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The ”Elliptic” Matrices and a New Kind of Cryptography
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ABSTRACT: In their article titled ”Cryptography Based on the Matrices”, A. Chillali et al. introduce a new
cryptographic method based on matrices over a finite field Fyn, where p is a prime number. In this paper, we
will generate this method in a new group of square block matrices based on an elliptic curve, called ”elliptic”
matrices.
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1. Introduction

In the paper [14], Varadharajan proposed a noncommutative group as a platform group for DH-key
exchange, which was later cryptographically analyzed using eigenvalues and Jordan form in the paper
[12]. Subsequently, the use of non-commutative groups and rings in public-key cryptography has attracted
much attention [4], [5],[6], [15], [17].

n [17], A. Chillali et al. introduce a new cryptographic method based on a non-commutative group
matrix over a finite field Fyn, where p is a prime number. As described in [7],[8],[11],[12], [13], some
properties of matrices such as determinant, eigenvalues, and Cayley-Hamilton theorem can be used to
develop attacks against this protocol. Such attacks reduce DLP on the group of invertible matrices to
DLP on finite fields or to a simple factorization problem. To avoid this reduction of DLP on the matrix
group to that on finite fields, we will introduce a matrix group over an elliptic curve and its diagonal
in Z,, under a new matrix multiplication operation, and consequently, go from DLP to (ECDLP)
which is the fundamental factor of elliptic curve cryptography and matching-based cryptography. It
has been a major investigation area in number theory and cryptography for many decades [1],[2],[3],
[9],[10],[16]. Hence, the main idea of this work is the design of some public key exchange protocols
over a noncommutative ring, in particular over the ring of "elliptic” matrix, whose security is based on
ECDLP. In other words, we propose a new key exchange protocol based on matrices with the following

form M (Bi, By, Bs) = < Bi B,

0 B ) called ”elliptic” matrices, where B1, Bs, Bs are three-dimensional
3
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matrices constructed over an elliptic curve whose diagonal elements are in Z,,. In addition, we investigate
the complexity and security of the key exchange protocol.

The rest of the paper is organized as follows. In Sec. 2, we define the non-commutative ring of elliptic
matrices and give an example of matrix multiplication on this ring. In Sec. 3, a key exchange protocol is
explained and the security and complexity of the protocol are provided. In Sec. 4, we propose a numerical
Example.

2. Ring of ”elliptic” matrices

Let E be an elliptic curve over a finite field K, P is a point of higher-order n and G is the group
generated by P. In this section, we present the theoretical concept for our encryption scheme by using the

ap P P
matrix-ring N, with the following form, X = Q3 ax Ps |a; € Zn, Qi, P € G, i €{1,2,3}
Q2 Q1 a3

2.1. The Ring N

In this subsection, we will define on X two internal laws called addition + and multiplication * as

aq P1 P2 bl Pll PQI
follows,let X = Q3 a2 P3 |andY =| Q% by P, | betwo elements in X, then
Q2 Q1 a3 Qy Q1 b3
aa+by Pi+P P+ P
X+Y=| Q3+Q3 ax+by Ps+P; |,
Q2+Qy Q1 +Q7 as+bs
aib boP1 + a1 P bsPy+ a1 P
X*xY =] b1Q3+ a2 azbo b3 P3 + a2 Ps

b1Q2 4+ a3Qy  baQ1 + az@Q' azbs

Lemma 2.1. The set X together with addition "+ and multiplication ”x” is a unitary noncommutative
ring with identities,

