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Independence and Inverse Domination in Complete z-Ary Tree and Jahangir Graphs
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abstract: This article includes different properties of the independence and domination (total domination,
independent domination, co-independent domination) number of the complete z-ray root and Jahangir graphs.
Also, the inverse domination number of these graphs of variant dominating sets (total dominating, independent
dominating, co-independent dominating) is determined.
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1. Introduction

For a vertex v ∈ V (G), the open neighborhood N(v) is the set of all vertices adjacent to v, and the
closed neighborhood of v is N [v] = N(v)∪{v}. A subgraph H of a graph G is said to be induced (or full)
if, for any pair of vertices x and y of H , xy is an edge of H if and only if xy is an edge of G. If H is an
induced of G with S is a set of its vertices then H is said to be induced by S and denoted by G[S]. An
independent set or stable set is a set of vertices in a graph G, where no two of which are adjacent. An
independence number denoted by β(G) of a graph G is the cardinality of a maximum independent set
of G. There are many parameters of the domination number as shown below and these parameters have
contributed to solving many problems in the graph as in the topological graph [9], fuzzy graph [13,14]
and [17,18,19], soft graph [3], and labeled graph [1,2], etc. A set D ⊆ V (G) is a dominating set in G

if every vertex v; v ∈ V (G) − D adjacent with at least one vertex in D. The domination number of G,
denoted γ(G) , is the cardinality of a minimum dominating set of G. A dominating set D ⊆ V (G) is an
independent dominating set in G if D is an independent set in G.The independent domination number
of G, which denoted by γi(G), is the cardinality of a minimum independent dominating set of G.
A dominating set D ⊆ V (G) is a total dominating set in G if for every vertex v; v ∈ V (G), adjacent
with at least one vertex in D. That is mean G[D] has no isolated vertex. the cardinality of a minimum
total dominating set in G is the total domination number of G and is denoted by γt(G). A dominating
set D ⊆ V (G) is a connected dominating set in G if G[D] is connected set. The connected domination
number of G , denoted γc(G) , is the cardinality of a minimum connected dominating set of G. A domi-
nating set D ⊆ V (G) is a co-independent dominating set in G if the complement of D is an independent
set. The co-independent domination number of G, denoted γcoi(G), is the cardinality of a minimum co-
independent dominating set of G. Various types of domination of graph G have been defined and studied
by several authors and more than 75 models of domination are listed in the appendix of Haynes [6]. All
definition above about parameters of domination number and for more details, we refer to [8] , [10,11,12],
[15,16]. Mojdeh and Ghameshlou [7] study some results on the number of domination, total domination,
independent domination, and connected domination in Jahangir graphs J2,m. Here, we study indepen-
dence number and various types of domination (domination, total domination, independence domination,
co-independence domination) number of a complete z-ray root, z ≥ 2 and Jahangir graph Jn,m, n ≥ 3. Let
D ⊆ V (G) be a minimum cardinal of dominating (independent dominating, total dominating, connected
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dominating, co-independent dominating) set in graph G. If V − D contains a dominating (independent
dominating, total dominating, connected dominating, co-independent dominating) set, then this set is
called an inverse set of D in G and denoted by ID. The symbol γ−1(G) , γ−1

i (G) , γ−1
t (G) , γ−1

c (G) and
γ−1

coi(G) is refer to the minimum cardinality over all inverse dominating (independent dominating, total
dominating, connected dominating, co-independent dominating) set of G.

2. Complete z-ray trees

A tree T is a connected graph with no cycles. In a tree, a vertex of degree one is referred to as a
pendant (leaf) and a vertex which is adjacent to a pendant is a support vertex. A tree is called a rooted
tree if one vertex has been designated the root. In a rooted tree, the parent of a vertex is the vertex
connected to it on the path to the root; every vertex except the root has a unique parent. A child of a
vertex v is a vertex of which v is the parent. In a rooted tree, the depth r is the longest length of a path
from the root to a vertex v. An internal vertex in a rooted tree is any vertex that has at least one child.
A z-ray tree ,z ≥ 2 is a rooted tree in which every vertex has z or fewer children. A complete z-ray tree
(Tc,z,r) is a z-ray tree in which every internal vertex has exactly z children and all pendant vertices have
the same depth. We label the root vertex by v0, as shown in Figure 1; Tc,2,5.

