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Global Existence and Blow-up of Solutions for a Class of Steklov Parabolic Problems

A. Lamaizi, A. Zerouali, O. Chakrone and B. Karim

abstract: In this paper, we study weak solutions to the following Steklov parabolic problem:






ut − ∆pu + |u|p−2u = 0 in Ω, t > 0,

|∇u|p−2 ∂u
∂ν

= λ|u|qu on ∂Ω, t > 0,

u(x; 0) = u0(x) in Ω.

where Ω ⊂ R
n is an open bounded domain for n ≥ 2 with smooth boundary ∂Ω, λ > 0. Here, ut denote

the partial derivative with respect to the time variable t and ∇u denotes the one with respect to the space
variable x. We prove theorems of existence of weak solutions, via Galerkin approximation. Moreover, we show
the existence of solutions which blow up in a finite time.
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1. Introduction and main results

The motivation of this paper contains several aspects. The first one is that in parabolic problems
are fundamental to the modeling of space and time-dependent problems such as problems from physics
or biology. To be specific , evolutionary equations and systems are likely to be used to model physical
processes like heat conduction or diffusion processes. Let’s take as an illustration the Navier- strokes
equation, the basic equation in fluid mechanics. What’s more, we would like to refer to [14], where fluids
in motion are studied. Applications involve climate modeling and climatology as well.(see [9,10]).

The second interesting aspect of this article is that the p-Laplacian equation has a strong basis in
mathematical physics, and it is very important in many mathematical models. Generally is a mathemat-
ical model for various fields such as biological sciences, population dynamics, and heat transfer theory,
such as thermoelastic distortion, diffusion phenomena, heat transfer in two media, heat transfer in a solid
in contact with a moving fluid, (see, [1,15,13]).

The third distinctive feature in the present context is that nonlinear boundary condition have arisen
in many physical fields, such as elasticity, fluid mechanics, electromagnetism (see [4]), and have attracted
attention many researchers. These problems are also important in inverse problems and conformal ge-
ometry [2,5]. Moreover, they also have many applications, one finds them for example in the study of
the waves of surface [6] the study of the modes of vibration of a structure in contact with an incompress-
ible fluid (see [7]), in the study of surface waves, the analysis of the stability of mechanical oscillators
immersed in a viscous fluid, and in the analysis of the stability of mechanical oscillators immersed in a
viscous fluid (see [12], and the references it contains).
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In [13], we have recently established the global existence and blow-up of weak solutions to the following
parabolic problem with nonlinear boundary conditions:











ut − ∆u + u = 0 in Ω × (0, T ),
∂u
∂ν

= λ|u|p−1u on ∂Ω × (0, T ),

u(x; 0) = u0(x) in Ω,

where Ω is an open bounded domain of Rn, n ≥ 1 with smooth boundary ∂Ω, λ > 0, and p satisfies

(P )

{

1 ≤ p ≤ n
n−2 if n > 2,

1 ≤ p < ∞ if n = 1; 2.

More precisely, we have proved the following results
Theorem 1 : Let p satisfy (P), u0(x) ∈ H1 (Ω) . Assume that A (u0) < k, B (u0) > 0. Then, there exists
a global weak solution u(t) ∈ L∞

(

0, ∞; H1 (Ω)
)

∩ C
(

[0, T ]; L2 (Ω) × L2 (∂Ω, ρ)
)

of (1.1) with ut(t) ∈

L2
(

0, ∞; L2 (Ω)
)

and u(t) ∈ X for 0 ≤ t < ∞.
Theorem 2 : Let p satisfy (P ), u0(x) ∈ H1 (Ω). Then the weak solution u(x, t) of problem (1.1) must
blows up in finite time provided that:

0 < A(u0) <
p − 1

2C(p + 1)
‖u0‖2,

where

C = Sup
u∈H1(Ω)

‖u‖2

‖u‖2
H1

,

A(u) =
1

2
‖u‖2

H1 −
λ

p + 1
‖u‖p+1

p+1,∂Ω,

and

B(u) = ‖u‖2
H1 − λ‖u‖p+1

p+1,∂Ω.

