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On a New Variant of I-Convergence in Topological Spaces

Jiarul Hoque and Shyamapada Modak

abstract: In this write-up, we mainly introduce b-I-convergence of sequences, b-convergence and b-I-
convergence of nets in topological spaces, and put forward some important topological investigations. Existence
of b-ω-accumulation point is presented via admissible ideal and b-I-cluster point of sequence. It is shown that
a map f : Z → W is quasi-b-irresolute if and only if for every net (sd)d∈D converging to zo, the image
net (f(sd)d∈D) b-converges to f(zo). Notion of b-I-cluster point of net is disclosed along with its a nice
characterization as: ‘Corresponding to a given net s : D → Z, there exists a filter G on Z such that zo ∈ Z is a
b-I-cluster point of the net (sd)d∈D if and only if zo is a b-cluster point of the filter G’. Another characterization
of b-I-cluster point of net with respect to a certain type of class of subsets is demonstrated. Further, we show
that b-I-cluster point of a net in a b-compact space always exist.
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1. Introduction

We start with the definition of statistical convergence which is an extension of the concept of ordinary
convergence of a sequence of real numbers (see [14], [29]) as follows: Let N denotes the set of all
positive integers. For A ⊆ N, the asymptotic or natural density (see [16], [24]) of A is defined by

δ(A) = lim
n→∞

|A∩{1,2,...,n}|
n

, provided the limit exists, where |K| denotes the cardinality of the set K. A

sequence (zn)n∈N of real numbers is called statistically convergent to zo ∈ R (set of all real numbers) if for
every ε > 0, δ({k ∈ N : |zk − zo| ≥ ε}) = 0. For applications of statistical convergence, interested readers
can see references [8,9,21]. In 2002, Baláž et. al. (see [7]) gave a new extension, called I-convergence,
of statistical convergence of real sequences using ideal of subsets of N. Recall that an ideal (see [18]) I

on a non-empty set X is a non-empty family of subsets of X that satisfies the conditions: (i) ∅ ∈ I, (ii)
A ⊆ B ∈ I implies A ∈ I and (iii) A, B ∈ I implies A ∪ B ∈ I. I is said to be non-trivial if I 6= {∅}
and X /∈ I. A non-trivial ideal I on X is called admissible if I contains each singleton subsets of X . For
example, Ifin := {A ⊆ N : A is finite} and Iδ := {A ⊆ N : δ(A) = 0} are admissible ideals on N. On the
other hand, a filter (see [18]) F on a non-empty set X is a non-empty family of subsets of X which obeys
the conditions: (i) ∅ /∈ F, (ii) A ⊇ B ∈ F implies A ∈ F, and (iii) A, B ∈ F implies A ∩ B ∈ F. Notice
that I is a non-trivial ideal on X if and only if FI = {A ⊆ X : X \ A ∈ I} is a filter on X . The filter FI

is called the associated filter of I. For some new results related to associated filter presented by Modak
et. al., interested readers can see [22]. Recently, Lahiri and Das (see [19]) (resp., Di Maio and Kočinac
(see [11])) settled the notion of I-convergence (resp., statistical convergence) in topological spaces. On
the other hand, in [6], the concept of open set in topological spaces has been extended to b-open set by
Andrijević. For more information, readers are referred to [2,3,4,5]. In a very recent, utilizing b-open set,
Granados (see [15]) has set up an interesting generalization of the concept of I-convergence in topological
spaces by the name of b-I-convergence.
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Since the class of all b-open sets does not form a topology again, it is reasonable to consider b-I-
convergence in topological space and to investigate its effect to the basic properties. We organize this
write-up by dividing into 5 sections. In section 3, various topological aspects regarding b-I-convergence
of sequences and b-I-cluster point of sequences are studied. In section 4, we introduced b-convergence of
nets in topological spaces and studied its some properties. Here, we have shown that a map f : Z → W is
quasi-b-irresolute if and only if for every net (sd)d∈D converging to zo, the net (f(sd)d∈D) b-converges to
f(zo). In section 5, b-I-convergence and b-I-cluster point of nets has been disclosed and some important
topological observations are demonstrated carefully.

2. Known Facts

Throughout this paper, (Z, σ) (or Z) and (W, ρ) (or W ) will stand for a topological space on which no
separation axioms are permissible unless explicitly recalled, and I for a non-trivial ideal on N otherwise
mentioned clearly. Now, we recall I-convergence and statistical convergence in topological spaces from
literature as follows:

Definition 2.1. [19] A sequence (zn)n∈N in Z is addressed as I-convergent to zo ∈ Z if for every open

set Q containing zo, {n ∈ N : zn /∈ Q} ∈ I, and is expressed by zn
I
−→ zo.