Figure 1: Tc,2,5

Remark 2.1. (I) Every pendant vertex in a tree of n vertices is a member in the maximal independent
set in G when n ≥ 3.
(II) If G is connected graph, then β(G) = n − 1 if and only if G is a star graph of n vertices. For a
complete z-ray tree G ≡ Tc,z,r with n vertices, have the following properties for independence number and
variant domination numbers:

Theorem 2.2.

β(Tc,z,r) =
zr+2(1 − z−2(⌊ r

2 ⌋+1))

z2 − 1
. (2.1)

Proof. Consider I = ∪
⌊ r

2 ⌋
i=0Ii , where I0 be the set of all pendant vertices of G,

Ii = {v : v is a pendant vertex of G[V − ∪i−1
j=0(Ij ∪ Sj)] ; i = 1, 2, .., ⌊ r

2 ⌋} and

Sk = {v : v is a support vertex of G[V − ∪k−1
j=0 (Ij ∪ Sj)]; k = 1, 2, .., ⌊ r−1

2 ⌋}, where S0 be the set of
all support vertices of G. It is clear that, I0 is an independent set and it is a member in the maximal
independent set of G by Observations 2.1(I). If we add any vertex from S0 to the set I0, the result set is
not an independent (as an instant, see Figure 1). Thus the set I0 is the maximum independent set in the
induced subgraph G[I0 ∪ S0] and |I0| = zr. Now Ii is the set of all pendant vertices of the complete z-ray
tree (G[V − ∪i−1

j=0(Ij ∪ Sj)]; i = 1, 2, .., ⌈ r
2 ⌉), of depth (r − 2i). It is clear that the set Ii is an independent

set for all i and |Ii| = zr−2i. To keep the independency, we cannot include any vertex of Si to Ii. Thus
Ii represent the maximum independent set in G[Ii ∪ Si], i = 0, 1, 2, .., k, where
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k =

{ ⌊

r
2

⌋

; r is odd
⌊

r
2

⌋

− 1 ; r is even

}

and I⌊ r

2 ⌋ = v0; r is even.

Thus I = ∪
⌊ r

2 ⌋
i=0Ii is the independent set in G , and β(G) > |I|. If we assume that there is a set F such

that |F | > |I|, then F must contains adjacent vertices, since it is contains a support vertices.

Thus β(G) = |I| =
∑⌊ r

2 ⌋
i=0 zr−2i = zr+2(1−z

−2(⌊ r

2
⌋+1))

z2−1 . �

Theorem 2.3.

γ(Tc,z,r) = γi(Tc,z,r) =
zr+2(1 − z−3(⌊ r−1

3 ⌋+1))

z3 − 1
+ ⌊

r

3
⌋ − ⌈

r

3
⌉ + 1. (2.2)

Proof. Consider D = ∪
⌊
r − 1

3
⌋

i=0 Di, where Di is the set of all vertices of depth (r − 1 − 3i) in G, and
Ei = {v : vis a vertex of depth r − 3i, r − 1 − 3i and r − 2 − 3i in G;i = 0, 1, . . . , ⌊ r−1

3 ⌋ . We see that Di

is a dominating set in the induced subgraph G[Ei] and |Di| = zr−1−3i. For any set F with |F | < |Di|,
we have that, F cannot be dominate some of vertices in Ei. Thus Di is the minimum dominating set in
the induced subgraph G[Ei]. Now, we have the following cases that depend on r:
(a) If r ≡ 0(mod3), then the root vertex is only vertex in G which is not dominated by the set D, so
D ∪ {v0} is the minimum dominating set in G. Therefore, we have