1 [0:1:0] [0:1:0] 0 [0:1:0] [0:1:0]
1x = [0:1:0] 1 0:1:0] and Ox = [0:1:0] 0 [0:1:0]
[0:1:0] [0:1:0] 1 [0:1:0] [0:1:0] 0
aq P1 Pg b1 Pll PQ/ C1 P”l P”Q
Proof. Let X = Qs a2 P3 |,Y = 5 by Pj and 7 = Q’s ¢ P73 be ele-
Q2 Q1 a3 Qy Q1 b3 Q"2 Q"1 «c3
ments in X, then
e Associativity:
We start with the product law 7 x 7,
a1by by P + CL1P1/ bs Py + CL1P2/ Cc1 P’ Py
(X * Y) *x /= b1Qs + CLQQ% asbs b3 Ps + CLQPé * Q73 Co P73
b1Q2 + azQy  b2Q1 + az@y azbs Q"2 Q"1 3
aibicy baco Py + alchl' +a1b1 P’y bzesPs + CL103P2I + a1b1 P75
= | bic1Qs + a2c1Qs + a2b2Q73 azbaco bscs Ps + azcs Py + agba P73
bic1Q2 + azc1Qb + azbsQ”2  bacoQ1 + azc2Q] + azbsQ1 asbscz
and,
a P P bicy CQPI/ + b1 P’ CgPQI + b1P2/
X % (Y * Z) = Qg as Pj * Cng + bQQ”:} baca CgPé + bQPé

Q2 Q1 a3 1R +03Q72  c2Q) +b3Q"1 bsc3
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bses Py + CL163P2/ + a1b1 Py

bscsP3 + CLQCgPé + agby P73
agbgcg

bQCQPl + alcQP{ + alblP”l
CLQbQCQ
boc2Q1 + azc2Q + azbsQ”y

a1b161
= bic1Qs + azc1 Qs + a2b2Q7s
bic1Q2 + azc1Qb + azbsQ”2

Hence, (X xY)*xZ =X % (Y x Z).
On the other hand, in the same way, we find that (X +Y)+Z =X+ (Y + 2).

e Commutativity:
Generally, it’s clear that: (X *xY") # (Y x X). So, x is not commutative, but + is commutative law.

e Distributivity:
We shall prove that (X +Y)*xZ =XxZ4+Y+xZand Z+x (X +Y)=ZxX +Z*Y.

So, for the first equality (X +Y)*xZ =X *xZ +Y x Z, we have

a+b P+P P+ P ca P’ Py
(X+Y)xZ=| Qs+Qf as+by P3s+Pj | x| Qs c¢2 P73
Q2+Q% Qi+Q) az+bs Q"2 Q"1 3
(a1 + b1)01 CQ(Pl =+ Pll) =+ (a1 + bl)P”l C3(P2 + PQ/) + (a1 =+ bl)P”Q
(az + b2)co c3(Ps + Pg) 4 (a2 + b2) P73 |,

=| ca(Q3+Q5) + (a2 +b2)Q"3

c1(Q2 + Q%) + (a3 + b3)Q72 (a3 + b3)cs

c2(Q1+ Q1) + (a3 + b3)Q™1

and, X * Z +Y xZ =

c3 Py + CgPQ/ + (a1 =+ bl)P”2

c3P3; + CgPé + (CLQ =+ bg)P”g
aszcs + bszcs

coP1 + coP] + (a1 + b1)P"1
asC2 + bQCQ
c2Q1 + 2@ + (a3 + b3)Q™1

aicy + b101
c1Qs + c1Q5 + (a2 + b2)Q7s
c1Q2 + c1Q5 + (a3 +3)Q72

Hence, (X +Y)*xZ =XxZ+Y x Z.
Similarly for the second equality.

ag P P
e Additive inverses, VX = [ Q3 a2 P3 | € R, we have X 4+ (—X) = Oy, with
Q2 Q1 a3
-a1 —P -
(—X)=| Q@ —ax —-P;
Q2 —0Q1 —as

is called the additive inverse of X.

