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Weak and Renormalized Solutions for Anisotropic Neumann Problems with Degenerate
Coercivity
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ABSTRACT: In this work, we study the following quasilinear Neumann boundary-value problem

N
=57 DiaiCe,u, Va)) + a0 = fou Ve) i 9
=1
N
> ailw,u, V) - 1; = g(w) on 09,
i=1

where Q is a bounded open domain in IRY, (N > 2) and 7),; denotes the unit outward normal to Q. We prove
the existence of a weak solution for f € L°°(Q) and g € L°° () and the existence of renormalized solutions
for L'-data f and g. The functional setting involves anisotropic Sobolev spaces with constant exponents.

Key Words: Weak solutions, renormalized solutions, nonlinear elliptic problem, anisotropic Sobo-
lev spaces, Neumann boundary condition.
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1. Introduction

In the last few decades, one of the topics from the field of partial differential equations that has
continuously attracted interest has turned towards anisotropic elliptic equations. A special interest in
the study of such equations is motivated by their applications to the mathematical modeling of physical
and mechanical processes in anisotropic continuous medium. Much less is known about anisotropic elliptic
problems like problems with degenerate coercivity, for example let us cite only some recent works on this
field [1,2,8,12]. In [8], Boccardo et al. have studied some quasilinear elliptic problems with degenerate
coercivity of the type

—div(A(z,u)Vu) = f in Q,
u=>0 on 012,

where f is assumed to be a measurable function in L™(Q2) with m > 1, they have proved existence of
solutions under various assumptions on the datum f.

In [2] a more general problem than the one studied in [8] is handled: the authors prove existence of
solutions for the nonlinear and noncoercive elliptic problem

o VupPive
_le(W) = f m Q,

u=20 on 09,
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where f € L™(Q) and 0 < 6 < 1,.
On the other hand, in the framework of the Lorentz space we find that Guibé et al. have studied in [12]
a class of nonlinear and noncoercive elliptic problems whose prototype is

—Ayu — div(e()|u]Y) + b(2)|Vul* =p in Q,
u=0 in 09,

with u is a radon measure with bounded variation on €2. They have proved the existence of renormalized
solutions in the case 0 < v <p—1and 0 < XA < p— 1 with ¢(z) and b(x) belong to some appropriate
Lorentz spaces, (see also [14]).

Recently, Akdim et al. have studied in [1] the existence of entropy solutions to the obstacle problem
associated with the equation having degenerate coercivity, whose prototype is given by:

—div(b(ul) [Vl *Vu) + d(|u])|Vul” = f(z,u) i L,
u=0 in 09,
d(|.
where b(-) and d(-) are some positive decreasing function such that % € LY(Q) N L®(Q) and f(x,s)
satisfying some growth condition.
Our aim in this work is to prove the existence of renormalized solutions for the following quasilinear
anisotropic Neumann problem having a degenerate coercivity:

N
- ZDi(ai(x, u, Vu)) + |ulPo?u = f(z,u,Vu) in Q,
N (1.1)
Zai(x,u, Vu).n; =g(x) on 09,
i=1

where Q is a bounded open subset of IRY, (N > 2) with Lipschitz boundary 92, (ny,ns,...,ny) is the
outer unit normal vector on 99, g € L'(99Q), a;(z,u, Vu) is a non-coercive Leray Lions operator and
f(z,u, Vu) is a Carathéodory function which verify only some growth condition.

The main feature of our problem (1.1) is that we can not apply the standard Leray-Lions Theorem due
to the the absence of coercivity. Besides of this, we have the term of the right-hand side which has an
important influence in choosing py and thus we haven’t existence of weak solution. To overcome this
problem, we prove existence of weak solution in case where right hand side f(z,u, Vu) is assumed to be
in L>*(Q) and g € L>(09).

This paper is organized as follows : In section 2, we will present some definitions and properties of the
anisotropic Sobolev spaces. The section 3 is divided into two essential parts, in the first one, we present
assumptions under which our problem has at least one weak solution where g is assumed to be in L (99)
and | f(z,s,€)| < Cp for any € Q and (s,£) € IR x IRYN. In the second part of section 3, we will prove the
existence of renormalized solutions for our nonlinear and noncoercive problem in the case of g € L*(9Q)
and under some growth condition on the Carathéodory function f(x,s,&). We conclude this paper by
giving an example.

2. Preliminaries

Let © be an open bounded domain in IRY (N > 2), with smooth boundary 952.
Let p1,...,pn be N real constant numbers, with 1 < p; < oo fori=1,...,N.

We denote
ou

831‘1'

ﬁ: (Lpla"'va), and Dlu:

We set

p=min{p1,p2,...,pn} and  pt =max{pi,p2,...,pn}.

We define the anisotropic Sobolev space W7(Q) as follows :

WP(Q) = {ue WH(Q) such that Diue LPI(Q) for i=1,2,...,N},
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endowed with the norm
N

lallvp = lulla+ Y 1Dl o o) (2.1)

i=1

The space (W1P(€2), ]| - [l1,7) is a separable and reflexive Banach space (cf. [16]).
Let us recall the Poincaré and Sobolev type inequalities in the anisotropic Sobolev space.

Proposition 2.1. (¢f. [15])
Let u € WHP(Q), we have
(i) Poincaré Wirtinger inequality: there exists a constant C, > 0, such that
|u — med(u)|| e @) < Cp [ D'ull1ri(a) forany i=1,...,N.
with )
med(u) = —/ |u| dz.
9] Jo

(ii) Sobolev inequality : there exists an other constant Cs > 0, such that

N
s 0
Ju— meduw)y < 52 > o

)
pi

where N5
N _ p . _
1 1 1 =pF = —
::NZ_ and (=p'=5x5——= o P<N
p =1 Pi q € [1,+00] if p>N.

Lemma 2.2. (cf. [11]) Let Q be a bounded open set in RN (N > 2), we set

s = max(q, p*)

then, we have the following embedding :
e if p< N then the embedding W P(Q) < L"(Q) is compact for any r € [1, 5],
e if p= N then the embedding W1P(Q) < L"(Q) is compact for any r € [1,+oc],
o if D> N then the embedding W'P(Q) —— L>®(Q) N C°(Q) is compact.
The proof of this lemma follows from the Proposition 2.1.
Definition 2.3. Let k > 0, we consider the truncation function Ty(-) : R — IR, given by
s i lsl<k,
Tils) = { k= if |s| >k,
|s|
and we define
TLP(Q) := {u: Q — IR measurable, such that Ty(u) € WYP(Q) for any k > 0}.

Proposition 2.4. Let u € T“P(Q). For any i € {1,..., N}, there exists a unique measurable function
v; : Q= IR such that ‘
Vk >0 D'Ty(u) = vi- X{ju|<ky @€ TEQ,

where x 4 denotes the characteristic function of a measurable set A. The functions v; are called the weak
partial derivatives of u and are still denoted D'u. Moreover, zfu belongs to WH(Q), then v; coincides
with the standard distributional derivative of u, that is, v; = D*u.
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The proof of the Proposition 2.4 follows the usual techniques developed in [7] for the case of Sobolev
spaces. For more details concerning the anisotropic Sobolev spaces, we refer the reader to [4,6,9,10].

We introduce the set T/ (Q) as a subset of T47(€2) for which a generalized notion of trace may be defined
(see also [3] for the case of constant exponent). More precisely, T1,7(€2) is the set of function u in T17(Q),
such that : there exists a sequence (uy), in W?(Q) and a measurable function v on 9Q verifying

(a) up, — u a.e. in Q,
(b) DTy (un) — DTy (u) in LY(Q) for every k > 0.
(¢) up — v a.e. on IN.

The function v is the trace of u in the generalized sense introduced in [3].
Let u € WHP(Q), the trace of v on 0Q will be denoted by 7(u).