In this paper, we will present a generalization of the previous problem. More precisely, we discuss the
existence and blow-up of solutions for the following Steklov parabolic problem involving the p-Laplacian











ut − ∆pu + |u|p−2u = 0 in Ω, t > 0,

|∇u|p−2 ∂u
∂ν

= λ|u|qu on ∂Ω, t > 0,

u(x; 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ R
n is an open bounded domain for n ≥ 2 with smooth boundary ∂Ω, and

∆pu := div
(

|∇u|p−2∇u
)

is the well known p-Laplacian operator defined in W 1,p(Ω) in a weak set-
ting in the usual way for any real number p > 1. Here, ut denote the partial derivative with respect to
the time variable t and ∇u denotes the one with respect to the space variable x. Moreover, λ > 0, p and
q satisfy

(H)
2n

n + 2
≤ p < +∞ , p < 2 + q and

{

1 ≤ q + 2 ≤ p∂ if p 6= n,

1 ≤ q + 2 < ∞ if p = n.

Recall that

p∂ :=

{

p(n−1)
n−p

if 1 < p < n,

∞ if p ≥ n.

Let us introduce some functionals and sets as follows

E(u) =
1

p
‖u‖p

1,p −
λ

2 + q
‖u‖2+q

2+q,∂Ω,
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Eδ(u) =
δ

p
‖u‖p

1,p −
λ

2 + q
‖u‖2+q

2+q,∂Ω, ∀δ ∈ (0, 1),

the depth of potential well
d = inf

u∈W 1,p(Ω)
u6=0

sup
β≥0

E(βu), (1.2)

the depth function of potential wells

d(δ) =
1 − δ

p

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p

, (1.3)

where C∗ is the embedding constant form W 1,p(Ω) into L2+q(∂Ω), i.e.,

C∗ = sup
‖u‖2+q,∂Ω

‖u‖1,p

, (1.4)

Xδ =
{

u ∈ W 1,p(Ω) | Eδ(u) > 0, E(u) < d(δ)
}

∪ {0}, ∀ 0 < δ < 1,

and

Bδ =

{

u ∈ W 1,p(Ω) | ‖u‖1,p <

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

}

.

Our main results are stated as follows

Theorem 1.1. Let u0(x) ∈ W 1,p(Ω), p and q satisfy (H) . Assume that 0 < E (u0) < d, δ1 < δ2 are
the two roots of equation d(δ) = E (u0) and Eδ2

(u0) > 0. Then problem (1.1) admits a global solution
u(t) ∈ L∞

(

0, ∞; W 1,p(Ω)
)

∩ C (0, ∞; Lp (Ω) × Lp (∂Ω, ρ)) with ut(t) ∈ L2
(

0, ∞; L2(Ω)
)

and u(t) ∈ Xδ

for δ ∈ (δ1, δ2) , t ∈ [0, ∞).

Theorem 1.2. Let u0(x) ∈ W 1,p(Ω), p and q satisfy (H). Assume that 0 < e < d and δ1 < δ2 are the
two roots of equation d(δ) = e. Then,

1. Solutions of problem (1.1) with initial condition 0 < E (u0) ≤ e lie in Bδ1
, provided u0(x) ∈ Bδ0

.

2. Solutions of problem (1.1) with initial condition 0 < E (u0) ≤ e lie in Bc
δ2

∪ ∂Bδ2 , provided u0(x) ∈
Bc

δ0
.

Theorem 1.3. Let u0(x) ∈ W 1,p(Ω), p and q satisfy (H), and δ1 < δ2 be the two roots of equation
d(δ) = E (u0).

1. Assume that E (u0) < d and Eδ1
(u0) < 0. Then solutions of problem (1.1) blow up in finite time.

2. Assume that E (u0) = d and Eδ0
(u0) < 0. Then the conclusion of (i) remains valid.

2. Preliminaries

The Lebesgue norm of Lp(Ω) will be denoted by ‖·‖p, and the Lebesgue norm of Lp(∂Ω, ρ) by ‖·‖p,∂Ω,

for p ∈ [1, ∞], where dρ denotes the restriction to ∂Ω, and

〈u, v〉 =

∫

Ω

uv dx, 〈u, v〉0 =

∮

∂Ω

uv dρ.