Definition 2.2. [11] A sequence (zn)n∈N in Z is said to be statistically convergent to zo ∈ Z if for every

open set Q containing zo, δ({n ∈ N : zn /∈ Q}) = 0, and is expressed by zn
stat
−−→ zo.

In this paragraph, we now collect some basic notions and terminologies from [6], [10] and [1]. A subset
Q of Z is called b-open [6] if Q ⊆ Cl(Int(Q)) ∪ Int(Cl(Q)), where ‘Cl’ (resp., ‘Int’) denotes the closure
(resp., interior) operator in Z. The family of all b-open sets in Z is denoted as BO(Z). Complement of
a b-open set is known as b-closed [6]. For Q ⊆ Z, its b-closure (resp., b-interior), denoted by bcl(Q) [6]
or Clb(Q) [10] (resp., bint(Q) [6] or Intb(Q) [10]), is defined in an analogous manner of Cl (resp., Int)
operator. A subset Q of Z is said to be a b-neighbourhood [10] of a point zo ∈ Z if there exists a b-open
set U such that zo ∈ U ⊆ Q. We use the notation Nb(zo) for the collection of all b-neighbourhoods of
zo. A point zo ∈ Z is called a b-limit point [1] of Q ⊆ Z if for every b-open set U containing zo, we have
U ∩ (Q \ {zo}) 6= ∅, and the collection of all b-limit points of Q is denoted by Db(Q).

Definition 2.3. A space Z is called

1. b-T0 (see [10]) if for any pair of distinct points x and y of Z, there exists a b-open set U containing
x but not y or a b-open set V containing y but not x.

2. b-T2 or b-Hausdorff (see [26]) if for any pair of distinct points x and y of Z, there exist U , V ∈
BO(Z) such that x ∈ U , y ∈ V and U ∩ V = ∅.

Definition 2.4. A function f : Z → W is said to be b-continuous (see [13,28]) (resp., b-irresolute (see
[12,28])) at zo ∈ Z if for each open (resp., b-open) set V containing f(zo), there exists a b-open set Q
containing zo such that f(Q) ⊆ V .

3. b-I-convergence of sequence in topological spaces

We begin this section by recalling the definition of b-I-convergence from [15].

Definition 3.1. [15] A sequence (zn)n∈N in a space Z is said to be b-I-convergent to a point zo ∈ Z
if for every b-open set Q containing zo, we have {n ∈ N : zn /∈ Q} ∈ I. Symbolically, we express it as

b-I-lim zn = zo or zn
b−I
−−→ zo, and call zo as b-I-limit of the sequence (zn)n∈N.

Example 3.2. Let Z = {p, q, r} and σ = {∅, {p}, {q}, {p, q}, Z}. Then BO(Z) = {∅, {p}, {q},
{p, q}, {p, r}, {q, r}, Z}. Define a sequence (zn)n∈N in Z as follows:

zn =











q, if n is a prime number

p, if n is a square number

r, otherwise.
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Then for any b-open set Q containing r, {n ∈ N : zn /∈ Q} is the set P of all prime numbers or the set
S of all square numbers or ∅. Consider the ideal I = Iδ on N. Since δ(P ) = δ(S) = δ(∅) = 0, we have
{n ∈ N : zn /∈ Q} ∈ I. Hence, the sequence (zn)n∈N is b-I-convergent to r.

Lemma 3.3. [6] Every open set in Z is a b-open set.

Lemma 3.4. If I = Ifin, then b-I-convergence in Z implies usual convergence.

Proof. Let (zn)n∈N be a sequence in Z such that zn
b−I
−−→ zo ∈ Z. To show zn −→ zo, let Q be any open

set containing zo. Then Q is a b-open set, and since zn
b−I
−−→ zo, so {n ∈ N : zn /∈ Q} ∈ I = Ifin. Take

no = max{n ∈ N : zn /∈ Q}. Then for all n ≥ no, zn ∈ Q, as required. �

Corollary 3.5. If I = Ifin, then b-I-convergence in Z implies b-convergence (see [28]).

Proposition 3.6. If Z be such a space that σ = BO(Z), and if I be an admissible ideal not containing
any infinite subset of N, then both the concepts of usual convergence and b-I-convergence coincide.

Proof. The proof is straightforward, and thus removed. �

Lemma 3.7. If I = Iδ, then b-I-convergence in Z implies statistical convergence.

Proof. Let (zn)n∈N be a sequence in Z such that zn
b−I
−−→ zo ∈ Z. To show zn

stat
−−→ zo, let Q be any open

set containing zo. Then Q is a b-open set, and since zn
b−I
−−→ zo, so {n ∈ N : zn /∈ Q} ∈ I = Iδ. Thus

δ({n ∈ N : zn /∈ Q}) = 0, as required. �

Theorem 3.8. Suppose X be a b-I-space with |X | ≥ 2.