For any u € T57(€2), the trace of u on dQ will be denoted by tr(u) or u, the operator tr(-) satisfied the
following properties

(i) if u € TEP(Q), then 7(Ty(w)) = T (tr(u)) for any k > 0.
(ii) if o € WHP(Q), then, for any u € T.P(Q), we have u — ¢ € ToP(Q) and tr(u — @) = tr(u) — 7(¢).
In the case where u € W'P(Q), tr(u) coincides with 7(u). Obviously, we have

WLP(Q) C THP(Q) C TH(Q).
Lemma 2.5. (see [15], Theorem 13.47) Let (uy), be a sequence in L' () and u € L*(Q) such that
(i) un — u a.e. in Q,

(ii) up >0 andu >0 a.e. in Q,

(iii) / Uy dx — / udz,
Q Q
then u, — u in L1(£2).

3. Main results

Let ©Q be a bounded open subset of RY (N > 2), we assume that the vector 5 = (1,p1,...,pn)
satisfying the requirements that 1 <p; < oo fori=1,..., N, and let po > 1.
Let A be a Leray-Lions operator acted from Wy ?(Q) into its dual (W(Q))’, given by

N
Au = — Z Dia;(z,u, Vu)
i=1
where a; : Q x IR x RY — IR are Carathéodory functions, for i = 1,..., N, (measurable with respect

to z in Q for every (s,€) in IR x IRY, and continuous with respect to (s,€) in IR x IRY for almost every
x in Q) that satisfy the following conditions :

lai(z,s5,8)| < B(di(x) + |s[Pi~t 4 1€, P 71) for i=1,...,N, (3.1)

(ai(l‘, 875) - ai(xa 875/))(51 - f;) >0 for 51 7é f;v (32)

for almost every x € Q and all (s,&) in IR x IRY. The nonnegative functions d;(-) are assumed to be in
LPi(Q) for i =1,..., N, where 3 is a strictly positive real constant.

ai(z,5,€)& = b(|s|)|g;[* for i=1,...,N, (3-3)
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such that b(] - |) : IRt — IRT is a decreasing function that belongs to L'(R) N L*(R), and there exists a
positive constant by which verifying

bo
EER < b(|s]) for any s € IR. (3.4)

where 0 < A < pg — 1.
As a consequence of (3.2) and the continuity of the function a;(z, s,-) with respect to &, we have

ai(z,s,0) = 0.
We are going now to recall the following technical Lemma, useful to prove our main results.

Lemma 3.1. (see [5]) Assuming that (3.1) — (3.3) hold true, and let (un)nen be a sequence in WP (Q)
such that u, — u in WHP(Q) and

/ (T2 2t — (a2 %), — ) dx
Q

N (3.5)
—|—Z / (ai(x, upn, Vup) — ai(z, up, Vu))(D'up — D'u) dz — 0,
=1 Q
then u, — u in WHP(Q) for a subsequence.
3.1. Existence of weak solutions for L>*°—data
We consider the quasilinear anisotropic elliptic problem
N
- Z D'a;(z, Ty, (u), Vu) + [uP°~?u = F(z,u, Vu) on Q,
N (3.6)

Zai(x,u, Vu).n; = G(x) on 09,
i=1
with
G(z) € L™ (09) and |F(z,s,£)] < Co forany x€Q and (s,&) € Rx R", (3.7)
with Cy is a positive constant.

Definition 3.2. A measurable function u is called weak solution for the quasilinear anisotropic elliptic
equation (3.6), if u € WHP(Q), [uPe € LY(Q), and u verifies the following equality

N
Z/ai(x,Tn(u),Vu)Div dx—|—/ |u|Po~2uv dr = Gv da—|—/F(x,u,Vu)v dz, (3.8)
— Jo Q Q

o0
for every v € WLP(Q).

Theorem 3.3. Assuming that (3.1) — (3.4) and (3.7) hold true. Then, there exists at least one weak
solution for the quasilinear elliptic problem (3.6).

Proof of Theorem 3.3

Step 1: Approximate problem.
We consider the approximate problem :

N
, 1
- E Diai(x, Ty (), Viim) + | T (U ) [P0 Ton () + — |t |2 %t = F (2, U, Vi) in Q,
m
i=1

a;(x, Tn,(Um,), Vup).n; = G(x) on 01,
i=1
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We define the operators A, and H from W17(Q) into its dual (W'7(Q)) by

N
, 1
(Amu,v) = E /ai(x,Tn(u),Vu)Dlv dx—i—/ | Ty () [PO2 T (w)w dx—|—E/ |ul2™?uw de,
=179 Q Q

and

(Hu,v) = / F(z,u, Vu)v dx + G v do,
Q o0

for any u,v € WHP(Q).

Lemma 3.4. The operator By, = A,, — H acted from WYP(Q) into its dual (W1P(Q)), is bounded and
pseudo-monotone. Moreover, B, is coercive in the following sense

(Bmv,v)
|

Using the Holder’s inequality and the growth condition (3.1), we can show that the operator A,, is
bounded, and since

— 00 as  |v]l1y— o0 for veWHP(Q).

| < Hu,v > | z‘/F(x,u,Vu)vdx—F Gvda‘
Q

[5}9)

Fa.w. Vol [oldo+ [ (6] [o]do (3.10)

Q 20
< Collvlli) + G0 IVl L1 a0)
< Ci|lv|h,z for any u,v € WHP(Q).

We conclude that the operator B,, is bounded. For coercivity, we have

. 1
B u, u) Z/ ai(x, Ty ( Vu)Dludx—F/Q|Tm(u)|p°71|u| dx—|—E/Q|u|£dx

—/F(x,u,Vu)udx— G udo
Q

N o0
zz/mmww%

ull7 2
1+nAZ/|Dl P de + ——F—— - H — L Cyllury

> Callullf ;= Csllull5— Cs,

1
” da:—i——/ |u|£dx—00/ | dx—||GHLoo(ag)/a lu| do
Q Q

thus we obtain that

P
(Bru,u) _ Csllully ;= Collullx

lulliz — llull1,5

¥

— +oo as |lulj1z— oo

It remains to show that By, is pseudo-monotone. Let (u;)renw be a sequence in W1P(€2) such that

Up — U in Wl’ﬁ(Q)v
B = X,, 0 (W'P(Q)), (3.11)
lim sup (B uk, uk) < (Xpp, U)-

k— o0

We will show that

m = Bmu and (Bpnuk,ug) — (X, u) as k — 4oo.
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In view of the compact embedding W17(Q) << L2(Q) and WP (Q) << L(0Q), then there exists a
subsequence still denoted (uy)ren+ such that uy — u in LE(Q) and ug — u in L1(9Q).

