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On the Existence Solutions for some Nonlinear Elliptic Problem

Abdelmoujib Benkirane, Badr El Haji and Mostafa El Moumni

abstract: In the present paper, we study the existence and regularity of positive solutions for the following

boundary value problem : −div
(

|∇u|p−2∇u) + us =
f

uα
in Ω and u = 0 on ∂Ω, where Ω is an open and

bounded subset of RN (N > p > 1), 0 < α ≤ 1, s ≥ 1 and f is a nonnegative function that belongs to some
Lebesgue space.

Key Words: Semilinear elliptic problem, Nonlinear singular term, Existence, Regularity effets,
Sobolev space.
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1. Introduction and Main Result

In this paper, we are concerned with the existence and regularity results for the positive solution to
the following problem :











−div
(

|∇u|p−2∇u) + us =
f(x)

uα
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is an open and bounded subset of RN (N > p), 0 < α ≤ 1, s ≥ 1 and f be in L1(Ω) function.
Problem (1.1) has been applied in chemical heterogeneous catalysts, non-Newtonian fluids and also

the theory of heat conduction in electrically conducting materials, see [19,2,8,17] for detailed discussion.
In this work, we are dealing with absorption zero order terms, that usually has a regularizing effect on the
solutions to (1.1), by starting from measure data for regularity results on the Lebesgue scale (in [6,10])
and on the Marcinkiewicz one ( [4]). We refer the reader to [20,21,12] for another approach using results
on elliptic and parabolic problems in the setting of Sobolev spaces. See also [1,3,15,16] for related topics.

In [6] the authors studied the regularizing effect of the term us on the solution to the following classical
problem

{

−∆u = f(x) in Ω,

u = 0 on ∂Ω,
(1.2)

when the term us is added in the left-hand side of (1.2), we obtain the following problem

{

−∆u + us = f(x) in Ω,

u = 0 on ∂Ω.
(1.3)
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In [7] the authors study the following problem

{

−∆u = f(x)
uγ in Ω,

u = 0 on ∂Ω.
(1.4)

Recently in [14] the authors study the regularity of the solution the following problem

{

−∆u + us = f(x)
uγ in Ω,

u = 0 on ∂Ω.
(1.5)

Definition 1.1. A function u ∈ W
1,p
0 (Ω) is a distributional solution to problem (1.1) in case α ≤ 1,

s ≥ 1 and f ∈ Lr(Ω) with r ≥ 1 if

∀w ⊂⊂ Ω exists cw > 0 s.t. u ≥ cw a.e. in w, (1.6)

us ∈ L1(Ω),

and
∫

Ω

|∇u|p−2∇u∇ϕ +

∫

Ω

usϕ =

∫

Ω

f

uα
ϕ ∀ϕ ∈ C

1
c(Ω). (1.7)

Our purpose is to establish the following result .

Theorem 1.2. Let α ≤ 1, s ≥ 1 and 0 ≤ f ∈ Lr(Ω) with r ≥ 1. Then the problem (1.1) has at least one
distributional solution u in the sense of the Definition 1.1 . Moreover u belongs to W

1,p
0 (Ω) ∩ Ls+1(Ω) if

(i) α = 1, f ∈ L1(Ω) or

(ii) α < 1, f ∈ Lr(Ω) for some r > 1 and s ≥ 1−rα
r−1 or

(iii) α < 1, f ∈ L
s+1
s+α (Ω)

while if

(iv) α < 1, f ∈ L1(Ω), then u ∈ W
1,

p(s+α)
s+1

0 (Ω) ∩ Ls+α(Ω).

The paper is organized as follows: Section 2 is devoted to describing the approximated problems and
we prove some properties that we need in the proof of our main results. Finally, Section 3, we shall give
the complete proof of Theorem 1.2.

2. Preliminary results

For a fixed k > 0, we define the truncation functions Tk : R → R and Gk : R → R as follows

Tk(s) := max(−k; min(s; k)) and Gk(s) := (|s| − k)+sign(s).

