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abstract: In this paper we will study the relationship between the baseline pdf and the corresponding
MO pdf, we will show the effectiveness on the percentile points, also we will give a closed form for the MLE
estimator of the new parameter and will study some examples.
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1. General Theory of Marshall-Olkin Distributions

Marshall-Olkin family of distribution are defined to create new distributions from old distribution in
a way that can control the reliability and hazard rate which is introduced by Marshall and Olkin first in
1997 [15] as follows

Definition 1.1. If X is a random variable with pdf f(x), cdf F (x), reliability function R(x) and hazard

function h(x), then the MO cdf is defined by:

Fα(x) =
F (x)

F (x) + αR(x)
, α ≥ 1.

The MO reliability function Rα(x), pdf fα(x) and hazard function hα(x) are:

Rα(x) =
αR(x)

F (x) + αR(x)
,

fα(x) =
αf(x)

(F (x) + αR(x))2 , and

hα(x) =
h(x)

F (x) + αR(x)
, respectively.

Marshall and Olkin [15] also mentioned that Rα(x) ≥ R(x) for α > 1 and Rα(x) ≤ R(x) for 0 < α < 1,
also hα(x) ≤ h(x) for α > 1 and hα(x) ≥ h(x) for 0 < α < 1.

Many researchers like Jose and Alice [12,13], Alice and Jose [1]- [5], Ghitany et al. [7], Jayakumar
and Mathew [11], Jayakumar and Kuttikrishnan [10], Ghitany and Kotz [8], Jose and Uma [7], Gupta
et al. [9] and Jose et al. [14] studied Marshall-Olkin extended family of distributions and showed that
it can be used to model real situation in a better manner than the basic distribution depending on the
fact that it could have (depending on the value of the added parameter) an interesting hazard function.

Cox, D.R. [6], considered the hazard function (age-specific failure rate) to be a function of the ex-
planatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function
of time.
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2. Some Comparisons

In this section we will compare between the original pdf and the corresponding MO pdf, also we will
show the effectiveness of MO on the percentile point and on the symmetry of the original distribution.

Theorem 2.1. fα(x) = f(x) if and only if α = 1 or X = F −1
( √

α

1+
√

α

)

.

Proof. ⇒ if α = 1, then fα(x) = f(x),

if α 6= 1 and X = F −1
( √

α

1+
√

α

)

, then

fα

(

F −1

( √
α

1 +
√

α

))

=
αf

(

F −1
( √

α

1+
√

α

))

( √
α

1+
√

α
+ α

(

1 −
√

α

1+
√

α

))2 ,

fα

(

F −1

( √
α

1 +
√

α

))

=
αf

(

F −1
( √

α

1+
√

α

))

( √
α

1+
√

α
+ α

(

1
1+

√
α

))2 ,

fα

(

F −1

( √
α

1 +
√

α

))

=
αf

(

F −1
( √

α

1+
√

α

))

( √
α(1+

√
α)

1+
√

α

)2 ,

fα

(

F −1

( √
α

1 +
√

α

))

= f

(

F −1

( √
α

1 +
√

α

))

.

Conversely, let fα(x) = f(x) ⇒ αf(x)

(F (x)+αR(x))2 = f(x),

⇒ (F (x) + αR(x))
2

= α,

⇒ F (x) + αR(x) =
√

α,

⇒ F (x) =
√

α−α

1−α
=

√
α

1+
√

α
,

Hence X = F −1
( √

α

1+
√

α

)

. �

Theorem 2.2. If Pk is the (100k)th percentile for the random variable X, then Fα(Pk) = k
k+α(100−k) .

Proof. Obvious. �

Corollary 2.3. Since Fα(Pk) is a decreasing function of α for a fixed k, then the modified distribution

transforms the percentile point into a smaller one.

For example, if Q2 is the median for the random variable X under the original distribution, then
Fα(Q2) = 1

1+α
which is a decreasing function of α.

The following tables shows the new percentile points for different values of α.

Table 1:
α Fα(Q2) New percentile point

1 0.50 50th

2 0.33 33rd

3 0.25 25th(lower quartile)
4 0.20 20th
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From the above table, one can see that as alpha increases, the data will be shifted to the left which
means that we can affect the skewness of the original distribution.

Theorem 2.4. If f(x) is symmetric about X = µ, then fα(x) is not symmetric about X = µ.