The next proposition characterize the set of invertible elements in X.

a1 P1 P2
Proposition 2.2. Let X = | Q3 a2 P3 | €N, X isinvertible if only if a;An =1 for alli € {1,2, 3},
Q2 Q1 a3
in this case we have,
at —a;tay Py —al_lagng
XY = [ —a7le;'Qs az —a;liti)ijg €N,

—ay'az3'Qy —ay'az' Qs a;
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bp P P
Proof. Let Y = Q% by P, | the inverse of X, we have: X xY =Y % X = 1.
@y Q1 b3
So,
a1b; boPy +a1P]  b3Po+ a1 P 1 [0:1:0] [0:1:0]
XxY = b1Q3 + agQg agbg b3P3 + CLQPé = [O 21 0] 1 [0 21 0] s
01Q2 + agQ/Q baQ1 + CL3Q/1 asbs [0 21 0] [0 21 0] 1
and
a1by b1 P, + CLQPII b Py + CL3P2I 1 [0 01 0] [0 21 0]
Y*X =1 b2Q3+a1Q4 asby baPs + a3 P} =| [0:1:0] 1 [0:1:0]
b3Q2 + alng b3Q1 + CLQQ’l CL3b3 [O 01 0] [0 :1: O] 1

Thus, a;b; = 1[n] for all ¢ € {1,2,3} and

boPy + a1 Pl =10:1:0],
bsPy+a1Py=10:1:0],
bsPs +axP;=10:1:0],
boQ1 +a3Q] =1[0:1:0],
b1Q2 + a3y =10:1:0],
b1Qs +ax@Qs =10:1:0].

Therefore, X is invertible if only if a; An =1 for all i € {1,2,3}, in this case we have, b; = a;l for all
i€ {1,2,3} and

P} = —a'ay' P,
Py = —a'a3' Py,
P} = —ay'az' P,
Qll = _a’gla’;lQla
Q/Q = _aglailQQa
Qs = a3 'a; ' Qs.
So,
ay’ —aytay ' Py —aflagng
x*=D = —afiagng ?51 ) —a;lai;lpg e N,
—ay a3 Q2 —ay azg G as
U
ag P P
Lemma 2.3. Let k be a positive integer. Then if X = | Qs az Ps is an element of N, the k-power
Q2 Q1 a3
a¥ AMpPr o AP
of X can be given by X** = | A1 1Q3 ak A3 P3|, where

/\2,kQ2 /\3,le Cllgf

ALk = Z aidl (2.1)

itj=k—1

Aok = Z aiag (2.2)

itj=k—1

Az = Z agag (2.3)

i+j=k—1
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Proof. Using a proof by induction on k. For k = 1, we have \;; =1 for all i € {1,2,3}, then X*! = X
Let £ > 1. Assume the induction hypothesis, for a given value k& > 1, the single case

A = Z alal (2.4)

itj=k—1
o= Y e 25)
itj=k—1
As. i = Z abal (2.6)
itj=k—1
is true, and proof that we have,
ALk+1 = Z ajal (2.7)
iti=k
Xowi1 =y aja (2.8)
iti=k
Askt1 = Y ahaj (2.9)
iti=k
so, we have
a¥ AMpPr AP an P P
XD — A Q3 a§ AipPs | x| Q3 ax B3
Ao k@2 A3 Q1 af Q2 Q1 a3
Then,
a]f“ (a’f + a2)\17k)P1 (a’f + CL3)\2J€)P2
XD = | (ah 4+ a1 M) Qs ahtl (a5 + az)s k) Ps
(af + a1 dor)Q2  (af + a2)s )@ agt!
Thus,

)\17]44_1 =ay + ag)\Lk =aj + a2 E a,a
itj=k—1
_ i J
= E a3,
itj=k
)\27]44_1 =aj + a3)\27k =aj tasg E aia
itj=k—1
_ 2 : i J
- a‘la35
itj=k

)\37]44_1 = CLIQC + a3)\37k = CLIQC +as E CLZQCL]

itj=k—1
= E ayal.
itj=k
We conclude that, Vk > 1,

AMp= ) ajaj,
itj=k—1

Aok = g aial,
itj=k—1

A3k = g ayal,
itj=k—1

hence the result. O
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We have * is a noncommutative law, so in the following proposition we will characterize the set of
al TL1P TLQP
matrices in N that commute with such a matrix X = msP  ay ngP
mgP m1P as