As (ug)ken is a bounded sequence in W1P(Q), using the growth condition (3.1), it’s clear that the
sequence (a;(x, T, (ur), Vur) ke~ is bounded in LP(£2), and there exists a measurable function ¢; €
LPi () such that

ai(z, Ty (ug), Vug) — ¢, weakly in  LPi(Q) as k — . (3.12)
Similarly, since (F'(x, uk, Vug))rew+ is bounded in LY (Q), then there exists a function 1 € Y (), such

that
F(z,up, Vug) = weakly in L2 (Q). (3.13)

Moreover, since uy, — u a.e. in €2, and in view of Lebesgue dominated convergence theorem, it follows
that
| Ty (g ) [P0 ™2 T () — [T () [P0~ 2 T () strongly in L2 (), (3.14)

and

1 1 /
—|u 2 2up — —|ulE%u strongly in L2 (Q). (3.15)
m m

Thus, for any v € WP(Q) we have

(Xm,v) = lim (B, ug,v)

k—o00
N
= lim Z/ ai(x, Tp(ur), Vup) D' dz + lim / | Ty (ur ) [P0~ 2 T, (g )v dex
k—o0 o Q k—o00 Q
1
. = p—2 T T
+klir{:om‘/gl|uk| upv de khl& QF(x,uk,Vuk)vdx klirgo 8QGvala (3.16)
N

) 1
= Z ; D'vdx + / | T, (w) [P0~ 2T, (u)v dx + — / |ul2™?uv da
Q Q m Jjo

i=1

- / Yudr — Gv do.
Q oQ

By relations (3.11) and (3.16), we conclude that

lim sup(By, (ux), ux) = limsup (/ ai(x,Tn(uk),Vuk)Diuk dx +/ |Tm(uk)|p0*1|uk| dxz
Q Q

k—o0 k—o00

1
+—/ |uk|£dx—/F(x,uk,Vuk)uk dx — lim G uy da)
mJo Q

N
) B 1
SZ/QtpiDudx—F/Q|Tm(u)|p0 ol dm—i—ﬁ/g|u|3dx
i=1

— / Yu dr — Gu do.
Q o0

(3.17)

Thanks to (3.13) — (3.15) we have

1 1
/|Tm(uk)|p0*1|uk|dx+—/ |uk|2dx—>/ |Tm(u)|p0*1|u|dx+—/ |u|2dx as k— 00, (3.18)
Q m Jo Q m Jo

and
/F(x,uk,Vuk)uk dr — / Yu dx as  k — oo, (3.19)
Q Q

and since G € L*(992) then

/ G up do — Gu do as k — oo. (3.20)
19) 19)
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It follows that

N N
limsupZ/ ai(x, Tn(ug), Vug)Diuy do < Z/ @; Diudz. (3.21)
k—oc0 i—1 Q i=1 Q
On the other hand, by condition (3.3), we have
N . .
Z/ (ai(z, Ty (ug), Vug) — ai(x, Tn(ur), Vu))(D'up, — D*u) dx > 0, (3.22)
Q

=1

then

] =

N
Z/ a;i(x, Ty (ur), Vug)D'ug dz - >
Q -

=1 7

/ai(x,Tn(uk),Vuk)Diudx
Q

1

+ / ai(z, Ty (ur), Vu)(Diuy, — D'u) da.
Q

M-

Using Lebesgue’s dominated convergence theorem we have T, (ug) — Tp(u) in LPi(Q), thus
ai(x, Tp(uk), Vu) = a;(z, T, (u), Vu) strongly in LPi(Q), and using (3.12) we get

k—oo 4

N N
limian/ ai(x, Ty (ug), Vug) Diuy, da > Z/ ¢; D'udz. (3.23)
=179 =179

Having in mind (3.21), we conclude that
N N
i : ’ = . D'u dx. 24
klin;c);/ﬂal(x,Tn(uk),Vuk)D uy, dz ; Q% D*u dx (3.24)
Therefore, having in mind (3.18), (3.19) and (3.20) we obtain
(Bmug, ug) — (Xm,u) as k — oo. (3.25)

On the other hand, thanks to (3.24) we can show that
N

lim Z /Q(ai(x, T (ur), Vug) — ai(z, Ty (ur,), Vu) ) (D'uy — D'u) dz = 0.

k—o0 4
=1

We have up, — u strongly in L2(9), it follows that
/ (T[22t — 220 11, — 1)
. ' | (3.26)
+ Z/ a;(x, Tp(uk), Vug) — a;(x, Tn(ug), Vu)(D'uy, — D'u) dz — 0.
=179
According to Lemma 3.1, we get
up —u in WHP(Q) and D'up, — D'u ae. in Q.
Thanks to (3.1) and (3.7) and the convergence almost everywhere, we conclude that
ai(x, Tp(ug), Vug) = ai(z, Tp(u), Vu) in LPiQ) for i=1,...,N

and /
F(z,ug, Vug) = F(z,u,Vu) in L2 (Q),

according to (3.14) and (3.15), we obtain ¥,, = B,u and the proof of Lemma 3.4 is complete.
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By Lemma 3.4, there exists at least one weak solution u,, € W17(Q) of the problem (3.9), i.e

Z/ale Um,) VumDvdx+/|T ) [P0 2T (U )0 diz
(3.27)
+—/ [t |2 umvdxz/Fx,um,Vum)vdx—i— G vdo,
m Jjo Q o0
for any v € W1P(Q), we refer the reader to (cf. [15], Theorem 8.2).
Step 2: Weak convergence of the sequence (Um)m
By using u,, € WP(Q) as a test function for the approximate problem (3.9), we have
Z/ale (Um), VumDumdx+/|T )P |dx+—/|um|pdx
(3.28)
= / F(x, um, Vg, )ty do + G uy, do.
Q o0
From (3.3) and (3.7), we obtain
Z/ (1T () ) | Dty P dx+/ [T ()P [ty |dx—|——/ |t |2 daz
/ (@, s Vit )| |um|dx+/ 1G(2)| || do
o0
< Co [ fun|do+ |Gllieiey [ Junldo (3.29)
Q a0

< Chl|luml1,1
N
=C /um dr + /Dium dx |,
(] fonl > [ 1o )

with C is a constant that doesn’t depend on m and n. We set 0 < b,, = |H‘1i<n b(s), thanks to Young’s
s|<n

inequality we get

N .
bn;/ﬂ|Du

m|P dx —|—/ |t [P dz + mpo_l/ |t | daz
{lun|<m} {lun|>m}

) y N (3.30)
<O+ —/ [t PO d + C4 / [t | d + — Z/ | Dty |P* dix.
2 Jjun) <m} {lun|>m} 2 Ja
po—1
By taking m > 1 large enough <for example > Cl> , we conclude that
by o 1
> ;/ﬂ | D |P* da + 3 /Q [t | dx
N
by, , 1 po—1 (3.31)
S—Z/ | D"ty [P dx—|——/ [ [P0 do + 2 / |tm| dx 4+ Cs
25 Ja 2 Jjun) <m} 2 Junl>my
< Cy.
Hence
N .
lumllng = lumlig + Y 1D uml rs )
i=1
(3.32)

N
< | L1 ) + CsZ/ | Divyn P dae
i=1 7

S Cﬁa
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with Cg is a constant that doesn’t depend on m. Thus, the sequence (u,)n, is uniformly bounded in
WLP(Q), and there exists a subsequence still denoted (u, )., such that

U — U weakly in W1HP(Q),
Um, — U strongly in LE(Q) and a.e. in €, (3.33)
Um, —> U strongly in  L'(0Q) and a.e. in 0.

It follows that 1
E|um|£72um —0 strongly in L2 (). (3.34)

Moreover, in view of (3.29) and (3.32) we conclude that (T3, (%m))m is bounded in LPo(2), and since
T () — u almost everywhere in 2, we deduce that

T (tm) = u  weakly in  LP°(Q). (3.35)

Step 8 : The convergence almost everywhere of the gradient.
By taking u,, — u as a test function in the approximated problem (3.9) we obtain

Z/ ai(z, Ty (Um )y Vi) (Dt — D'u dx—i—/ | T () [P0 2 T () (i, — ) da
(3.36)
—/ |um|3 U (U, — ) dx = / F(x, um, Vi ) (U — u) de + Gt —u) do,
mJa Q a0
it follows that
N
Z/ (ai(x, Ty (tm), Vr) — ai(, Tn(tm), V) (D't — D'u) da
i=1 7%
+/ (1T (i ) [P T () — |Ton () PO T (1)) (i, — w) e
Q (3.37)