γ(G) = 1 +
∑⌊ r−1

3 ⌋
i=0 zr−1−3i = 1 + zr+2(1−z

−3(⌊
r−1

3
⌋+1))

z3−1 .
(b) If r ≡ 1, 2(mod3), then the set D is the minimum dominating set in G. Therefore we have

γ(G) =
∑⌊ r−1

3 ⌋
i=0 zr−1−3i = zr+2(1−z

−3(⌊
r−1

3
⌋+1))

z3−1 . We note that if r ≡ 1(mod3), thenE
⌊
r − 1

3
⌋

= {v0}∪{v : v

is a vertex of depth one }.
We combine the formulas in (a) and (b) as one formula for any r, we get:

γ(G) = zr+2(1−z
−3(⌊

r−1
3

⌋+1))
z3−1 + ⌊

r

3
⌋ − ⌈

r

3
⌉ + 1.

We see that in the two cases (a) and (b) the minimum dominating set in G is an independent set, so
γ(G) = γi(G). �

Theorem 2.4.

γ−1(Tc,z,r) = γ−1
i (Tc,z,r) =







z + zr+3(1−z
−3(⌊

r−1
3

⌋+1))
z3−1 , if r ≡ 0(mod 3)(a)

⌈

r−1
3

⌉

−
⌊

r−1
3

⌋

+ zr+3(1−z
−3(⌊

r−1
3

⌋+1))
z3−1 , if r ≡ 1, 2(mod 3)(b)







. (2.3)

Proof. Consider the set D−1 = ∪
⌊ r−1

3 ⌋
i=0 Di, where

Di = {v : v is a vertex of depth(r − 3i) in G; i = 0, 1, 2, . . . , ⌊ r−1
3 ⌋}.

Also consider Hi = {v : v is a vertex of depth r + 1 − 3i ,r − 3i and r − 1 − 3i in G ;i = 1, 2, . . . , ⌊ r−1
3 ⌋

}, where H0 = {v : v is a vertex of depth r and r − 1 in G}. It is clear that D0 is the minimum
dominating set in the induced subgraph G[H0] and |D0| = zr, since all vertices of depth r-1 contain in
the minimum dominating set (D in Theorem 2.3) in G. The set D1 is the minimum dominating set in
the induced subgraph G[H1] and |D1| = zr−3. If we assume that a set F ⊆ H1 and |F | < |D1| , then F

cannot dominate at least two vertices. Continue with the same manner for the others Di, we obtain the
following three cases:
(a) If r ≡ 0(mod3), we cannot take v0 since it is belong to the set D, so we take the vertices of depth one
to dominate all vertices of depth one plus v0 in D−1.

Thus γ−1(G) = z +
∑⌊ r−1

3 ⌋
i=0 zr−3i = z + zr+3(1−z

−3(⌊
r−1

3
⌋+1))

z3−1 .

(b) If r ≡ 1(mod3), so D−1 the minimum dominating set in Tc,z,r. Thus γ−1(G) =
∑⌊ r−1

3 ⌋
i=0 zr−3i

(c) If r ≡ 2(mod3), the vertices not dominate by the set D−1is the only vertices of depth one plus v0, so

we can take v0 to dominate all these vertices . Thus γ−1(Tc,z,r) = 1 +
∑⌊ r−1

3 ⌋
i=0 zr−3i.
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We combine the formulas in (b) and (c) as one formula for any r we get, γ−1(G) = ⌈ r−1
3 ⌉ − ⌊ r−1

3 ⌋ +
∑⌊ r−1

3 ⌋
i=0 zr−3i = ⌈ r−1

3 ⌉ − ⌊ r−1
3 ⌋ + zr+3(1−z

−3(⌊
r−1

3
⌋+1))

z3−1 We see that in the three cases (a), (b) and (c) the

minimum inverse dominating set in G is an independent set, so γ−1(G) = γ−1
i (G). �

Theorem 2.5.