Proof. By definition, f(µ − x) = f(µ + x) and F (µ − x) = R(µ + x), so

fα(µ − x) =
αf(µ − x)

(F (µ − x) + αR(µ − x))2

=
αf(µ + x)

(R(µ + x) + αF (µ + x))
2

6= fα(µ + x).

�

3. MLE

In this section we will find the MLE of the new parameter and will show by examples that some
distributions will remain belong to the same family under MO while other will be totally different.

Theorem 3.1. The maximum likelihood estimator for the parameter is the solution for the equation:

n
∑

i=1

Rα(xi) =
n

2

Proof. Let

L(α) = fα(x1, x2, x3, · · · , xn) =

n
∏

i=1

fα(xi)

=
n

∏

i=1

αf(xi)

(F (xi) + αR(xi))
2

=
αn

∏n

i=1 f(xi)
∏n

i=1 (F (xi) + αR(xi))
2

log (L(α)) = n log (α) +

n
∑

i=1

log (f(xi)) − 2

n
∑

i=1

log (F (xi) + αR(xi))

Differentiating both sides with respect to α and equating the derivative to zero will complete the proof.
�

The following example will show that the modified cdf sometimes will belong to the same family of
distributions as the original one.

Example 3.2. If X is a random variable such that X ∼ P areto(1, 1), then the modified distribution will

be P areto(1, α).
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Proof. Let X ∼ P areto(1, 1), then the pdf, cdf and survival functions are

f(x) =
1

(1 + x)2
, x > 0

F (x) =
x

1 + x
, and

R(x) =
1

1 + x
, respectively.

F (x) + αR(x) =
x

1 + x
+

α

1 + x
=

x + α

1 + x
.

The modified cdf will be Fα(x) = x
α+x

and the corresponding pdf will be fα(x) = α
(α+x)2 which is the

pdf for the Pareto distribution P areto(1, α).

For the above example and for n = 2, the MLE of α is α̂ =
√

X1X2 (the geometric mean). �

Example 3.3. If X is a random variable such that X ∼ P areto(κ, θ) with pdf and cdf

f(x) =
κ

θ
(

1 + x
θ

)κ+1 , x > 0 and F (x) =

(

1 + x
θ

)κ − 1
(

1 + x
θ

)κ , respectively.

Then the modified pdf and cdf are

fα(x) =
ακ

(

1 + x
θ

)κ−1

θ
[(

1 + x
θ

)κ
+ α − 1

]2 , x > 0 and Fα(x) =

(

1 + x
θ

)κ − 1
(

1 + x
θ

)κ
+ α − 1

, respectively.

One can notice that the modified cdf is a generalization but similar to the original one.
Now, we will apply the modified distribution on a Uniform distribution to find some moments and to

study Shanon’s entropy for the modified one.

Example 3.4. Let X ∼ Uniform(0, 1), then the modified cdf, pdf, survival function and hazard function

are

Fα(x) =
x

x(1 − α) + α
, fα(x) =

α

(x(1 − α) + α)2
, Rα(x) =

α(1 − x)

x(1 − α) + α
,

hα(x) =
1

(x(1 − α) + α)(1 − x)
, respectively.

One can show that:

Efα
(X) =

α(α − 1 − ln(α))

(1 − α)2
,

Efα
(X2) =

α(1 − α2 + 2α ln(α))

(1 − α)3
, and hence,

V arfα
(x) =

α(1 − 3α2 + 2α3 + ln(α))(4α − 4α2 + α ln(α)))

(1 − α)4
.

The Shanon entropy is

Sfα
(X) = −Efα

(ln(fα(x))) =
4(1 − α3 + 3 ln(α))

3α2(1 − α)
− ln(α),

The following is the graph of the Shanon entropy as a function of α.
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The above function is undefined when α = 1 and is decreasing for α > 1, that is , the distribution
becomes better as α increases.

4. Conclusion

From the above discussion one can see that MO can give flexibility with dealing with distributions by
controlling the reliability and hazard functions, also we showed that the original pdf and the corresponding
MO pdf meet at only one point, an addition to that MO distribution will affect the location of the
percentile point and hence the skewness. Finally, there are some distributions that will belong to the
same family of distribution under the MO distribution as the original one like the Pareto distribution.
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