<Z/|ale(um) V)| |Dum—Dlu|dx+/|T )P~ — ul da
—/ [ 27 |ty — 4] dx—i—/ |F(x, U,y V)| [um — ul dx—i—/ |G| |tm — u| do.
Q o9
For the first term on the right-hand side of (3.37), we have T}, (u,,) — Ty, (u) strongly in LPi () then
|ai (2, Ty (), Vo) — |ai(z, T, (u), Vu)|  strongly in  LPi(Q),
and since D'u,, — D'u weakly in LP:(Q), we can write
/Q|ai(x,Tn(um),Vu)| | DUy, — D'u| dz — 0 forany i=1,...,N. (3.38)
Concerning the second and third terms on the right-hand side of (3.37), by (3.33) and (3.34), we have
/Q | Ty (0)|P° ™Y |ty — u| dz — 0 as m — 00, (3.39)

and )
—/ [t |20 |ty — u| dz — 0 as m — o0. (3.40)
mJja

For the two last terms on the right-hand side of (3.37). The sequence (F(x, U, Vim))m is bounded in
LZ () then there exists a measurable function ¢ € L2 (2) such that

F(2,tm, Vi) — ¢ weaklyin L2 (Q),
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and since u,, — u strongly in L2(Q), it follows that
/Q |F (2, U, V)| [tm —u|de — 0 as  m — oo. (3.41)
Also, we have G € L>(99) and u,, — u strongly in L'(9Q), then
/BQ|G| [thy, — u| do — 0 as  m — oo. (3.42)

By combining (3.37) and (3.39) — (3.42), it follows that
N
Z/ (ai (2, T (tm), Vi) — ai(x, Ty (tm), V1)) (D*ty, — D'u) de — 0 as m — oo (3.43)
i=17%

and since u,, — u in LE(Q). Thus, applying Lemma 3.1, we obtain

{ Uy — U strongly in ~ W1P(Q), (3.44)

Diu,, — D'u ae.in Q for i=1,...,N.

We conclude that a;(x, T, (un), Vi) — a;(x, Tn(u), Vu) and F(x, U, Vi) — F(z,u, Vu) almost
everywhere in €2, hence

ai(z, Tn(tum), Vi) = ai(z, Ty (u), Vu) weakly in  LP/(Q) for i=1,...,N. (3.45)

F(x,um, V) = F(z,u, Vu) weakly in LE,(Q). (3.46)
Thanks to (3.9), we have for any v € WHP(Q)

N
Z/ai(x,Tn(um),Vum)Div dx—i—/ | T () [P0 ™2 Ty ()0 da
i=1 /% Q

] (3.47)
+—= / |t |2 20 d = / F(z, U, VU )v ds + G vdo.
m.Jja Q o0
In view of (3.34), (3.35) and (3.45) — (3.46), by letting m tends to infinity we conclude that
N .
Z/ ai(z, T, (u), Vu) D" dx +/ |u|Po 2 uw do = / F(x,u, Vu)v dx + G v do. (3.48)
- Ja Q Q a0
This concludes the proof of theorem 3.3.
3.2. Existence of renormalized solutions for L'—data
Let Q be a bounded open subset of RN (N > 2). We set
i(2+A) — g ‘
po>w>1 and 0<qg <pi—1 for i=0,1,...,N.
Pi — qi
Now, we consider the quasilinear anisotropic elliptic problem
Au+ |ulPo~?u = f(x,u,Vu) on Q,
al (3.49)

Z ai(z,u, Vu).n; = g(x) in o9,

=1

where the term on the right-hand side f(z, s, £) is a Carathéodory function which verify only the following
growth condition :

N
|f (@, 5,6)] < |fol@)] + co)]s|™ + Y cil@)|&], (3.50)
=1
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for a.e. x € Q and any (s,€) € IR x RN, with fy is assumed to be in L'(£2), such that ¢y € me—g—q_ol—l(Q)
and

pi(po — 1)
(po — 1)(pi — @) —pi(A+1)

where the data g(-) is assumed to be in L!(99).

c; €L (Q) with ri >

Definition 3.5. A measurable function u is called renormalized solution for the quasilinear anisotropic
elliptic equation (3.49), If u € TLP(Q), |ulP°~2u € LY(Q), f(z,u, Vu) € L*(Q), and

N
lim — / a;i(z,u, Vu)D'u dx = 0, (3.51)
i—1 J{lul<h}
such that u verifies the following equality

N , . .
;/Qai(x,u, Vu)(S (w)eD'u+ S(u)Dp) dm—i—/ﬂ|u| 0~ %uS (u)p dx (3.5

— [ gSwedo+ [ fau TSy ds,
a0 Q
for every o € WHP(Q) N L>°(Q) and for any smooth function S(-) € W1>(Q) with a compact support.
The main result of this paper is to prove the following existence theorem.

Theorem 3.6. Assuming that (3.1) — (3.4) and (3.50) hold true. Then, there exists at least one renor-
malized solution for the noncoercive quasilinear elliptic problem (3.49).

In the next sections, we denote by Cy, C1, Cs, ... some real constants that doesn’t depend on n and

k.

Proof of Theorem 3.6

Step 1: Approximate problem.
Let g, be a bounded sequence in L>(92) N L'(99Q) (for example g, = T},(g)), such that

gn — g strongly in  L*(99).

We consider the approximate problem :

N
- ZDiai(x, T (wn), V) + [un [P 2wy, = fo(@, up, Vuy,) in Q,
o (3.53)
Z ai(x, Tr(un), Vn).ng = gn(x) on 0,
i=1

with fo(z,,£) = Th(f(z,5,€)).

Using Theorem 3.3, there exists at least one weak solution w, € W7(2) of the problem (3.53), i.e.

N
Z/ai(x,Tn(un),Vun)Divdx—F/ |un|p°_2unvdx:/fn(x,un,Vun)v dm—l—/ gn vdo, (3.54)
— Jo Q Q an

for any v € WHP(Q), such that |u,| € LP ().
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Step 2: Weak convergence of truncations.
Let k£ > 1, and choosing 1 < § small enough such that
pil+0+X)—a pi(po — 1)

po > and <r; for i=1,...,N.
0 pi— i (po — V)(pi — qi) — pi(A+9)

s 1
We set H(s :/ ——d7 then 0 < H(00) < 0.
O T >

By taking ¢(u,) = Th(un)(1 + |Th(un)|) e (%) as a test function for the approximate problem (3.53),
we have

N
Z/ ai(x, T (tn), Vun) D o(uy,) dx—i—/ |t [P0~ 2upnip(uy,) da
=17 Q@

— (3.55)
= / fn(xa Un, Vun)@(un) dx + / gn(x)QO(un) dzx,
Q o0

it follows that
N
/ a5(@, T (1), Vi) Dt (1 + [T (1)) e 12D s
{lun|<k}

N
+>\Z/ 01(@, T (1), Vi) Dt (1 4 [T (1) )= [T (1) | 72D i
{lun|<k}

| Te (un) [+ 1Tk (un) DY prpun)
—l—Z/ ai(x, T (un), Vug) D uy, A5 o)) e dx

/IunIPO U T (un) (1 + [T (un) ) e 0n D) e

= | Fn(@y i, Veun) Ti(un) (1 + [T (up) )20 da + / 9 ()T () (1 + [T (un) ) e Do

Q o0
(3.56)
By (3.4), we have

bOZ/ | D T ()P dar + )\bOZ/ D T(un)l™ (o g
= Jlual<k} — ) tfun<iy (L+ [Tk(un))

N
3 [ s Tulun). Tu) D't T (14 T3 0)]) o

+/Q [tn [P | T ()| (1 + [T () ) dax

< el /Q | fo (@) T (wn)|(1 + [T (wn) ) da + 1) /Q 0o ()t || Th ()| (1 + [ Th ()] v

N
DY /Q ()] Dt T 1) | (1 + [T () i+ €7) /ag 190 (@)] [T (1)1 + [T (1)) do,

(3.57)
we obtain
% i

b / DT (up)|P* dx + b / - |Ti(u,)dx
°Z ey 0 02 sy 17 TG P

|Du pi Tk un)| A / —1 A

— (1 Ti(uy, n|PO Tr(u,)|(1 T (uy,
+boZ/ T e L T e [l T+ T e

< k(L + RN foll ) + gl oey) + e /Q o (@) | | T (un) | (1 + |Ti (un) ) da

N
1093 [ @)D Tulun)] (1 + [Te(un)]) d
i=1"9
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By the Young inequality, we get

M) / 0 () ] % [T (1) (1 + [T (1))
Q
po—1 ]. _
< Co / o) |2 [T (1 + [T () ) i + 2 / ot T 1) (1 + [T ()
Q

< Crk(1+ k) /|u [P T (un) | (1 + | T (un) ) der.