γt(Tc,z,r) =















(zr+3+zr+2)
(

1−z
−4

(⌊

r−1
4

⌋

+1

)

)

z4−1 +
⌊

r−1
4

⌋

+
⌈

r−1
4

⌉

+ 1 , if r 6≡ 1(mod 4) (a)

(zr+3+zr+2)
(

1−z
−4

(⌊

r−1
4

⌋

+1

)

)

z4−1 + 2 , if r ≡ 1(mod 4) (b)















. (2.4)

Proof. Consider Dt = ∪
⌊ r−1

4 ⌋
i=0 {Ai ∪ Bi}, where

Ai = {v : v is a vertex of depth r − 1 − 4i in G} and
Bi = {v : v is a vertex of depth r − 2 − 4i in G} , i = 0, 1, . . . , ⌊ r−1

4 ⌋. We see that A0 is a dominating set
in the induced subgraph generated by the vertices of depth r, r−1and r−2, but it is not total dominating
set, since each vertex of A0 is isolated vertex in the set G[A0]. Therefore we must choose the vertices
of B0 which are adjacent to the vertices of A0. Let’s consider that Ei = {v : v is a vertex of depth
r − 4i, r − 1 − 4i, r − 2 − 4i and r − 3 − 4i in G} , then A0 ∪ B0 is the minimum total dominating set
in G[E0], where |A0 ∪ B0| = zr−1 + zr−2. Also A1 ∪ B1 is the minimum dominating set in G[E1] where
|A1 ∪ B1| = zr−5 + zr−6, so A0 ∪ A1 ∪ B0 ∪ B1 is the minimum total dominating set in E0 ∪ E1 where
|A0 ∪ B0 ∪ A1 ∪ B1| = zr−1 + zr−2 + zr−5 + zr−6. Continue with this procedure, we exit the following
two cases that depend on r.
(I) If r 6≡ 1(mod 4), then there are two states as follows. (a) If r ≡ 0(mod 4), then v0 is the only
vertex which is not totally dominated by the set Dt. So we must choose only one vertex from the
vertices of depth one, and include it in the set Dt to conserve the total dominating set in G. Thus

γt(G) =
∑⌊ r−1

4 ⌋
i=0 (zr−1−4i + zr−2−4i) + 1 ..

(b) If r ≡ 2, 3(mod4), then the set Dt is a minimum total dominating set in G.

Thus γt(G) =
∑⌊ r−1

4 ⌋
i=0 (zr−1−4i + zr−2−4i) .

Now if we combine the formulas in (a) and (b) as one formula for any r, we obtain

γt(G) =

⌊ r−1
4 ⌋

∑

i=0

(zr−1−4i + zr−2−4i) +

⌊

r − 1

4

⌋

−

⌈

r − 1

4

⌉

+ 1

=
(zr+3 + zr+2)

(

1 − z−4
(⌊

r−1
4

⌋

+1
)

)

z4 − 1
+

⌊r

4

⌋

−
⌈r

4

⌉

+ 1.

We note that where r ≡ 2(mod 4), E⌊ r−1
4 ⌋ = {v : v is a vertex of depths 2,1 and 0.

(II) If r ≡ 1(mod 4), consider Ct = ∪
⌊ r−1

4 ⌋−1
i=0 {Ai ∪ Bi} , then as the set Dt, Ct is the minimum total

dominating set in G[Ct]. The vertices which are not dominated by the set Ct are v0 andvertices of depth
one. So we include v0 and one vertex of depth one in the set Ct to get a minimum total dominating set

in G. Thus γt(G) =
∑⌊ r−5

4 ⌋
i=0 (zr−1−4i + zr−2−4i) + 2 =

(zr+3+zr+2)
(

1−z
−4

(⌊

r−5
4

⌋

+1

)

)

z4−1 + 2 . �

Remark 2.6. The inverse total dominating set in G is not exist, since all pendant vertices are isolated
in G[V − Dt] where Dt is a minimum total dominating set in G.

Theorem 2.7.