Moreover, we denote the usual Sobolev space on Ω

W 1,p(Ω) = {u ∈ Lp (Ω) : |∇u| ∈ Lp (Ω)} ,

equipped by the norm
‖u‖1,p = ‖u‖p + ‖∇u‖p,
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or to the equivalent norm

‖u‖1,p =
(

‖u‖p
p + ‖∇u‖p

p

)
1
p ,

if 1 ≤ p < +∞.

It is worth noting that

W 1,p(Ω) →֒ L2(Ω) ⇐⇒ p ≥ p0 :=
2n

n + 2
.

Proposition 2.1. (See [4] )
The trace operator W 1,p(Ω) → Lq(∂Ω, ρ) is continuous if and only if 1 ≤ q ≤ p∂ if p 6= n and for
1 ≤ q < ∞ if p = n. Especially for q = 2, the trace operator is well-defined and continuous under the
following condition:

W 1,p(Ω) → L2(∂Ω, ρ) ⇐⇒ p ≥ p1 :=
2n

n + 1
.

Let us introduce some functionals and sets as follows

X =
{

u ∈ W 1,p(Ω) | F (u) > 0, E(u) < d
}

∪ {0},

where
F (u) = ‖u‖p

1,p − λ‖u‖2+q
2+q,∂Ω,

Eδ(u) =
δ

p
‖u‖p

1,p −
λ

2 + q
‖u‖2+q

2+q,∂Ω, ∀δ ∈ (0, 1),

Xδ =
{

u ∈ W 1,p(Ω) | Eδ(u) ≥ 0, E(u) ≤ d(δ)
}

,

Yδ =
{

u ∈ W 1,p(Ω) | Eδ(u) < 0, E(u) < d(δ)
}

, ∀ 0 < δ < 1,

Y δ = Yδ ∪ ∂Yδ =
{

u ∈ W 1,p(Ω) | Eδ(u) ≤ 0, E(u) ≤ d(δ)
}

,

Y =
{

u ∈ W 1,p(Ω) | F (u) < 0, E(u) < d
}

,

Bδ =

{

u ∈ W 1,p(Ω) | ‖u‖1,p ≤

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

}

,

Bc
δ =

{

u ∈ W 1,p(Ω) | ‖u‖1,p >

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

}

.

We end this section with the definition of the weak solution of problem (1.1)

Definition 2.2. A function

u ∈ L∞
(

0, T ; W 1,p(Ω)
)

∩ C (0, T ; Lp (Ω) × Lp (∂Ω, ρ))

with ut ∈ L2
(

0, T ; L2 (Ω)
)

, is said to be a weak solution of problem (1.1) on Ω × (0, T ) if

1. 〈ut, v〉 + 〈|u|p−2u, v〉 + 〈|∇u|p−2∇u, ∇v〉 = λ〈|u|qu, v〉0, for all v ∈ W 1,p(Ω) and a.e. t ∈ (0, T ];

2. u(x, 0) = u0(x) in W 1,p(Ω).

3. Proof of Main Results

3.1. Proof of Theorem 1.1

First, we give some results which will be used to prove the main result.

Lemma 3.1. As a function of δ, d(δ) satisfies the following properties on [0, 1].

1. d(0) = d(1) = 0;
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2. d(δ) is increasing for 0 ≤ δ ≤ δ0, decreasing for δ0 ≤ δ ≤ 1, and takes the maximum d (δ0) at
δ0 = p

2+q
;

3. The equation d(δ) = e has two roots δ1 ∈ (0, δ0) and δ2 ∈ (δ0, 1) , for any given e ∈ (0, d (δ0)).

Proof. This lemma follows directly from

d′(δ) =
−1

p

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p

+
(2 + q) (1 − δ)

(2 + q − p) λpC
2+q
∗

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p
−1

=
1

p

(

2 + q

λpC
2+q
∗

)

p

2+q−p

δ
p

2+q−p

(

p

2 + q − p
·

1 − δ

δ
− 1

)

=
1

2 + q − p

(

2 + q

λpC
2+q
∗

)

p

2+q−p

δ
p

2+q−p

(

1

δ
−

2 + q

p

)

.