Moreover, we have

qi

T () (1 + |Ti () e

fj / (@) D',

21049) | Dy |9 [T ()| (1 + [T (1))
_Z/CZ Y1+ Jup|)” P PHEEES) dx
(1 + lun])” 7

<C?Z/ () 7 (1 [ ) 5500 |1+ T ()])

+b° Z / Dy )1+ [Ti )

(1 + [un )2+

pi(po—1) A
coy / e4(a)] T 257720 (T ()| (1 + [T ) |)
i Q
[
P / ot P T )| (L [T (1)) e

b Dtu,,
+ OZ/ 1|+|u || A+5|Tk(un)|(l+|Tk(un)|))‘ dz + Cyk(1 + k).

By combining (3.58) — (3.60), we conclude that

N

| DT (u) [P
b / DT () [P daz + N / e T
OZ {|un|<k} OZ Qunl<ky (L [Th(un)l)
D P T (1t ]
Z 'f‘—’zi)'uﬂmuw ot 5 [ funl ™ T 0+ i) i
(1+] 4 Ja
SCsk(l-i—k) ,

with Cj5 is a positive constant non depending on k and n, it follows that
N .
Z/ | DT, (un) |P? da < Cok(1 + k).
Q

Moreover, we have

N .

| Dy [P -1
S o T unfP? ™ do < O
i=1 {lun|>k} n {lun|>k}

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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On the one hand, we have

N
1T (un)llip = [Tk(un)ll11 + Z D" Tk (un)

/|Tk un|dx—|—2/|DTk un|dx—|—2(/|DTk n)
Sk.meaS(Q)+2Z/|DiTk(u
i=1 79

< Cgk(1 + k).

1

pi dm) g

(3.64)

WP de + N+ N -0

Thus, the sequence (Tg(tp))nen- is uniformly bounded in W?(Q), and there exists a subsequence still
denoted (T (un))nen+ and vy € WHP(Q) such that

Tr(un) — vg weakly in W1P(Q), (3.65)

and by compact embedding, we obtain

Ti(un) — v in LY(Q) and ae. in Q. (3.66)
In view of (3.63), we have
k0 meas(jun| > k) < / (T () [P0~ d
[un|>k}
< |un|p071 dx (3.67)
{|un|>k}
S C7a

it follows that
meas({|un| > k}) <

< kP — 0 as k— oo. (3.68)

Now, we will show that (uy), is a Cauchy sequence in measure.
For all A > 0, we have

meas{|un — Um| > A} < meas{|un| > k} + meas{|u,,| > k} + meas{|Tx (un) — Tk (um)| > A}.
Let € > 0, using (3.68) we may choose k = k(e) large enough such that
meas{|u,| > k} < % and  meas{|um| > k} < % (3.69)

On the other hand, thanks to (3.66) we have Ty(u,) — vy in L'(Q) and a.e. in Q. Thus, we can
assume that (T (un))n is a Cauchy sequence in measure, and for all ¥ > 0 and €, A\ > 0, there exists
ng = no(k,e, ) such that

meas{|Tk(un) — Ti(um)] > A} < for all m,n > ng(k, e, A). (3.70)

Wl ™

Combining (3.69) — (3.70), we obtain
Ve, A >0 there exists ng =mno(e,A) such that meas{|u, — up| > A} <e

for any n,m > ng(e, A). It follows that (uy), is a Cauchy sequence in measure, then converges almost
everywhere, for a subsequence, to some measurable function u. Consequently, we have

Ti(uy) = Ti(u) weakly in  WHP(Q),
Ti(un) — Ti(u) strongly in L'(Q) and a.e. in Q, (3.71)
Ti(un) — Ti(u) strongly in L'(992) and a.e. in Q.
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Therefore, applying the Lebesgue dominated convergence theorem, we obtain

Tr(un) = Ti(w) in LPi(Q) and ae.in Q for i=1,...,N. (3.72)
Ty (un N
On the other hand, we have H k(ku ) L) — 0 as k tends to infinity, it follows necessary
HTk(un) ‘m C‘ T (un)
k—o0 L1(0Q) ~ k—oo k W1L1(Q)
N .
< = 7
- Ckhfc}o ‘ k LY(Q) +C hm Z Ll(Q)
< _— .
- Cklggo ‘ k L1(Q) +C hm Z HlHLp i(Q) LPi(Q)
Thus T
k(ku") — 0 weak —* in L>(0Q). (3.73)
Step 8 : Some regularity results.
In this step, we will show that
1N
lim i — (), Vu,) D'y, dz = 0. 3.74
im 17anH501ip N Z/un<h} Tn(u), Vuy,)D'u,, dz (3.74)

Ty (un 5 L :
By taking p(u,) = #em'“"') € WHP(Q) as a test function in the approximate problem (3.53) we

have
1 / I asz( n) Vin) H
- ai(z, Ty (un), Vi ) Diuy e 14D dey + = / Du, Ty, (uy, )e (IunD g
hz {lunl<h) (o Anlttn) V) Z (1 + Junl)?
n |u o2y, Th(“n) SH(unl) gy
/fn(x un,Vun)Th( n) H(lu’”")dx—l-%/ Gn ()T () e do,
E1o)
(3.75)
Thanks to (3.3), (3.4) and (3.50), we obtain
LN
— T (), Viy) Dl da
hz_:/{un<h}
Diu, _1|Th(un
Z/ o~ |5 )\|Th(un)|dx+/ [un [P0 1 in(n)| dz
(14 Jup )t Q h (3.76)
H(oo) et (o)
<o [ @I )l de+ S [ o)
eH(o0) eH (0)
i [ ool [T ()] do + Z [ I i)
From the Young inequality, and similarly as in (3.60), we deduce that
N
1 | Dy, [P / 1 [ Th (un)|
7 i aTn A% n nd T) n d pomt ———d
hz/{\un|<h}a(x (tn), Vium) D'nda + 3 Z/ (14 |un |5+,\| W) do [ lunl o
H(oo

<

/|f0 |Th(un)\dx+—/ (g ()] T ()] dor + <7 Z/ ()| TS0 | T ()

(14 |un|)

_Po—1 _ D’ Un
+}—L8/Q|co(x)\m*q0*1\Th(Un)\d~75+ /\unlp“ HTh (un ) de + o E:/ | ‘5+A|Th(“”)|dx
(3.77)
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It follows that

N

1 / ,
- ai(x, Tp(un), Vu,) D uydx
hz {lun|<h}
by | D, |Pi 1
0 n 1
— ——|Th(uy)| d — nPo T (uy)| d
+2hiz/ (1 + |un |)5+>\| h(n)| dz + 2h/Q|u | |Th (un)| dx (3.78)
eH (o) eH(o0) '
< [ 1@l o+ = [ g @IiTw) do
a0
p; (Po C. pg—1
4+ == Z/ |C1(33)| (po—l)(m—qri)—m(/\-ﬁ) |Th(un)|dx + -8 / |co(x)| Po—dq0—1 |Th(un)| dzx.
h i=17% h Ja
For the terms on the right-hand side, we have meas{|u,| > h} — 0 as h — oo then h(:n) -0
weak—x in L>°(Q), and since |fo| € L*(£2) then
/|f| iy 50 as h—s oo, (3.79)
_ pi(Po—1)
Moreover, we have |co|1“0p—0q01—1 € L*(Q) and |¢; ()] To— i -0 P OF € LY(£), it follows that
1 Th(up,
/ leo ()| 7o #dw —0 as h— oo, (3.80)
Q
and
D) T
Z/ |ci(z)| o= TS T h(h )d —0 as h— oo. (3.81)