Definition 2.4. The centralizer of the matriz X over R is defined as follows

Cr(X)={Y eX| XY =Y x X}.

b1 61P €2P
Proposition 2.5. With the same notation as above, we have ¥ = fsP by e3P e Cx(X) #f
foP f1P b3
and only if
b1 = by, nofo = moes and nzf1 = myes, if a1 = as and as — az # 0;
by =b; fori#j, if ai =a; fori#j;

nif3 = mae1, nafo = maex and nzfi = mies, if a;—a; #0 fori#j.

Proof. Since,

ai1by bon1P +aie1 P bsnaP + ar1es P
X*xY = bymsP + as f3sP asbo bsns P + ases P ,
blmgp + CLBfQP bgmlp + a3f1P a3b3
and
ai1by biniP + ase1 P bino P + azex P
Y+ X = bomsP + ay f3P asbs bonsg P + ages P
bsmo P + CLlfQP bsmi P + a2f1P asbs
And with comparative calculations we find the result. (I

2.2. The ”elliptic” matrices

In the following, we present the theoretical concept for our encryption scheme by using the elliptic

matrix M (B, Bs, Bs) = ( %1 52 ) where B; € R for all i € {1,2,3}.
3
Lemma 2.6. With the same notations as above, we have the k-power of an elliptic matriz as follows,

Bt T,

M(BlaB27B3)*k - ( 0 ng

) for all ke N*

with Ty, = ¢ B 179 B, Byt

Proof. Fix an arbitrary matrices By, Bo and B3 in R, and let M (By, Ba, B3)* be the statement. We give
the proof by induction on k, we have

*1
M(Bl,BQ,Bg)*l — < Bl Tl )

0 B
(B, B
o 0 Bs
:M(BlvBQ)B3)

then our Lemma is true for &k = 1.
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B T,

We assume the recurrence hypothesis, M (By, By, B3)** = ( 0 Bk
3

) for certain k. So, We have

M (By, By, B3)**+Y) = (M (By, Ba, B3))** « M(By, By, Bs)

k
(%5 ) (% 5)
B3 0 Bs
( *Bl B%BQ"’Tk*Bg )

ng * B3

*(kJFl) BkB +(Zz 0 *(k 1- l)B B*l)*BS
B*(kJrl)

I(kJrl) BkB +Z *(k 1— z)B B *(i+1)
= 0 B;(k+1)

_ < By BfB, + Y B ByBy )

0 B;(kJrl)
_ BIUH_D Z?:O Bf(k_j) Bngj
0 B;(kJrl)
_ BI(k+1) Tk+1
0 B;(k+1)
Hence the result. U

3. Encryption Schemes using the “elliptic” matrices

In this section we will construct an encryption scheme using the matrix M (B, Bs, Bs).

3.1. Cryptographic Protocols

This sub-section describes some public-key encryption and key establishment schemes. Surveys the
state-of-the-art in algorithms for solving the following classical problem(ECDLP) find an integer a, if it
exists, such that Q = a P, with P and @ being well-defined points of this elliptic curve, whose intractability
is necessary for the security of our cryptographic schemes.

¢ Key exchange protocol
Alice and Bob agree on public prime number p and a point P over an elliptic curve E(F,) of order
n, where ¢ is a power of p.
First Alice chooses two matrices (A, A;) € X and publish the pair (A, Cx(A1)), in the same way,
Bob chooses two matrices (B, Bs) € X and publish the pair (B, Cx(B2)).
Alice chooses private keys: k € N* and Ay € Cy(Bz2). She calculated the matrix

*k
(M(An, A+ B, A)y* = (A7 T
0 Az
and send T3 to Bob.
In turn, Bob chooses private keys, ¢t € N* and By € Cx(A1). He calculated the matrix

B E, )

are A+ B = (g
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and send E; to Alice.
With their private keys k and ¢, Alice and Bob calculate separately the matrices:

*k

Alice :M(Ay, E;, Ay)** = ( AS ZL‘ ) (3.1)
*t

Bob :M (By, Ty, B2)** = ( Bol g’%’i ) (3:2)

Lemma 3.1. With the same notation as above, we have Eyj = T} ;.