�

Proposition 3.2. If u ∈ W 1,p(Ω), ‖u‖1,p 6= 0 and Eδ(u) = 0, then d(δ) = inf E(u). Moreover,
d = d (δ0) .

Proof. By (1.4) and Eδ(u) = 0, we obtain

2 + q

λp
δ‖u‖p

1,p = ‖u‖2+q
2+q,∂Ω ≤ C2+q

∗ ‖u‖2+q−p
1,p ‖u‖p

1,p,

consequently, if ‖u‖1,p 6= 0, we get

‖u‖1,p ≥

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p

,

which along with

E(u) =
1 − δ

p
‖u‖p

1,p + Eδ(u) =
1 − δ

p
‖u‖p

1,p,

gives

E(u) ≥
1 − δ

p

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p

= d(δ).

These give the conclusion of first assertion.
On the other hand, note that

1

2 + q
F (u) =

(

1

2 + q
−

δ

p

)

‖u‖p
1,p + Eδ(u).

From (ii) in Lemma (3.1) we have Eδ0
(u) = 0 if and only if F (u) = 0. In view of Liu and Zhao [ [14],

Theorem 2.1], the depth of potential well given by (1.2) can be characterized as d = inf E(u) subject to
the conditions u ∈ W 1,p(Ω), ‖u‖1,p 6= 0 and F (u) = 0. Hence, from the first conclusion of Proposition
(3.2), we obtain d = d (δ0) . �

Lemma 3.3. Assume that 0 < E(u) < d for some u ∈ W 1,p(Ω), and δ1 < δ2 are the two roots of
equation d(δ) = E(u). Then the sign of Eδ(u) does not change for δ1 < δ < δ2.
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Proof. Arguing by contradiction, we suppose that the sign of Eδ(u) is changeable for δ1 < δ < δ2, thus
there exists a δ∗ ∈ (δ1, δ2) such that Eδ∗(u) = 0. On the other hand, E(u) > 0 implies ‖u‖1,p 6= 0.
Combining Theorem (1.3) and Lemma (3.1) we obtain

E(u) ≥ d (δ∗) > d (δ1) = d (δ2) ,

which contradicts E(u) = d (δ1) = d (δ2) . �

Corollary 3.4. Assume that 0 < E(u) < d for some u ∈ H1(Ω), and δ1 < δ2 are the two roots
of equation d(δ) = E(u). Then Eδ(u) > 0 ( or < 0) for all δ ∈ (δ1, δ2) if and only if there exists a
δ̄ ∈ [δ1, δ2] such that Eδ̄(u) > 0 ( or < 0).

Proof of Theorcm 1.1. We start by constructing a sequence such that its limit equal to the solution
in (1.1). Let

{

ϕj(x)
}∞

j=1
be a system of base functions in W 1,p (Ω), define the approximate solution to

(1.1) as follows:

um(x, t) =
m

∑

j=1

fjm(t)ϕj(x), m = 1, 2, . . .

satisfying

〈umt, ϕs〉 + 〈|um|p−2um, ϕs〉 + 〈|∇um|p−2∇um, ∇ϕs〉 = λ〈|um|qum, ϕs〉0 , 1 ≤ s ≤ m, (3.1)

um(0) =

m
∑

j=1

fjm(0)ϕj(x) → u0(x) in W 1,p(Ω). (3.2)

Multiplying (3.1) by f ′
sm(t), summing for s and integrating with respect to t, we get

∫ t

0

‖umτ (τ )‖2 dτ + E (um(t)) = E (um(0)) , ∀t ∈ [0, ∞). (3.3)

Next, if 0 < E (u0) < d and Eδ2
(u0) > 0, then by Corollary (3.4) we have Eδ (u0) > 0 and E (u0) < d(δ)

for all δ ∈ (δ1, δ2), consequently u0(x) ∈ Xδ for all δ ∈ (δ1, δ2). For any fixed δ ∈ (δ1, δ2), we get
um(0) ∈ Xδ for sufficiently large m.
Next, we prove that

um(t) ∈ Xδ (3.4)

for sufficiently large m and t ∈ [0, ∞).
Arguing by contradiction, we assume that there exist a t0 > 0 such that um (t0) ∈ ∂Xδ, i.e., Eδ (um (t0)) =
0 and ‖um (t0)‖1,p 6= 0 or E (um (t0)) = d(δ). By (3.3) we obtain