γcoi(Tc,z,r) =
zr+1

(

1 − z−2
(⌊

r−1
2

⌋

+1
)

)

z2 − 1
. (2.5)
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Proof. Consider Dcoi = ∪
⌊ r−1

2 ⌋
i=0 Di, where Di is the set of all vertices with depth r − 1 − 2i in Tc,z,r , and

Ei = {v : v is a vertex of depth r − 2i, r − 1 − 2i and r − 2 − 2i in G}, i = 0, 1, . . . , ⌊ r−1
2 ⌋ . It is clear

that D0 is the minimum dominating set in G[E0] and E0 − D0 is an independent set in G[E0]. Also D1

is the minimum dominating set in G[E1] and E1 − D1 is an independent set in G[E1] and so on. . . .

Thus Dcoi is the co- independent dominating set in G with |Dcoi| =
∑⌊ r−1

2 ⌋
i=0 zr−1−2i. Let’s consider that

there is a set F of vertices such that |F | < |Dcoi| , F is not co-independent dominating set in G, since
V − F is not an independent set (it contains at least two adjacent vertices).

Thus γcoi(G) =
∑⌊ r−1

2 ⌋
i=0 zr−1−2i =

zr+1
(

1−z
−2

(⌊

r−1
2

⌋

+1

)

)

z2−1 . �

Theorem 2.8.

γ−1
coi(Tc,z,r) =

zr+2
(

1 − z−2
(⌊

r

2

⌋

+1
)

)

z2 − 1
. (2.6)

Proof. Consider (Dcoi)−1 = ∪
⌊ r−1

2 ⌋
i=0 Di, where Di is the set of all vertices with depth r − 2i in Tc,z,r , and

Ei = {v : v is a vertex of depth r + 1 − 2i, r − 2i and r − 1 − 2i in Tc,z,r}, i = 0, 1, . . . , ⌊ r
2 ⌋ . E0 = {v : v

is a vertex of depth r and r − 1 in Tc,z,r}. It is clear that D0 is the minimum co-independent set in
G[E0]. As same the manner in the previous theorem (Dcoi)−1 is the minimum dominating set in G where,

(Dcoi)−1 ⊆ V − Dcoi. Thus γ−1
coi(Tc,z,r) =

∑⌊ r

2 ⌋
i=0 zr−2i =

zr+2
(

1−z
−2

(⌊

r

2

⌋

+1

)

)

z2−1 .
We note that if r ≡ 0(mod 2), then E⌊ r−1

4 ⌋ = {v : v is a vertex of depths 1 or 0 }. �

Theorem 2.9. [6] For any tree T of n vertices with p pendant vertices,

γc(T ) = n − p; n ≥ 2. (2.7)

Remark 2.10. The inverse connected dominating set in Tc,z,r is not exist, since V − Dc represent all
pendant vertices and these vertices are isolated in G[V −Dc] where Dc is a minimum connected dominating
set in G.

3. Jahangir graph

For n and m; m ≥ 3 and n ≥ 2 the Jahangir graph Jn,m, is a graph on nm + 1 vertices consisting of a
cycle Cnm with one additional central vertex which is adjacent to certain m vertices of Cnm where these
vertices at distance n in order (sequence) on Cnm. Consider v0 be the center vertex of J(n,m) and v1

be one vertex in Cnm which is adjacent to v0, and v1, v2, v3, . . . , vmn are the other vertices that incident
clockwise in Cnm. In this section, we take v1 is the first vertex adjacent to the center v0 (see Figure 2)
for J4,4.

Figure 2: J4,4
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Mojdeh and Ghameshlou [5] study some results on domination number, total domination number,
independence domination number and connected domination number in Jahangir graph J2,m. They
proved that β(J2,m) = βc(J2,m) = βt(J2,m) = ⌊ n

2 ⌋ + 1 and βt(J2,m) = ⌊ 2m
3 ⌋.

For Jahangir Jn,m with n ≥ 3, we have the following properties for independence number and variant
domination number:

Theorem 3.1.

