entry as

m

6
Z O pr1-j = Z 6CiL1o-;
i=1

j=1
= SC1L1a+ %CoLio+ ®C3L1_1+ °Culi o+ °CsLyi 3+ 9CeL1 _4
= (%CoL1o+ °CiL1 1+ °CoLyo+ °CsLy 1+ ®CyuLy o+ SCsLy 3
+ 9C6L1,—4) — °CoLi 2
= Lys—L1p=29—8=21

2. Entry in the first row and third column:
From the product BA, the entry is ™Cy ™Co + ™C3 = Cy 6Cy + 6C3 = 1.15 4 20 = 35.

By substituting m = 6 and k = 1 in the corresponding entry in BA*, we get the entry as

6
> °CiLiay
§=2

= SCoLyq + SC3L1 0+ SCuLy 1+ SCsLy o+ °CsLy 3

=(%CoL13+ °CiLio+ ®CoLy1+ CsLio+ 9Cyly 4
+ 8Cs5Ly 9+ °CsLy,_3) — ®CoLy13— °CiLy o

=Lis—Li3—6L12

=112—-29—-6.8=35

m
E "Ci L1 kyo—j
i=2

3. Entry in the third row and fourth column:

From the product BA, the entry is 0 ™C3 + 1.0+ 0.0 + 1.0 = 0.
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By substituting m = 6 and k = 1 in the corresponding entry in BA*, we get the entry as

m 6

6
> "CiLigprj = °CiLis
=3 =3

= 9C3L1, 1+ ®CyLy o+ °CsLy 3+ SCoL1,—4
= (%CoLio+ °CiL1 1+ ®CoLio+ CsLy 1+ ®CyuLy o
+ 9CsL1,_5+ %CeL1,—4) — °CoL12— °CiLig — °CaLig
=Li3—Lip2—6L11—15L1
=29-8—-6.1-151=0

Remark 4.4. For m =1, generalized Cassini-like identity reduces to a 2x2 determinant with i = 1.
That is,

Ligt1 Lig

_ 18| 1 when k is even,
L1y Lyig—1|

—1 when k is odd.

1 2

where |B| = 9 _q| = —5 which is the Cassini-like identity Lyi1Li—1 — L2 = 5(—=1)**1 for Lucas

numbers. Note that form =1, Ly = Ly,.

In [11], the identity F,1, = Fp41F, + F,F,—1 is generalized, for the first sequence, as

Stpra= | D "CiStpi | Sua+ | D "CiSipjir | Sug—1+ | D "CiSipjre | Szt -

=0 j=1 J=2
ot | DD MCiSpgrme) | Stg—(m-1) + 51pS14-m
j=m—1

This can be further generalized for the i*" sequence as

m

m m
Sipta = | > "CiS1pj | Sia+ | D, "CiSip i1 | Sigr+ | D "CiSipjra | Sig2+t ...
§=0 j=1 =2
m
+oH [ DD MCS e rme) | Sig—m-1) + S1,p8i4-m
j=m—1
Our next theorem generalizes the identity Lyiq = Lpt1Fq + LpFy—1.
Theorem 4.5. For it" sequence,
m m m
Liprq=| D "CiLip—j | Sia+ | Y "CiLip—jr1 | Sig—1+ | Y "CiLip—jra | Sig-2 +---
§=0 j=1 j=2
m
+...+ Z ijLl,p—j+(m—1) S¢7q_(m_1) + L1 pSig-m
j=m—1

Proof. Since BAPT? = (BAP)AY, the entries in the first row first column of both these matrices are equal.
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This gives

m m m m
Liprar1 =Y. "CiLipj | [ D ™CiSigmi | + | D ™CiLipjir | | D] ™CiS14-i1
] 7=0 j=1 7=0

7=0

Z ijLLp,jJrg Z ijSLq,J;Q + ...+
7=0

|
d

m

2
> MGt pjiimen) | | D "CiStgmi—m—) | + Lip | Y "CiS1g—jm

j=m—1 7=0 7=0
m
Note: Slyq = Z mcjsl,(q—l)—j'
7=0

Therefore

Liprgrr = | Y "CiLipj | Sigrr+ | D ™CiLipjur | Sug+ [ D "Cilipjia | Srg1+---

§=0 j=1 j=2
oot | D MCiLipjrm—1) | Sta—(m—2) + L1.pS1.0—(m-1)
j=m-—1
(4.1)
Writing ¢ — 1 for ¢, we get
L17p+q = Z ijLl,p—j SL‘I + Z ijLl,p—j—H 517(1_1 + Z mOjL17p_j+2 Sl’q_g 4+ ...
§=0 j=1 =2
+ooH | DD MGy imen) | Sta-mon) + LipSigom  (42)
j=m—1
Adding corresponding sides of (4.1) and (4.2), we get
Laprqrr = | D "CiLip—j | Serr + [ D "CiLup—jur | Szq+ | Y "CiLap—jra | Seqm1 + -
7=0 j=1 j=2
tot | DD "COiLipjietmon | Sag-(m-2) + LipS2g-(m-1)
j=m—1

Writing ¢ — 1 for g,

m m m
Loprq = D "CiLip—j | Se+ | D "CiLip—jir | S2a1+ | Y "CiLip—jra | Soq—z + .-
j=0 j=1 j=2

m

+...+ Z ijLl,p—j+(m—1) Sg7q_(m_1) + L1,p52.-m

j=m—1
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Proceeding in a similar fashion, we get the required identity as

Liptg= Y "CiLipj | Sig+ | D "CiLipji1 | Sig1+ | D "CiLipjia | Siga+...

§=0 j=1 §=2
+ooH DD MLy simen) | Sig—m-1) + L1pSig-m
j=m-—1

Remark 4.6. For m =1, ¢ =1, and therefore

Liprq=| D "CiLip—j | Sia+ | Y "CiLip—jr1 | Sig—1+ | Y "CiLip—jra | Sig-2 +---
7=0 J=1 J=2
+...+ Z ijLl,p—j+(m—1) S¢7q_(m_1) + L1 pSig-m
j=m—1

reduces to

1

Lipiq = Z 1CjL1,pfj S1,g + L1,pSi,9-1
j=0

1
or, Lptq = Z ICJLP*j Fy+ LpFy

§=0
or,Lyiq = ('CoLy+ '"Ci1Ly—1) Fy+ LpyFy 4
or,Lyyq = (Lp+ Lp_1) Fg+ L,Fy1q
or,Lpyq = Lp1Fy+ LyFy_q

5. Conclusion

The generalization of Lucas sequence as discussed in this paper is used to generalize Cassini-like
identity for Lucas numbers in matrix form. In addition to it, we have generalized many identities and
also obtained a recurrence relation to generate one of the m sequences. This recurrence relation is used
to prove that ged of (m 4 1) consecutive terms in any of the sequences is one.
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