Proof. We have,

t—1
Tri =Y B 'T\Bj

i=0
t—1 ‘ k—1 ) )

=> BT Y AT (A+B)AL | B
i=0 j=0
t—1 k—1 ] ) )

=Y B A (A B AL
i=0 j=0

and
k—1 . )
Ep=Y A=t p, Al

j=0
k—1 ] t—1 ‘ ]

= Aft (Z BIT1THA + B)B;) Al
=0 i=0
k—1t—1 ] , ‘

= AY7TIBIT (A + B) By AS
§=0 i=0

or, By € Cx(A41) and Az € Cx(Bs), it follows that Ty + = E¢ . O

Corollary 3.2. The secret key of Alice and Bob is the matrix ® = Ey ), = Tj +.
3.2. Security of this protocol

The set Cx(Bz2), Cx(A1) and the matrices A, B are public. If another person wants to compute the
secret key @, it must solve the following equation:

Zi':ol AR=171(A 4+ B) A} = T}, whose unknowns the matrices A;, Ay and the natural number k.

In other words, to find the key, it is necessary(not sufficient) to solve the following classical problem,
find an integer a, if it exists, such that Q = aP.

Proposition 3.3. The complezity to calculate the key ® is O (3““) .
Proof. The encryption scheme using a matrix over X of order 3, will use a key ® of size O(3), as
described previously. Since
k—1t—1 . ‘ ‘
=Y > ATIBIT(A+ B)By A,

i=0 j=0

we have the complexity to calculate the key ® is O (3““). (]
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3.3. Encryption of message

Let @ be a secret key exchanged by Alice and Bob. If ® refers to the unit matrix and is invertible,
let V be the message that Alice wants to send to Bob, V is a matrix of the same size as ®. The
encryption message

AN=es(V)=dxVxd!
otherwise, we return to the key exchange protocol.

Lemma 3.4. Let V1, Vg be two messages and for all invertible key not equal to unit matriz, ®, we

have:
ea (V14 Va) = es (V1) + e (Va),

€p (Vl * VQ) = €p (Vl) * €Pp (VQ) .

Proof. We have:
€p (V1 + VQ) =dx (V1 + VQ) x®!

=(@*xVi+®xVy)xd !
=PAVixD 1 +DxVyx® !
=e3 (Vi) +es (Va)

and
ep (V1 xVa) =D % (Vi xV3) x®!

=PxVixD 1 xDxVynr® !
= €3 (V1)*€q> (Vg)
O

Remark 3.5. This encryption message is a fully homomorphic encryption that allows calculations
to be performed on the ciphertext, producing an encrypted result that, when decrypted, matches the
result of the operations performed on the plaintext.

3.4. Decryption of message

When Bob receives the encrypted message A sent by Alice, it uses a decryption function to decrypt
it. This function noted dg is defined as follows:

de(N) =71« Vx®.

Lemma 3.6. For all message V, we have dg 0 e (V) = V.

Proof. We have:
dq> o &p(V) = dq> (€q>(V))
=0 lyegp(V)x @
=P ' xPx VP 5D
=V

Remark 3.7. The security of this cryptosystem is based on,
e the difficulty in computing the key ® whose complexity is O (3”"),
e the discrete logarithm problem on an elliptic curve.
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4. Numerical example

Alice and Bob choose a large prime number p, r € N* and a point P over an elliptic curve E(Fp-)
of a large order n > 1032,
First Alice chooses two matrices in N,

1 Pia Pra 1 P a, Poa,
A= Q34 2 P4 |, A= Q34 2 Ps A,
Q2.4 Q1a 3 Q2,4, Qua, 3
and publish the pair (A, Cx(A1)), in the same way, Bob chooses two matrices in X,
5 Pip Pp 3 P, P,
B=| Q3 2 P |, Ba=| Q3B 4 Ps g,
Q2. Q1B 3 Q2,B, Q1,B, 2

and publish the pair (B, Cx(Bz)).