β(Jn,m) =
⌊mn

2

⌋

+
⌊n

2

⌋

−
⌈n

2

⌉

+ 1. (3.1)

Proof. Consider D = {v2, v4, . . . , vk} where k =

{

mn ; if mn is even

mn − 1 ; if mn is odd

}

,

then we have the following two cases:
(i) If n is even , D ∪ {v0} is an independent set in Jn,m, where |D ∪ {v0}| = ⌊ mn

2 ⌋ + 1, since D does not
contain any adjacent vertex to v0, then β(Jn,m) ≥ ⌊ mn

2 ⌋+1. If F is a vertex set such that |F | > ⌊ mn
2 ⌋+1,

this mean that B contains at least two adjacent vertices. Thus D ∪ v0 is the maximum independent set
in Jn,m, and β(Jn,m) = ⌊ mn

2 ⌋ + 1.
(ii) If n is odd, D is an independent set in Jn,m with |D| =

⌊

mn
2

⌋

, then β(Jn,m) ≥
⌊

mn
2

⌋

. If there is a
set F of vertices; |F | > ⌊ mn

2 ⌋ , then F must contains at least two adjacent vertices. Thus D ∪ {v0} is a
maximum independent set in Jn,m, and β(Jn,m) = ⌊ mn

2 ⌋.
We combine the formulas in (i) and (ii) as one formula, then β(Jn,m) =

⌊

mn
2

⌋

+
⌊

n
2

⌋

−
⌈

n
2

⌉

+ 1. �

Theorem 3.2.

γ(Jn,m) = γi(Jn,m) =
⌈mn

3

⌉

. (3.2)

Proof. Let D = {v3i+1; i = 0, 1, . . . , ⌈ mn
3 ⌉ − 1}, D is a dominating set in Jn,m, with |D| = ⌈ mn

3 ⌉, then
γ(Jn,m) ≤ ⌈ mn

3 ⌉. If we assume there is a set F of vertices with |F | = ⌈ mn
3 ⌉−1, then the maximum number

of vertices which are dominated by the set F at most 3(
⌈

mn
3

⌉

−1)+1 = 3
⌈

mn
3

⌉

−2, but 3
⌈

mn
3

⌉

−2 < mn+1.
Therefore the set F cannot be a dominating set in Jn,m. Thus D is minimum dominating set in Jn,m

and γ(Jn,m) = ⌈ mn
3 ⌉ . But D is independent set in Jn,m, then we have γ(Jn,m) = γi(Jn,m). �

Theorem 3.3.

γ−1(Jn,m) = γ−1
i (Jn,m) =

{

⌈ mn
3 ⌉ + 1 , ifn ≡ 0(mod 3)(a)
⌈ mn

3 ⌉ , ifn ≡ 1, 2(mod 3)(b)

}

. (3.3)

Proof. Let D−1 = {v3i+2; i = 0, 1, . . . , ⌈ mn
3 ⌉ − 1}, there are three cases that depend on n as follows.

(i) If n ≡ 0(mod 3), then the set D−1 is the minimum dominating set in Cnm. The set D−1 not dominate
v0, so we include v0 to the set D−1 It is clear that γ−1(Jn,m) = |D−1| + 1 = ⌈ mn

3 ⌉ + 1 .
(ii) If n ≡ 1(mod3), then the set D−1 is dominating set in Jn,m, and γ(Jn,m) ≤ ⌈ mn

3 ⌉. Since vn+1

is adjacent to v0. It is clear that γ−1(Jn,m) = ⌈ mn
3 ⌉ and D−1 is independent set. Thus we have

γ−1(Jn,m) = γ−1
i (Jn,m).

(iii) If n ≡ 2(mod 3), then D−1 is a dominating set in Jn,m and |D−1| = ⌈ mn
3 ⌉ . Therefore γ(Jn,m) ≤ ⌈ mn

3 ⌉
, since v1+2n is adjacent to v0. With the same manner as (ii), we have γ−1(Jn,m) = ⌈ mn

3 ⌉. It is clear

that D−1 is independent set in Jn,m and then γ−1(Jn,m) = γ−1
i (Jn,m). �

Theorem 3.4. [5] If Pn be a path of order n , then

γt(Pn) =
⌊n

2

⌋

+
⌈n

4

⌉

−
⌊n

4

⌋

, n > 2. (3.4)

Theorem 3.5.