We will also use the following functions

Sδ,k(s) = 1 − Vδ,k(s) (2.1)

with

Vδ,k(s) =







1 if s ≤ k,
k+δ−s

δ
if k < s < k + δ,

0 if s ≥ k + δ,

we will denote with R
∗ the set R\{0}, with R

+ the set {t ∈ R s.t. t > 0}, with r∗ the Sobolev conjugate
of 1 ≤ r < N , given by Nr

N−r
, and with r′ = r

r−1 the Hölder conjugate of 1 < r < ∞ (if r = 1 we define
r′ = ∞, if r = ∞ we define r′ = 1). Moreover, if no otherwise Specified, we will denote by c several
positive constants whose value may change from line to line and, sometimes, on the same line. These
values will only depend on the data (for instance c can depend on Ω, α, s, p) but they will never depend
on the indexes of the sequences we will introduce.
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2.1. Approximating problems

Let us consider the following approximating problems,






−div
(

|∇un,k|p−2∇un,k) + Tk(|un,k|s−1un,k) =
fn(x)

(|un,k| + 1
n

)α
in Ω,

un,k = 0 on ∂Ω,

(2.2)

where n, k ∈ N, 0 ≤ fn(x) = Tn(f(x)) ∈ L∞(Ω), α ≤ 1 and s ≥ 1.

There exists un,k weak solution to (2.2), for each n, k ∈ N fixed (see [ [18], Theorem 2]). Moreover

un,k ∈ L∞(Ω) for all n, k ∈ N, since if m ≥ 1 is fixed, taking Gm(un,k) ∈ W
1,p
0 (Ω) as test function in

(2.2) and using that Gm(un,k) and Tk(|un,k|s−1un,k) have the same sign of un,k, we have taht
∫

Ω

|∇Gm(un,k)|p ≤

∫

Ω

fnGm(un,k),

and so we can proceed as in [22] to end up with un,k ∈ L∞(Ω).
Moreover the previous L∞ estimate is independent from k ∈ N.
Now by chossing un,k as a test function in the weak formulation of (2.2), we obtain

un,k is bounded in W
1,p
0 (Ω) with respect to k for n ∈ N fixed .

Since un,k is bounded in L∞(Ω) independently on k, for each n ∈ N fixed we choose kn large enough in
order to get the following scheme of approximation







−div
(

|∇un|p−2∇un) + |un|s−1un =
fn(x)

(|un| + 1
n

)α
in Ω,

un = 0 on ∂Ω,

(2.3)

where un ∈ W
1,p
0 (Ω) ∩ L∞(Ω) is given by un,kn

.

As concerns the sign of un, by chosing u−
n := min(un, 0) ∈ W

1,p
0 (Ω)∩L∞(Ω) as test function in (2.3),

we obtain
∫

Ω

|∇u−
n |p +

∫

Ω

|un|s−1(u−
n )2 =

∫

Ω

fn

(|un| + 1
n

)α
u−

n ≤ 0,

and so that un ≥ 0 almost everywhere in Ω.
Now we prove some local positivity property that will guarantee that the limit of the approximations

(2.3) satisfies (1.6).

Proposition 2.1. For each n ∈ N fixed, the nonnegative un ∈ W
1,p
0 (Ω) ∩ L∞(Ω) weak solution to (2.3)

is nondecreasing in n ∈ N and it results

∀w ⊂⊂ Ω, ∃cw > 0 (independent of n ∈ N) s.t. un ≥ cw in w ∀n ∈ N (2.4)

Proof:

We can prove that the sequence un is nondecreasing in n ∈ N proceeding precisely as in [ [7], Lemma
2.2], namely taking (un − un+1)+ := max(un − un+1, 0) ∈ W

1,p
0 (Ω) ∩ L∞(Ω) as test function in the

difference between the problem solved by un and the one solved by un+1, so we will omit the details. To
prove (2.4), we will instead use that

un ≥ u1 ∀n ∈ N a.e. in Ω, (2.5)

and we will apply the strong maximum principle to u1 ∈ W
1,p
0 (Ω) ∩ L∞(Ω), that solves







−div
(

|∇u1|p−2∇u1) + us
1 =

f1(x)

(u1 + 1)α
≥

f1(x)

(‖u1‖L∞(Ω) + 1)α
≥ 0 in Ω,

u1 = 0 on ∂Ω.