E (um(t)) ≤ E (um(0)) < d(δ), ∀t ∈ [0, ∞). (3.5)

From (3.5) we can see that E (um (t0)) 6= d(δ). If Eδ (um (t0)) = 0 and ‖um (t0)‖1,p 6= 0, then it follows
from Proposition (3.2) that Eδ (um (t0)) ≥ d(δ), which contradicts (3.5). Thus assertion (3.4) follows as
desired.
From (3.3), (3.4) and

E (um(t)) =
1 − δ

p
‖um(t)‖p

1,p + Eδ (um(t))

we see that
∫ t

0

‖umτ ‖2 dτ < d(δ),

and

‖um(t)‖1,p <

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

.



Global Existence and Blow-up of Solutions for a Class of Steklov Parabolic Problems 7

Then

‖ |um(t)|p−2um(t) ‖s
s = ‖um(t)‖p

p <

(

2 + q

λpC
2+q
∗

δ

)

p

2+q−p

, s =
p

p − 1
, 0 ≤ t < ∞.

Moreover, from (1.4) we deduce

‖um(t)‖q+2,∂Ω ≤ C∗‖um(t)‖1,p <

(

2 + q

λpC
p
∗

δ

)
1

2+q−p

,

thus

‖ |um(t)|qum(t) ‖r
r,∂Ω = ‖um(t)‖q+2

q+2,∂Ω <

(

2 + q

λpC
p
∗

δ

)

q+2
2+q−p

, r =
q + 2

q + 1
, 0 ≤ t < ∞,

for sufficiently large m and t ∈ [0, ∞).
Then, there exist a u and subsequence {uv} of {um} such that as v → ∞,

uv → u weakly star in L∞
(

0, ∞; W 1,p(Ω)
)

,

uvt → ut weakly in L2
(

0, ∞; L2(Ω)
)

,

|uv|p−2uv → |u|p−2u weakly star in L∞ (0, ∞; Ls(Ω)) ,

|uv|quv → |u|qu weakly star in L∞ (0, ∞; Lr(Ω) × Lr (∂Ω, ρ)) .

Hence, for fixed s, taking m = v → ∞ in (3.1), we obtain

〈ut, ϕs〉 + 〈|u|p−2u, ϕs〉 + 〈|∇u|p−2∇u, ∇ϕs〉 = λ〈|u|qu, ϕs〉0.

Furthermore, by (3.2) we get u(x, 0) = u0(x) in W 1,p(Ω). Then, problem (1.1) admits a global solution
u(t) ∈ L∞

(

0, ∞; W 1,p(Ω)
)

∩ C (0, ∞; Lp (Ω) × Lp (∂Ω, ρ)) with ut(t) ∈ L2
(

0, ∞; L2(Ω)
)

and u(t) ∈ Xδ

for all t ∈ [0, ∞). Since δ is arbitrary, then u(t) ∈ Xδ for all δ ∈ (δ1, δ2) and t ∈ [0, ∞).

3.2. Proof of Theorem 1.2

To derive the Theorem (1.2) we need the following results.

Lemma 3.5. If E(u) ≤ d(δ), then

1. Eδ(u) > 0 if and only if

0 < ‖u‖1,p <

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

; (3.6)

2. Eδ(u) < 0 if and only if

‖u‖1,p >

(

2 + q

λpC
2+q
∗

δ

)
1

2+q−p

. (3.7)

Proof. 1. If (3.6) holds, then we have

‖u‖2+q
2+q,∂Ω ≤ C2+q

∗ ‖u‖2+q
1,p = C2+q

∗ ‖u‖2+q−p
1,p ‖u‖p

1,p <
2 + q

λp
δ‖u‖p

1,p.