γc(Jn,m) = m(n − 2) + 1. (3.5)
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Proof. Consider A =
{

vk; k = ⌊ n+1
2 ⌋ + ni, ⌊ n+1

2 ⌋ + ni + 1; i = 0, 1, . . . , m − 1
}

, and D = V − A.
It is clear that D is dominating set in Jn,m and Jn,m[D] is connected graph, since all vertices of A located
in middle vertices between any successive two vertices that joined with the center vertex. Therefore D is
connected dominating set in Jn,m and |D| = m(n − 2) + 1, then γc(Jn,m) ≤ m(n − 2) + 1 . Now if there
is a set B of vertices; |B| < m(n − 2) + 1 , then we have two cases as follows.
(i) If we remove one vertex from the adjacent vertices of the set A, then there are three vertices vj , vj+1,and
vj+2 not belonging to D. Therefore we cannot dominate the vertex vj+1 by vertices of D. Therefore this
set does not dominating set in Jn,m.
(ii) If we remove one vertex from vertices which are not adjacent to the vertices of the set A, then Jn,m[B]
becomes disconnected.
From i and ii, we get D is the minimum connected dominating set in Jn,m. Thus γc(Jn,m) = m(n−2)+1
. �

Theorem 3.6.

γt(Jn,m) =

{

2⌈ mn
4 ⌉ + ⌈ mn−1

4 ⌉ − ⌊ mn−1
4 ⌋ − 1 , if n 6≡ 3(mod 4)(a)

1
2 m(n − 1) + 1 , if n ≡ 3(mod 4)(b)

}

. (3.6)

Proof. Let D = {v4i+1, v4i+2 : i = 0, 1, . . . , ⌊ mn
4 ⌋ − 1}, there are two cases that depend on mn as follows.

(I) If n 6≡ 3(mod 4), we have four cases as follows.
(i) If mn ≡ 0(mod 4), then D is the total dominating set in Jn,m, where |D| = mn

2 , so γt(Jn,m) ≤ mn
2 .

If F is a set of vertices; |F | < |D|, then there are at least two vertices of Jn,m are not dominated by F .
Therefore D is minimum total domination set. Thus γt(Jn,m) = mn

2 .
(ii) If mn ≡ 1(mod 4) , with the same manner as (i), D is minimum total domination set in Jn,m except
one vertex vmn, where |D| = mn−1

2 . To obtain the minimum of the total dominating set we cannot add
the vertex vmn to the set D , since vmn is an isolated vertex in G[D ∪ {vmn}]. Since the vertex vmn−1

is adjacent to the vertices vmn and vmn−2, where vmn−2 ∈ A. Therefore D ∪ {vmn−1} is the minimum
total dominating set in Jn,m, then γt(Jn,m) = 2⌈ mn

4 ⌉ − 1.
(iii) If mn ≡ 2(mod 4), with the same manner in part (i), D is minimum total dominating set in Jn,m

except the two vertices vmn−1 and vmn , where |D| = mn−2
2 . To obtain the minimum total dominating

set, we cannot add one vertex vi; i = mn − 1, mn to the set D, since it is become an isolated vertex in
G[D ∪ {vi}]. Adding these vertices to the set D,then we have γt(Jn,m) = mn−2

2 + 2 = 2⌈ mn
4 ⌉.

(iv) If mn ≡ 3(mod 4), again as part (i), D is a minimum total dominating set in Jn,m except the three
vertices vmn−2, vmn−1 and vmn with |D| = mn−3

2 , so we include any two adjacent vertices from these
vertices to the set D to obtain the total dominating set, as in (ii) we cannot take one vertex. Then
γt(Jn,m) = mn−2

2 + 2 = 2⌈ mn
4 ⌉. We combine the formulas in (i), (ii), (iii) and (iv) as one formula for any

mn, we get: γt(Jn,m) = 2⌈ mn
4 ⌉ + ⌈ mn−1

4 ⌉ − ⌊ mn−1
4 ⌋ − 1.