(2.6)
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Indeed, since u1, div
(

|∇u1|p−2∇u1) ∈ L1
loc(Ω), u1 ≥ 0 almost everywhere in Ω,

div
(

|∇u1|p−2∇u1) ≤ us
1

and
∫ .

0

(ts+1)− 1
2 = ∞ ⇐⇒ s ≥ 1,

we can apply [ [23],Theorem 1] and deduce that

∀w ⊂⊂ Ω, ∃cw > 0 s.t. u1 ≥ cw in w.

Then (2.4) follows from (2.5). �

2.2. A priori estimates

Now we need some compactness results on the sequence of approximating solutions un, at least up to
subsequences.

Proposition 2.2. Let n ∈ N and un ∈ W
1,p
0 (Ω) ∩ L∞(Ω) be a solution to (2.3) where s ≥ 1.

a) If one of the following holds







α = 1, f ∈ L1(Ω),
α < 1, f ∈ Lr(Ω) for some r > 1 and s ≥ 1−rα

r−1 ,

α < 1, f ∈ L
s+1
s+α (Ω),

then un is bounded in W
1,p
0 (Ω) ∩ Ls+1(Ω).

b) If α < 1 and f ∈ L1(Ω) then un is bounded in W
1,

p(s+α)
s+1

0 (Ω) ∩ Ls+α(Ω).

Proof:

a) The first case. Let us take un ∈ W
1,p
0 (Ω) ∩ L∞(Ω) as test function in (2.3). We obtain

∫

Ω

|∇un|p +

∫

Ω

us+1
n ≤

∫

Ω

fnu1−α
n . (2.7)

– If α = 1, we immediately find that un is bounded in W
1,p
0 (Ω) and in Ls+1(Ω).

– If α < 1, we apply Young’s inequality with weights (ǫ, c(ǫ)) and exponents (r, r′) on the right
hand side of the previous, obtaining

∫

Ω

|∇un|p +

∫

Ω

us+1
n ≤

1

c(ǫ)

∫

Ω

f r
n + ǫ

∫

Ω

u(1−α)r′

n ≤
1

c(ǫ)

∫

Ω

f r + ǫc

∫

Ω

us+1
n .

If ǫ is small enough, we deduce the following estimate
∫

Ω

|∇un|p + c(Ω, ǫ)

∫

Ω

us+1
n dx ≤

1

c(ǫ)

∫

Ω

f r ≤ c.

– If α < 1 and f ∈ L
s+1
s+α (Ω), we apply Young’s inequality with weights (ǫ, c(ǫ)) and exponents

( s + 1

s + α
,

s + 1

1 − α

)

on the right hand side of (2.7). Proceeding as before, we can easily prove the last assertion.
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b) Here. by choosing (un + ǫ)α − ǫα ∈ W
1,p
0 (Ω) ∩ L∞(Ω) as test function in (2.3), where 0 < ǫ < 1

n
.

one has

α

∫

Ω

|∇un|p(un + ǫ)α−1 +

∫

Ω

us
n((un + ǫ)α − ǫα) ≤

∫

Ω

fn.

Then, we can deduce that
∫

Ω

us
n((un + ǫ)α − ǫα) ≤

∫

Ω

f,

and by letting ǫ → 0, we have
∫

Ω

us+α
n ≤

∫

Ω

f.

It follows that
∫

Ω

|∇un|p

(un + ǫ)1−α
≤ c.

Now, if q < p, by thanking to Hölder’s inequality with exponents p
q

and p
p−q

, we obtain

∫

Ω

|∇un|q =

∫

Ω

|∇un|q

(un + ǫ)(1−α) q

p

(un + ǫ)(1−α) q

p ≤ c
(

∫

Ω

(un + ǫ)
(1−α)q

p−q

)1− q

p

Now we choose q such that
(1 − α)q

p − q
= s + α.