T (un
Similarly, thanks to (3.73) we have Lhu)l — 0 weak—x* in L>°(99Q), and since g, — g in L'(9Q) we
obtain

T (un
/ |gn|de —0 as h— . (3.82)
o0 h

By combining (3.78) and (3.79) — (3.82), we conclude that

Jim hmsup / T (un), Vg ) Diupdz = 0. 3.83
Moreover, we have
N
lim limsup / —————dr=0. (3.84)
h—00  n—00 ; (un|>hy (14 [un])2+
and
lim lim sup/ [un [P0t da = 0. (3.85)
=00 o0 J{jun|>h}

It follows that : for all n > 0, there exists h(n) > 0 such that

/ Pt da < (3.86)
{n|>h(n)} 2

On the other hand, for any 7 > 0 there exists a positive constant 3(n) > 0 such that

/ Ty () [P0~ de for all E C Q such that meas(E) < 5(n). (3.87)

l\DId
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By combining (3.86) and (3.87), we conclude that

e < ™ i+ [ [T ()
/E {Jun|>h(m)} PR (3.88)
<n for all E C  such that meas(E) < f(n).

It follows that the sequence (|, |P°~%u,), is uniformly equi-integrable, and since
[ty [P0 — JufPot a.e. in .
In view of Vitali’s theorem, we conclude that

|t [P0~ — JulPo~! strongly in ~ L'(9). (3.89)

Step 4 : The strong convergence of the gradient.

In this step, we will denote by €;(n), i« = 0, 1, ... a various functions of real numbers which converges to 0
as n tends to infinity (respectively for ;(h) and €;(h, n)).

Let h > k > 1, we define

s) —Th(s 252
op(s)=1- —szh( )h Tn(s)| and P(s) = s.exp(Py

)a

16(] - Dll o= ()
bo

Let § > 1 and H(s) = / m ds. By taking (T (un) — Ti (1))@, (un )14 D) € WIP(Q) as a test
0

, note that ¢’(s) — y|v(s)| > Vs € RR.

DN | =

where 7 =3

function for the approximate problem (3.53), we have

i (%, T (tn ), Vi) (D Ty () — D'Th ()Y (T (wn) — Ti(w))op, (wn)eH Dz

] =
S

=1
N
—% ; /{Kunm} ai (2, Th (), VI (1)) DT (1) [T () — Tho(w))|eH Uunl) dge
al ) 7Tn n 7V n -Dl n .
D> e S i, ) T (1) = Tela)) e (3.90)

+/ |“n|p°_2“n¢(Tk(“n)—Tk(u))wh(un)em'“n‘)dx
< | fal@wn, Vo) (Ti(wn) = Ti(w))op (wn)e D de

+f 9n ()0 (T (un) — Tie(u))pp, (un ) (4D g
o
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In view of (3.50), we deduce that

N

N

: /{| \>k}ai(x,Tn(un)’VU”)DiTk(u)wl(Tk(un)—Tk(u))goh(un)eH(lunl)dx

_ N / ai(x,Tk(un) VTk(un))DiTk(un)
{lun|<k} (

1+ |un|) 1 (Th (un) — Tio(w)) |y, (un ) 147D das

N

' /uunm (1 + [un])? Pn ()| (Tk () — Tio(u) e dz

SeH(O")/ <|fo(x)|+60 |un|"°+zcz )ID s,
Q

L) /a on (@)l (o) k<u>>||soh<un>|do

W(2k)eH ) X
=

+6H(°°)/Q|un|p0_1|¢(Tk(un)_Tk(u))| |0 (un) |da.

) [ (Th (un) = Tio(w))lpp (un) dz
/ ai(x, Ty (un), VT3 (un)) D Ty (uy,) dz
(h<|un|<2h}

We have h > k, then ¢, (u,) =1 on the set {|u,| < k}, and in view of (3.3) we deduce that

N
Z /Q a; (2, Ty (un), Vi (un) ) (D Ty (un) — D T ()Y (Tr(un) — Ti(w))pp, (un)e (4D dz

Y ‘ 7T nrn T n DZT n
_ /{| <k} ai(x, T (u ()lz |Z$|L)5)) ke (u )|¢(Tk(un) — T ()| () eHwn )
N
D n
+b02/{ - WW(TM%) Ti(w)) |y (un)e 19D doe
i=1 Unp

<€H(OO)Z/61 )| Dt |9 |9( T (1) — Ti(w)) oy, (un) der

+1' (2k)e Z / (2, Tan (un ), VTon (un)) DTy (u) dz
k<|un|<2h}
2k) et () N
—1—7’[}( ) / a;(x, Top(tn ), VTop(uy)) D Tgh(un) dx
{h<|un|<2h}

e / (|fo(:r)| + co@)un|™ + [un [T [ (T (un) = Ti(w)| da
+6H<oo>/ 19(2)| [ (Ti(wn) — Ti(w))|dor.

[219]

19

/{ < a;(z, T (un), VT (un)) (D Ti (un) — D T (u))Y (Th (un) — Th(w))pp (un )4 D da

(3.91)

(3.92)

Concerning the second term on the left-hand side of (3.92), we have (a;(z, Ton(un), VIon(un)))n is
bounded in LPi(Q), then there exists 9; € LPi(Q) such that a;(x, Ton(un), VTan(un)) — 9; in LPi ()

for any ¢ = 1,..., N, we conclude that

Z / (2, Tan (un ), VTop (un)) DTy (u) dz
k<|un\<2h}

— ¥; D'Ty(u) dz =0 as n — oo.
{k<|u|<2h}

(3.93)
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For the third term on the right-hand side of (3.92), in view of (3.82) we have

go(h) = ——— / ai(z, Top(un), VTgh(un))DiTgh(un) de — 0 as h — oo.
i=1 Y {h<|un|<2h}
(3.94)
We have ¥(Ty(un) — Tr(u)) — 0 weak—x in L°°(f2), and since |fy| belongs to L'(Q) with (3.89), we
conclude that

es(n) = /Q (1fo(@)] + co(@)tn|® + |un [P~ |0(Th(un) — Te(uw))| dz — 0 as n — oco. (3.95)
Similarly, we have (T (u,) — Tr(u)) = 0 weak—x* in L*°(99), then
ea(n) = / lg| |o(Tk(urn) — Ti(u))| do — 0 as n — oo. (3.96)
o0

By combining (3.92) and (3.93) — (3.96), we deduce that

N
> /Q ai(, Tio(un), VT (un)) (D Ti(un) — DT ()9 (Ti(un) — To(w))pp, (un)e 1D
i=1

=17 ‘
ai(z, T (un), VI (uy)) D" Tk (wy, “
- / (2, T {tn). V2L 5)) i )W(Tk(un) — Ty (w)) ooy, () e 4n ) dae
— J{unl<k (14 |un|)
=1 {l nlf } (3 97)
S | Dl g | () |
oY [ T ) — Tl () D de
; (uni>ky (1 F [un])oT "
N
<0y [ @)D 6 (Tulun) — Tl () i+ £, )
=179
For the first term on the right-hand side of (3.97), in view of Young’s inequality, we have
/ ¢i(2)| D un | ¢ (Ti (un) = T (w)) ooy, (un) d
ci(x)| Dy, |% i (5+X)
= [ L (1t fual) 5 6 (Talta) = Tiw))l ()
(L |up|) 7
bo | Dby, |Pi
< 2/, WW(TMUH = Tie(w)|pp (un) dz
Pi 2 (3+X) (3 98)
+Co [ lei(@)[7=5 (1 + [up]) 775 [(Th(un) — Ti(w))|@p (un) dx :
Q
bo | D, |Pi

<5 | T e P @k(un) = Te(w))lon(un) d

(po—1)p;
+Cl/ i ()| Tom D000 7 (45 (T () — T (w))| 9 ()l
Q

+C2 /Q(l + [un )P M (T (un) — Tio(w))| oy (un)da.