(II) If n ≡ 3(mod 4), consider A = {v0, v1, vn+1, v2n+1, . . . , v(m−1)n+1} and S = A ∪ {v : v is adjacent
vertex to the vertices of A}. The set A is the minimum total dominating set in the induced subgraph
H = Jn,m[S] (as in Figure 3;n = 7, m = 4, and H is the thick edges). The set A contains m + 1
vertices. The graph Jn,m − H is union of m disjoint path of order n − 3 . Using Theorem 2.1, we get
γt(Jn,m) = 1

2 m(n − 1) + 1. �

Figure 3: J7,3
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Remark 3.7. Since there is not any vertex v ∈ V − Dc (or V − Dt) which is adjacent to the vertex v0 ,
where Dc ( Dt ) is a minimum connected (total) dominating set in G, then the inverse connected (total)
dominating set in Jn,m is not exist.

Theorem 3.8.

γcoi (Jn,m) =
⌊mn

2

⌋

+
⌈n

2

⌉

−
⌊n

2

⌋

. (3.7)

Proof. Consider D =
{

v2i+1; i = 0, 1, . . . ,
⌊

mn
2

⌋

− 1
}

, then there are two cases as follows.
(i) If n is odd, then D is the minimum dominating set and the set of vertices V − D is not independent
set in Jn,m, since v0 is adjacent to some vertices in V − D. For this reason we add v0 to D. Therefore
D ∪{v0} is a dominating set in Jn,m, and V − (D ∪{v0}) is independent set in Jn,m, then γcoi (Jn,m) ≤
|D ∪ {v0}| =

⌊

mn
2

⌋

+ 1. If there is a set F of vertices; |F | <
⌊

mn
2

⌋

+ 1, then F is not co- independent
dominating set, since G [V − F ] contains at least two adjacent vertices. Thus D ∪ {v0} is minimum
co-independent dominating set in Jn,m, and we have γcoi (Jn,m) =

⌊

mn
2

⌋

+ 1.

(ii) If n is even, then D is minimum dominating set and the set of vertices V − D is independent set
in Jn,m, since there is no vertex in D adjacent to v0, then γcoi (Jn,m) ≤

⌊

mn
2

⌋

. Again if F is a set of
vertices; |F | < |D|, then F is not co- independent dominating set, since G [V − F ] contains at least two
adjacent vertices. Thus D is minimum co-independence dominating set, and γcoi (Jn,m) = mn

2 .
We combine the formulas in (i) and (ii) as one formula for any n, we get:
γcoi (Jn,m) =

⌊

mn
2

⌋

+
⌈

n
2

⌉

−
⌊

n
2

⌋

�

Theorem 3.9. There is no inverse co-independent dominating set in Jn,m.

Proof. Consider
(

Dcoi
)−1

= V − Dcoi, where Dcoi is a minimum co-independent dominating set in Jn,m,
there are two cases that depend on n as follows.

(i) If n is even there is no any vertex in
(

Dcoi
)−1

dominate the vertex v0 . Thus there is no any

dominating set in Jn,m such that the vertices of
(

Dcoi
)−1

contains in V − Dcoi.

(ii) If n is odd then
(

Dcoi
)−1

is not co-independence dominating set since V − Dcoi not independent

(there are some vertices adjacent to v0) and we cannot include v0 to the set
(

Dcoi
)−1

since v0 ∈ Dcoi.

Thus there is no any dominating set in Jn,m such that the vertices of
(

Dcoi
)−1

contains in V − Dcoi. �

Conclusion 3.1. For a complete z-ray tree G = Tc,z,r or Jahangir graphs G = Jn,m, we have

γ (G) ≤ γi (G) ≤ γcoi (G) ≤ γt (G) ≤ γc(G).
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