To simplify the verification of our method, we will give the points of the matrices A, B, Ay and Bs
as a function of the point P.

So, consider

1 P P 5 2P P

A=|2p 2 P |, B=[2P 2 0O
9P 2P 3 2P O 3
1 P 2P 3 P P

A= 3P 2 3P |, Bo=| P 4 2P
9P P 3 P 5P 2

Alice choose a private keys, k = 19, and a matrix
2 P P
As=| P 3 2P | € Cx(B2).

P 5P 1

She calculated the matrix o
(M(A), A+ B, Ag))19 = ( A T )

0 A9
Where
18
Tig =Y A7 V(A + B)AS (4.1)
i=0
3145722 7549456659P 3489929930
= 4727164798 P 4646948716 15096291883 P (4.2)

15097864744P 141216865400F 3486784398

and send it to Bob.
1 2P 4P

In turn, Bob choose a private keys, t = 28, and a matrix By = | 6P 3 6P € Cp(A1). He
4P 2P 5
calculated the matrix

*28
(MwhA+RBm”ﬂ=(&> E%>

0 B
Where - ‘
Bos = Y7, Bi®T (A + B)B3!
68630377364880 408166228667740245P  74505874596394420668 P
= 291776278982230708 P 288138868981891900  223805076368081713309P | and send it

223517166263534710094P 594245099411470048724FP  74505805968701410338
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to Alice.
With their private keys k and ¢, Alice and Bob calculate separately the matrices:

*19

Alice ZM(Al,Egg,AQ)*lg = ( A(l) %;’1%)9 ) (43)
*28

Bob :M(By, The, Bs)*2® = ( BB %2’2288 ) (4.4)

a1 asP a3P
Where, Eg&lg = CL4P as CL6P With,

CL7P CLgP ag
a1 = 35982014657500840560,
as = 404533071565054858267653465,
as = 43297613671329240254353821864,
aq = 334760671333538877528486148,
as = 334741636811273697988950100,
ag = 130227582290981803520657526727,
a7 = 302926833097405076688364256534,
ag = 5638865124033116058442340338994,
ag = 43297613635347225647855717754,

by bP b3P
and, T19728 = byP by b P with,
bzP bsP by

by = 35982014657500840560,
by = 404533071565054858267653465,
by = 43297613671329240254353821864,
by = 334760671333538877528486148,
bs = 334741636811273697988950100,
bg = 130227582290981803520657526727,
b7 = 302926833097405076688364256534,
bg = 5638865124033116058442340338994,
bg = 43297613635347225647855717754.
Hence, Eag 19 = T'9,2s.

Remark 4.1. In this example, from small private keys k = 19 and | = 28, we have constructed a large
private key:
a1 asP a3P
o = a4P as a6P
CL7P CLgP ag

5. Conclusion

In this paper we have shown how noncommutative rings can be used in order to provide protocols
that allow a key exchange in a secure manner. More precisely, we give a protocols based on the ring of
the elliptic” matrix, for an elliptic curve over F,. This protocol improves the matrix-based key exchange
protocol. We use a matrix whose coefficients are in an elliptic curve and whose diagonal elements are in
Zy, that are part of each user’s private key. Thus, an attacker who wants to recover the shared secret

must obtain summation:
k—1

> ATTI(A4 B)AL =Ty (5.1)
i=0
whose unknowns the matrices A1, As and the natural number k.
The security of this Cryptosystem is based on,
e the difficulty in computing the key ®,
e the ECDLP problem; find an integer a, if it exists, such that @ = aP, with P and @ being well defined
points of elliptic curve.
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