Consequently, Eδ(u) > 0.
If Eδ(u) > 0, then ‖u‖1,p > 0. Thus, from

E(u) =
1 − δ

p
‖u‖p

1,p + Eδ(u) ≤ d(δ) (3.8)

we get (3.6).
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2. It is easy to see ‖u‖1,p 6= 0 from Eδ(u) < 0. Hence, by

2 + q

λp
δ‖u‖p

1,p < ‖u‖2+q
2+q,∂Ω ≤ C2+q

∗ ‖u‖2+q−p
1,p ‖u‖p

1,p

we obtain (3.7).
Combining (3.7) and (3.8) we obtain Eδ(u) < 0.

�

Proposition 3.6. If E(u) ≤ d(δ), then Xδ ⊂ Bδ and Yδ ⊂ Bc
δ .

Proof. This Theorem follows from Lemma (3.5). �

Corollary 3.7. Assume that E(u) ≤ d(δ). Then,

1. u ∈ Xδ if and only if u ∈ Bδ ;

2. u ∈ Yδ if and only if u ∈ Bc
δ .

Proof. The conclusions of Corollary (3.7) can be derived by a combination of Proposition (3.6) and
Lemma (3.5). �

Lemma 3.8. Let p, q satisfy (H), then the solutions given in Theorem (1.1) satisfy

∫ t

0

‖uτ (τ )‖
2

dτ + E(u(t)) ≤ E (u0) , ∀t ∈ [0, ∞). (3.9)

Proof. The proof of this lemma follows from the arguments similar to the proof of [ [14], Lemma 2.8]. �

Corollary 3.9. Let u0(x) ∈ W 1,p(Ω), p and q satisfy (H). Assume that 0 < e < d and δ1 < δ2 are the
two roots of equation d(δ) = e. Then,

1. Solutions of problem (1.1) with 0 < E (u0) ≤ e belong to Xδ1 , provided F (u0) > 0;

2. Solutions of problem (1.1) with 0 < E (u0) ≤ e belong to Y δ2
, provided F (u0) < 0.

Proof. Let u(t) be any solution of problem (1.1) with 0 < E (u0) ≤ e, and T be the maximum existence
time of u(t). By (3.9) we get E(u) ≤ d (δ1) = d (δ2). For fixed t ∈ [0, T ), taking δ → δ1 (δ → δ2) in
Eδ(u) > 0 (Eδ(u) < 0), we obtain Eδ1

(u) ≥ 0 (Eδ2
(u) ≤ 0) for all t ∈ [0, T ). This shows the conclusions

of the corollary (3.9). �

Proof of Theorcm 1.2.

1. If u0 (x) ∈ Bδ0
, then

‖u0‖ <

(

2 + q

λpC
2+q
∗

δ0

)
1

2+q−p

,

it follows from Lemma (3.5) that Eδ0
(u0) > 0, thus F (u0) > 0. Finally, from Corollaries (3.9) and

(3.7) we deduce that u ∈ Bδ1
.

2. By a similar argument as above, we can prove that if u0(x) ∈ Bc
δ0

, then the solutions of problem
(1.1) with initial condition 0 < E (u0) ≤ e lie in Bc

δ2
∪ ∂Bδ2 .
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3.3. Proof of Theorem 1.3

1. Let u(t) be any solution of problem (1.1) and T be the maximum existence time of u(t). Next we
schow T < ∞. Arguing by contradiction, we suppose that T = ∞.
Set

H(t) =
1

2

∫ t

0

‖u‖2 dτ.

Then

H ′(t) =
1

2
‖u‖2,

and
H ′′(t) = 〈u, ut〉 = −F (u). (3.10)

By (3.9) and

E (u) =
2 + q − p

p (2 + q)
‖u‖p

1,p +
1

2 + q
F (u) , (3.11)

we obtain

F (u) ≤ −
2 + q − p

p
‖u‖p

1,p + (2 + q)E (u0) − (2 + q)

∫ t

0

‖uτ ‖
2

dτ .

