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Tri-Analytic Equation
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ABSTRACT: In this paper, a combination of boundary value problems for the nonhomogeneous analytic
equations have been studied. The aim of this paper is to find a solution for the Schwarz-(Dirichlet-Neumann)
problem and obtain its solvability conditions.
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1. Introduction

In complex analysis there are three basic boundary value problems: Schwarz, Dirichlet and Neumann
problems. These problems are investigated in particular domains such as unit disc and half plane and
explicit solutions are produced. In addition, these problems were investigated for different domains.

In the unit disc of the complex plane C, for the inhomogeneous Cauchy-Riemann equation the Schwarz
problem is well-posed but the Dirichlet and Neumann problems are overdetermined.Combinations of these
boundary value problems are proper to determine solutions for higher order equations. However, not all
of them are well-posed problems and solvability conditions have to determined.

In this article, a new boundary value problem is studied by combining different boundary conditions:
Schwarz condition, Dirichlet and Neumann conditions. We use the iteration method presented in [1]
following the ideas in [2]. We extended the binary combinations problems studied in [2,3] to triple
combinations of value boundary problems. All studies in this paper are restricted to the inhomogeneous
tri-analytic equation.

In this paper, the results of the complex analysis as of Gauss Theorem, Cauchy Theorem and Cauchy-
Pompeiu formula [1,4,5,6] are used.

The proofs of the basic boundary value problems that we use in this paper and their proofs can be
found in [1,5].

Theorem 1.1. [1] The Schwarz problem for the inhomogeneous Cauchy-Riemann equation in the unit
disc
wz;=f D, Rew=-+ ondD, Imw(0)=c

for f € Li(D;C) and v € C(ID;C), ¢ € R is uniquely solvable by the Cauchy-Schwarz-Pompeiu formula
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Here and in the future, we put ( = £+, &,n € R, Li(D;C) := {f : f is complex-valued,
measurable and [ |f|ldp < oo} and C(9D;C) is the set of continous complex-valued functions on
D
the boundary of the unit disc D.

Theorem 1.2. [1] The Dirichlet-Neumann problem for the inhomogeneous Bitsadze equation in the unit
disc
wez=f inD, w=ryy ondD, I,wsz=ry, onID, wz(0) = ¢

is uniquely solvable for f € L1(D;C) N C(ID;C), ~vy,v, € C(OD;C),c € C if and only if
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The solution then is given by
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2. Computations of Some Integrals
To solve the combined problem we introduce the following lemmas.

Lemma 2.1. For |z < 1, [{| < 1 we get
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Proof. 1. We write the given integral as
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Using the Cauchy- Pompeiu formula we get

=2

/ (- T omi / ﬁdg
oD




A NOTE ON COMPLEX COMBINED BOUNDARY VALUE PROBLEM

Since
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we obtain the result.
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2. We separate the integral as
1 1¢+2z 1
w//gg-zg <f
(—l—zl
g%r//@ ¢ 2#// C—2) g €= =g=n

By Gauss Theorem and Cauchy Pompeiu Formula we obtain the followings

%// T =

and substituting ¢ = 0 we have
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3. As
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the given integral can be written as

//égtz Lok )log( CC)dﬁdn——//Clog (1 — ¢C)dédn

//bg CC%d__//C log(1 — ()dédn + — //bg @M-

Gauss Theorem and Cauchy Pompeiu formula yield the expected result.
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4. We split the given integral in two integrals:
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In similar method in (2.) we obtain the value of the integrals.

Lemma 2.2. For|z| <1, || <1 we get
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Proof. 1. We separate the given integral into two integrals as

[ s ] g [
D D

‘We observe that

%4/%@77:0

1 2 2

271'28 1—2C A=z

2. Since

1142 1 2z N 1
Cl=20(-¢ (1-20C-¢ <=9
Then

iy —

3. Similar to (3) in Lemmal.

4. We separate the integral as
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From the Cauchy Pompeiu formula we obtain the expected result.
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3. The Schwarz - (Dirichlet-Neumann) problem

In this part, a solution to the Schwarz - (Dirichlet-Neumann) problem is presented. After computa-
tions of some boundary and area integrals we can give the main result now.

Theorem 3.1. The Schwarz - (Dirichlet-Neumann) problem for the inhomogeneous tri-analytic equation
in the unit disc

DBw=f inD, Rew=~ ondD, Imw(0)=c, w;=7v, ondD, dws: =7y on dD, w:(0)=c,

for f € C¥(D;C), 0 < a < 1,7,7,7 € C(OD;C), ¢,c1 € R is uniquely solvable if and only if for |z| < 1,

_ 2
o — 2;/% // 11_|§|< c dfd =0 (3.1)
oD
and .
o (%(C)—Cf(o) 1_Z< // dfd =0. (3.2)
oD

The solution then is given by
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Proof. The problem is decomposed into the system
dzw=p inD, Rew=+v ondD, Imw(0)=c,

and
O2p=finD, @=2v, ondD, O,p; =7, on D, p;(0)=0c1

From Theorem 1.2, the solvability conditions for the Dirichlet-Neumann problem are

o — 2;/70 // l_mj ~eldgdn =0 (3.3)

oD
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and

which yields the unique solution



6 B. KARACA

1 1 - 11224 1 2 2 f
o) = s+ o [ 2ac s L [0 - r@noga - :0r =L F 4 2 [[ =R e
D oD
(3.5)
After Theorem 1.1, the unique solution for the Schwarz problem is
_ 1 C+z dC )¢+ 2 ﬂ 1+2C
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Replacing (3.5) into (3.6) we obtain
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Using the results of Lemma 2.1 and Lemma 2.2, we obtain the unique solution for the combined
problem.

O

4. Conclusion

A combination of boundary value problems is considered in this paper. The uniqueness and solvability
conditions of the Schwarz-(Dirichlet-Neumann) problem are considered. In the future, that problem will
be investigated in the polydisc.
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