It is not difficult to verify that

q =
p(s + α)

(s + 1)
≤ p,

which achieve the proof of this proposition.

�

3. Proof of the main results

3.1. Proof of Theorem 1.2

Proof: Let un be a solution to (2.2), then it follows from 2.2 that it is bounded in W
1,p
0 (Ω) with respect

to n. Hence there exists a function up ∈ W
1,p
0 (Ω) such that un, up to subsequences, converges to up in

Lr(Ω) for all r < pN
N−p

and weakly in W
1,p
0 (Ω). proposition 2.2 also gives that

fn(x)

(|un| + 1
n

)α
is bounded in

L1
loc(Ω) and clearly, |un|s−1un is bounded in L1(Ω) with respect to n. Hence one can apply Theorem 2,1

of [5] which gives that ∇un converges to ∇up almost everywhere in Ω.
Now we prove that up satisfies 1.7 by passing to the limit in n every term in the weak formulation of

(2.2) easily pass to the limit the first term in (2.2) with respect to n; hence we focus on the absorption
term us, which we show to be equi-integrable.Indeed if we test (2.2) with Sη,k(un)(defined in (2.1) where
η, k > 0 and we deduce

∫

Ω

|∇u|pS′
η,k(un) +

∫

Ω

us
nSη,k(un) ≤ sups∈[k,∞)

1

sα

∫

Ω

fnSη,k(un).
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Which, observing that the first term on the left hand side is nonnegative and taking the limit with respect
to η → 0,implies

∫

{un≥k}

us
nSη,k(un) ≤ sups∈[k,∞)

1

sα

∫

{un≥k}

fn. (3.1)

Which, since fn converges to f in Lr(Ω), r ≥ 1 easily implies that us
n is equi-integrable and so it

converges to us
p in L1(Ω).This is sufficient to pass to the limit in the second term of the weak formulation

of (2.2). For what concerns the right hand side, using (2.4), we find

∣

∣

∣

fnϕ

(un + 1
n

)α

∣

∣

∣
≤

∣

∣

∣

fϕ

cα
suppϕ

∣

∣

∣
∀ϕ ∈ C

1
c(Ω).

Then, thanks to Lebesgue Theorem, we can pass to the limit also in the right hand side of the
distributional formulation of (2.3). This concludes the proof. �

3.2. Some comments on the regularizing effect

Firstly, it is easy to verify that, if

α < 1 and s >
N + p

N − p
(3.2)

then

s+1
s+α

<
( p∗

1 − α

)
′

Since f ∈ L

( p∗

1 − α

)′

(Ω) is the weaker assumption on the datum in order to find a priori estimates in
W

1,p
0 (Ω) for the sequence of approximating solutions to problem below:











−div
(

|∇u|p−2∇u) =
f(x)

uα
in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

(3.3)

it follows that, if we add the term us, with s satisfying (3.2), in the left hand side of (3.3), we find a
priori estimates in W

1,p
0 (Ω) for the sequence of approximating solutions also for less regular data.

Furthermore, if f ∈ L1(Ω) and α < 1, the Sobolev space in which the sequence of approximating

solutions to (3.3) is bounded is given by W
1,

N(α+1)
N−(1−α)

0 (Ω) (see [9,11,13] ).
It is easy to verify that, if

α < 1 and s >
N + αp

N − p
, (3.4)

then

N(α+1)
N−(1−α) <

p(s+α)
s+1 .

So we have another regularizing effect of the lower order term us, with s such that (3.4) holds, on the a
priori estimates for the approximating solutions.

Finally we recall that, if f ∈ L1(Ω) and s > N
N−p

, then the sequence of approximating solutions to
the following problem:







−div
(

|∇u|p−2∇u) + us = f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.5)
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is bounded in W
1,q
0 (Ω) for all q ∈ [1, ps

(s+1) ) (see [18]). Since

ps

(s + 1)
<

p(s + α)

(s + 1)
⇐⇒ α > 0,

we immediately obtain the, if we perturb the right hand side of (3.5) through the singular term 1
uα with

α > 0, we find a priori estimates on the sequence of approximating solutions.
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