Now, from (3.10), we can write

H ′′(t) ≥
2 + q − p

p
‖u‖p

1,p − (2 + q)E (u0) + (2 + q)

∫ t

0

‖uτ ‖
2

dτ. (3.12)

Next, we show that

H ′′(t) ≥ (2 + q)

∫ t

0

‖uτ ‖2 dτ. (3.13)

To see this, we consider the following two cases.
Case 1. The case E (u0) ≤ 0.
Assertion (3.13) follows directly from (3.12).
Case 2. The case 0 < E (u0) < d.
By Eδ1

(u0) < 0 and Corollary (3.4) we get Eδ0
(u0) < 0. Note that E(u) ≤ E (u0) < d. Hence,

by recaling the definition of Yδ, we obtain u ∈ Yδ0
. Consequently, from (ii) in Corollary (3.7), we

obtain u ∈ Bc
δ0

, i.e.,

‖u‖1,p >

(

2 + q

λpC
2+q
∗

δ0

)
1

2+q−p

.

Which together with (ii) in Lemma (3.1) and Proposition (3.2), we can deduce

‖u‖p
1,p > C

−
(2+q)p

2+q−p

∗ =
(2 + q)p

2 + q − p
d >

(2 + q)p

2 + q − p
E (u0) .

Combining this with (3.12), thus assertion (3.13) follows as desired.
Next, from (3.13), there exists a t∗ > 0 such that H ′(t) ≥ H ′ (t∗) > 0 and H(t) ≥ H ′ (t∗) (t − t∗) +
H (t∗) for all t ∈ [t∗, ∞) . Consequently

lim
t→∞

H(t) = ∞. (3.14)

Combining (3.13) and the Cauchy-Schwarz inequality, we have

H(t)H ′′(t) ≥
2 + q

p

∫ t

0

‖u‖2 dτ

∫ t

0

‖uτ ‖
2

dτ

≥
2 + q

p

(
∫ t

0

〈u, uτ 〉dτ

)2

=
2 + q

p
(H ′(t) − H ′(0))

2
.
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Then there exists a α > 0 such that

H(t)H ′′(t) ≥ (1 + α)H ′(t)2.

For all t ∈ [t∗, ∞), consequently

(

H−α(t)
)′

= −
αH ′(t)

Hα+1(t)
< 0,

and
(

H−α(t)
)′′

= −
α

Hα+2(t)

[

H(t)H ′′(t) − (α + 1) (H ′(t))
2
]

≤ 0.

Therefore, H−α(t) > 0 is decreasing and concave on [t∗, ∞), which contradicts (3.14), then T < ∞.
Hence the conclusion of (i) holds.

2. First, we show that
Eδ0

(u) < 0, ∀t ∈ [0, ∞). (3.15)

Arguing by contradiction, we assume that there exist a first time t0 > 0 such that Eδ0
(u (t0)) = 0

and Eδ0
(u) < 0 for all t ∈ [0, t0). By (ii) in Lemmas (3.5) and (3.1), we can deduce

‖u‖p
1,p > C

−
(2+q)p

2+q−p

∗ , ∀t ∈ [0, t0)

which together with Proposition (3.2) gives

‖u‖p
1,p >

(2 + q)p

2 + q − p
d, ∀t ∈ [0, t0) ,

consequently

‖u (t0)‖p
1,p ≥

(2 + q)p

2 + q − p
d.

Which together with (3.11), we obtain

E (u (t0)) ≥ d. (3.16)

At the same time, by (3.10), we have 〈u, ut〉 > 0, which implies that
∫ t

0
‖uτ ‖

2
dτ is increasing in

time.
Consequently

∫ t0

0

‖uτ ‖
2

dτ > 0.

Combining this with (3.9) and E (u0) = d, we get

E (u (t0)) < d.

which contradicts (3.16), then assertion (3.15) holds.
For any t̃ > 0, let

d1 := d −

∫ t̃

0

‖ut‖
2

dt,

Thus
0 < E(u) ≤ d1 < d for all t ∈ [t̃, ∞),

which together with assertion (3.15) and (ii) in Corollary (3.9) gives

u ∈ Y δ̃2
for all t ∈ [t̃, ∞),

where δ̃1 < δ̃2 are two roots of equation d(δ) = d1.
Consequently

Eδ̃2
(u) ≤ 0 for all t ∈ [t̃, ∞).

We also obtain
Eδ̃1

(u) < 0 for all t ∈ [t̃, ∞).

From these and the argument in the proof for the case Case 2 in (i), we can obtain (ii).
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