(Po—1)p;
We have |ci|(Po—1><pi0—q¢)p—m(6+%> € LYQ) and (1 + |u,[)?°~ — (1 + |u])Po~! strongly in L(€2). thus,
similarly as in (3.95) we conclude that the two last terms on the right-hand side of (3.98) tends to 0 as
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n tends to infinity. Thus, by combining (3.97) and (3.98), we deduce that

N

> /Q @i, T (), VT (un)) (D T (tn) = DT () (Th () = Te(ua) o () 4Vl

i=1
N

-3 /Q i (&, T (un ), VT () DTt [ (T (1) = T o, (1 )e 0D (3.90)
i=1

bO al |Dlu |pi
2 / [ (Th(un) — Tio(w)) o ()™ 142D de
2 i1 7 {un|>k} (14 |y, )0t h

< E5(,'7’7 h)

It follows that

N
3 /Q (as(@, To(tn), VT () — @i (2, T (), VT () (DT (1) — DiTi ()
x (¢ (T (un) = Ti(w) = [ (Ti(un) — Ti(w))]) oy (un)e 1D d
N . .
< Z/Q |ai (@, Th(un), VTR ()| D Ti (un) — D Ty ()| (Ti (un) — Tio(w))py, (wp ) 4nD da
=1 N
+Z/Qaz‘(x»Tk(un), VT(w) (D' Tio(un) = D Ty (w)) [ (Tho(wn) = Tio(w)) | (un)e 1V da
1&1
+> / 0; (@, T (1) VT (1)) D T () [t (T (1) — T () oy, ()0 i + 5 (m, )
i=1
N
< (V' (2k) +1(2k))e ) Y /Q lai(z, Ty (un), VTk(w))|| D Th(upn) — DT (u)| do
i=1
N
+eft(>) Z/Q |ai (@, Tio(un), VTio(un)) [ DT (w) || (T (un) — Tio(w))| da + e5(n, h).
= (3.100)
For the first term on the right-hand side of (3.100), we have Ty(u,) — Ti(u) in LPi(Q), then

ai(z, Ty (un), V(1)) — ai(x, Ti(u), VTi(u)) strongly in LPi(Q), and since DTy (u,) tends to DTy (u)
weakly in LPi(Q)), we conclude that

N
ee(n) = Z/Q lai(z, T (un), VT (w))| | DTy (un) — DTy (u)| dz — 0 as n — oo. (3.101)

Concerning the second term on the right-hand side of (3.100), we have (a;(z, Tk(un), D*Tk(un)))n is
bounded in LPi(f), then there exists v; € LPi(Q) such that |a;(z, Ty (un), DTk (u,))| — v; weakly in
LPi(2), and since | DTy (uw)| [¢(Tk(un) — Ti(u))|| tends strongly to 0 in LP# () for any i = 1,..., N, it
follows that

N
er(n) = Z/Q lai(z, Ti (wn), VTk ()| D Th ()| (Th (un) — T ()| dz — 0 as  n — oo,
i=1

(3.102)
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By combining (3.100) and (3.101) — (3.102), we conclude that

1

IN
DO |

Z/ ai(x, Ty (un), DTy (un)) — ai(z, Tp(un), D" Te(u )))(DiTk(un) — D'Ty,(u)) dz

"MZ

/Q(ai(x, Tr(un), VIg(un)) — ai(z, Tr(un), VTk(u)))(DiTk(un) — DiTk(u)) (3.103)

=1

x (¢ (T (un) = Ti(u)) = (T (un) — Ti(w))]) on(un)e? Dz

<eg(n,h) —0 as  n,h — oo.

therefore, by applying again the Lebesgue dominated convergence theorem, we obtain Ty (u,) — Tk (u)
strongly in L2(£2). Thus, by letting n then h tend to infinity, we deduce that

N
Z/Q (ai(x, Tr(un), VI (uy)) — ai(z, T (ur), VTk(u))) (DT (uy) — DT (u)) da

(3.104)
+ / (|75 () P2 2Tk (1) — |Th ()P0 2T () (T (1) — Tie(w)) dz — 0 as  n — oo.
Q
Thanks to Lemma 3.1, we conclude that
Tk (un) — Ti(u) strongly in WLP(Q), (3.105)
D'u, — D'u a.e.in Q for i=1,...,N. '

Moreover, we have a;(z, Ty, (ur), Vi, ) Diu, tends to a;(z,u, Vu)D'u almost everywhere in , and in view
of Fatou’s lemma, we conclude that

1
lim — / a;(z,u, Vu)D'u dz
h—oo h - {|u\<h}
< lim Jim inf = / , Vu,)Dlu, d (3.106)
h—o00 N—o00 Z |un|<h} ( ) )

1 .
< lim limsup — E / ai(x, Tp(un), Vuy) D' u, de = 0.
h {|un|<h}

Step 5 : The equi-integrability of (fn(x,wn, Vn))n.
In this section, we will prove that

fu(@,tn, Vuy,) — f(z,u, Vu) strongly in  L'(Q). (3.107)
According to (3.105) we have
frn(@ytn, Vuy) — f(z,u, Vu) a.e. in Q. (3.108)

By using Vitali’s Theorem, it is sufficient to prove that (f,(x,un, Vuy,)), is uniformly equi-integrable.
Indeed, let E be a measurable subset of €, we have

/|fn(x,un,Vun)|da:§/ |fn(a:,un,Vun)|dx+/ o (st Vi) dz. (3.109)
E En{|un|<h} {lun|>h}

On the one hand, in view of Young’s inequality we have

/Eﬂ{un|<h}|fn(x’umvun)|dx </ ('fo( )+ co(@)|Th (un |q0+zcl )| DTy (un)| ) da

/|f0 |d:L'—|—/ |C() PO Fo-T-a0 <10 d{E—l—/ |Th |P0 L dr

+Z/ o3 ()7 dx+2/ (DT () )
i=17F i=17F
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po—1 Pi
since | fol, |co|Po—01—q0 and |ci|mp—% belongs to L() and in view of (3.62) and (3.89), we deduce that

Ve > 0, Elﬁ(i‘:) > (0 such that / |fn(x7un, vUn)| dx S E for any meaS(E) S B(E)
En{|un|<h} 2
(3.110)
On the other hand, let 1 < § small enough, and in view of Young’s inequality we have
{l“n|>h}
<[ (h@l+ak |un|qo+zcl D )dm
{l“n|>h}
(3.111)

-1
<[ (1@l e qol+z|c1 T AT ) do
{lun|>h}

—|—(N+1)/ |, PO~ da + / 7dx
{lun|>h} Z {lunl>hy (14 [un])?+2

po—1 pi(po—1)
We have fo(+), |co(-)|1f’op*0<1cv1 and |¢;(+)] Go=D(r: —a0-5 ) for § = 1,...,N belongs to L'(f2), and since
meas {|u,| > h}) — 0 as h — oo, then

lim (lfo( )| + |co ()| 7o-7o- 1+Z|cl | o= DTERE wm) dx =0, (3.112)
h=00 J{|un|>n}

and thanks to (3.84) and (3.86), we conclude that

Ve >0, 3ho >0 such that / | fr(@, Un, Vug,)| de < % for any h < hyg. (3.113)
{|un‘>h}
Having in mind (3.109) and (3.110), (3.113), we deduce that :
/ | fr(z, upn, Vuy,)| de < e forany ECQ with meas(F) < f(e). (3.114)
E

We conclude that the sequences (fy, (x, un, Vuy,))y is a uniformly equi-integrable. Thus, in view of Vitali’s
Theorem we obtain
fn (@ U, Vuy) — f(o,u, Vu) in LY(Q). (3.115)

Step 6: Passage to the limit.

Let ¢ € WHP(Q) N L*°(Q), and choosing S(.) be a smooth function in C&(R) such sup(S(.)) C [-M, M],
M > 0. By choosing S(u, )¢ € WHP(Q) N L>®(£) as test function in the approximate problem (3.53), we
obtain

N
Z/ ai(x,T(un),Vun)(S (un) D"y, + S(uy) D dx—i—/ |t [P0 %S (1) p da
Q

= (3.116)
= / Fr(@, tn, Vug)S (un)e dx—|—/ gnS(un ) do.
Q a0
We begin by the first term on the left-hand side (3.116), we have
N . .
Z/ a;(z, T (un), Vun)(S (un)pD*uy + S(un) D )dx
¢ (3.117)

N
=2 /Q ai 2, Tar (wn), Vs (un)) (S (un)p D' Tar (un) + S(Ts (un)) D'p) dl.
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In view of (3.105), we have (ai(x,Ths(un), VTas(un)))n is bounded in LPi(Q), and since
ai(x, Thr(un), VI (uy)) tends to a;(x, Tas(u), VIar(uw)) almost everywhere in €2, it follows that

ai(z, Tar(un), VT (uy)) = ai(z, Tar(uw), VI (u)) in LP (Q),

and since S'(u,)pD Tar(un) + S(Tar(un))D'e tends strongly to S’ (u)eD Tar(u) + S(Tar(u))Dip in
LPi(Q)), we deduce that

lim Z/ ai(x, Ty (un), Vun ) (S (un)p D'ty + S(un) D) da

n— 00

= lim Z/ a;(, Tor (un ), Vs (un)) (S (un) o D' Tas (un) + S(Tar(un)) D) dz

n—0o0

(3.118)

Z/Qai(x,TM(u),VTM(u)) (S’(u)chiTM(u) + S(TM(u))Dicp) dx

N . .
= Z /Q ai(z,u, Vu) (8’ (w)eD'u+ S(u)D'¢) dx.

Concerning the second term on the left-hand side of (3.116), we have S(Tas(un))p — S(Tar(u))p weak—sx
in L>°(Q), and thanks to (3.89) and (3.115) we deduce that

lim / |un|p°_2un5(un)<pdx = lim/|un|p0_2unS(TM(un))cpdx

n—r oo n—oo

= /Q [u|Po~2uS (T (1)) da (3.119)

- / 2 (u) o dar,
Q
and

lim fn(w,un,Vun)S(TM(un))cpdx:/f(x,u,Vu)S(TM(u))apdx:/f(x,u,Vu)S(u)gpdx.
Q Q Q

n— 00
(3.120)
Similarly, we have g, — ¢ strongly in L'(9Q) and we since S(Ta(un))e — S(Ta(u))p weak—x in
L>°(09) then

lim gnS(Thi (up)pdo = /aQ 9S (T (u))pdo = /aQ 9S(u)pdo. (3.121)

By combining (3.116) and (3.118) — (3.121), we conclude that

Z/ ai(x,u, Vu)(S'(u)pDu + S(u)Dip )dx—i—/ |u|Po~2uS (u)p da
/fxuVu )cpdx—k/(mgS(u)cpda,

which complete the prove of the theorem 3.6.

(3.122)

As model example of applications for problem (3.49), we state the following model:

Example 3.7. Let 0 < A <p—1,q9 =0,¢g<p—1 and pg > %, we consider the noncoercive
Neumann elliptic equation
p—2
—div(w) + |u|p0*2u = f+|Vul? in
. (14 u) (3.123)
o =0 on 09Q.

In view of theorem 3.6, there exists at least one renormalized solution for the noncoercive quasilinear
elliptic problem (3.123). Moreover, we have |u[Po~1 € L}(Q) and |Vul? € L*(Q).



10.

11.

12.

13.
14.

15.

16.

WEAK AND RENORMALIZED SOLUTIONS FOR ANISOTROPIC ... 25

References

Y. Akdim, M. Belayachi, H. Hjiaj and M. Mekkour, Entropy solutions for some nonlinear and noncoercive unilateral
elliptic problems, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), 1373-1392 .

A. Alvino, L. Boccardo, V. Ferone, L.Orsina and G. Trombetti, Ezxistence results for nonlinear elliptic equations with
degenerate coercivity, Annal. di. Mat. Pu. ed. Appli. , 182(1), 53-79, 2003

F. Andereu, J.M. Mazén, S. Segura De leén and J. Teledo, Quasi-linear elliptic and parabolic equations in L1 with
non-linear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), pp. 183-213.

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Diff. Int. Equa. Vol 21, no. 56
(2008), 401-419.

M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable
exponent, J. Appl. Anal. Comput. 4 (2014), no. 3, 245-270.

M. Bendahmane, M. Chrif and S. El Manouni, An Approzimation Result in Generalized Anisotropic Sobolev Spaces
and Application. Z. Anal. Anwend. 30 (2011), no. 3, 341-353.

P. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre and J. L . Vazquez, An L1- theory of existence and
uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, (1995), 241-273

L. Boccardo, A. Dall’Aglio and L. Orsina, Ezistence and regularity results for some nonlinear equations with degenerate
coercivity, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), suppl., 51-81.

R. Di-Nardo and F. Feo, Ezistence and uniqueness for nonlinear anisotropic elliptic equations [J]. Archiv der Mathe-
matik, 2014, 102(2), 141-153.

R. Di-Nardo, F. Feo and O. Guibé, Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Diff. Equa. 18
(2013), no. 5-6, 433-458.

X. Fan, Anisotropic variable exponent Sobolev spaces and p(z)-Laplacian equations, Complex Var. Elliptic Equ., (2011)
56, No. 7-9, 623-642.

O. Guibé and A. Mercaldo, Existence of renormalized solutions to monlinear elliptic equations with two lower order
terms and measure data, Trans. of. the. Am. Math. Soc., 360(2), pp 643-669, 2008.

E. Hewitt and K. Stromberg, Real and abstract analysis. Springer-verlng, Berlin Heidelberg New York, 1965.

S. Huang and T. Su, X. Du and X. Zhang, Entropy solutions to noncoercive nonlinear elliptic equations with measure
data, 2019(97), pp 1-22.

J. L. Lions, Quelques méthodes de résolution des problémes auz limites non linéaires. Dunod et Gauthiers-Villars, Paris
1969.

M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with
variable exponent. J. Math. Anal. Appl., 340 (2008), 687-698.

Mohamed Badr Benboubker,

Higher School of Technology,

Sidi Mohamed Ben Abdellah University,
Fez, Morocco.

E-mail address: simo.ben@hotmail.com

and

Hayat Benkhalou,

Department of Mathematics,

Faculty of Sciences of Tetuan,

Abdelmalek Essaadi University,

B.P. 2121, Tetuan, Morocco.

E-mail address: benkhalouhayat@gmail.com

and

Hassane Hjiagj,

Department of Mathematics,

Faculty of Sciences of Tetuan,
Abdelmalek Essaadi University,

B.P. 2121, Tetuan, Morocco.

E-mail address: hjiajhassane@yahoo.fr



	Introduction
	 Preliminaries 
	Main results
	Existence of weak solutions for L-data
	Existence of renormalized solutions for L1-data