1. If b-I-convergence in Z coincides with usual convergence, then I = Ifin.

2. If b-I-convergence in Z coincides with statistical convergence, then I = Iδ.

Proof. We give the proof of 1 only. Let x, y ∈ Z with x 6= y. Since Z is a b-T0-space, there exists
Q ∈ BO(Z) such that x ∈ Q but y /∈ Q. Let A ∈ Ifin, and define a sequence (zn)n∈N in Z as:

zn =

{

y, if n ∈ A

x, if n /∈ A.

Then (zn)n∈N converges to the point x. By hypothesis, zn
b−I
−−→ x. Since Q is a b-open set containing x,

{n ∈ N : zn /∈ Q} = A ∈ I. Thus Ifin ⊆ I. We now claim that I doesn’t contain any infinite subset of N.
If possible, let I contains an infinite subset M of N. Since I is non-trivial, N \ M is also infinite. Define
a sequence (tn)n∈N in Z as:

tn =

{

y, if n ∈ M

x, if n ∈ N \ M.

Obviously then, tn
b−I
−−→ x. On the other side, (tn)n∈N doesn’t converge to x. This contradicts our

hypothesis. Therefore I ⊆ Ifin and consequently, I = Ifin. �

Lemma 3.9. [15] b-I-convergence implies I-convergence, but not conversely.

Remark 3.10. Converse of Lemma 3.9 is considered by Granados in Remark 2 of [15] with an additional
condition ‘discreteness’ of the space. Here, we mention that this condition is just a sufficient condition,
not a necessary one because in Sierpiński space, I-convergence implies b-I-convergence though it is not a
discrete space. In following lemma, we give a positive response of the open problem set by Granados in
Remark 3 of [15].
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Lemma 3.11. If σ = BO(Z), then b-I-convergence coincides with I-convergence.

Lemma 3.12. Let I and J be two non-trivial ideals on N such that I ⊆ J. If (zn)n∈N be a sequence in Z

such that zn
b−I
−−→ zo, then zn

b−J
−−→ zo.

Proof. Proof is evident. �

Lemma 3.13. Let I and J be two non-trivial ideals on N and (zn)n∈N a sequence in Z. If zn
b−I
−−→ zo

and zn
b−J
−−→ zo, then zn

b−I∩J
−−−−→ zo.

Proof. Proof is evident. �

Theorem 3.14. Suppose Z is a b-Hausdorff space. If (zn)n∈N be a b-I-convergent sequence in Z, then
b-I-limit of (zn)n∈N is unique.

Proof. If possible, suppose that the b-I-convergent sequence (zn)n∈N has two b-I-limits x and y with
x 6= y. Since Z is a b-Hausdorff space, there exist P , Q ∈ BO(Z) such that x ∈ P , y ∈ Q and P ∩Q = ∅.
On the other side, {n ∈ N : zn /∈ P } ∈ I and {n ∈ N : zn /∈ Q} ∈ I. Now, N = {n ∈ N : zn ∈ Z} =
{n ∈ N : zn ∈ Z \ (P ∩ Q)} ⊆ {n ∈ N : zn /∈ P } ∪ {n ∈ N : xn /∈ Q} ∈ I implies N ∈ I, a contradiction
contradicting the fact that I is non-trivial. Hence, b-I-limit of (zn)n∈N is unique. �

Corollary 3.15. Suppose Z is a Hausdorff space. If (zn)n∈N be a b-I-convergent sequence in Z, then
b-I-limit of (zn)n∈N is unique.

Theorem 3.16. Suppose I is an admissible ideal on N. If there exists a sequence (zn)n∈N of distinct
elements in a set Q ⊆ Z which is b-I-convergent to zo ∈ Z, then zo is a b-limit point of Q.

Proof. Let G be an arbitrary b-open set containing zo. Since zn
b−I
−−→ zo, {n ∈ N : zn /∈ G} ∈ I and

consequently, {n ∈ N : zn ∈ G} /∈ I (because: if {n ∈ N : zn ∈ G} ∈ I, then N = {n ∈ N : zn /∈ G} ∪ {n ∈
N : zn ∈ G} ∈ I which contradicts that I is non-trivial). Moreover, {n ∈ N : zn ∈ G} is an infinite set (if
not, then {n ∈ N : zn ∈ G} is finite, and since I is an admissible ideal, so {n ∈ N : zn ∈ G} =

⋃

zn∈G

{n} ∈ I

which contradicts that {n ∈ N : zn ∈ G} /∈ I). Pick no ∈ {n ∈ N : zn ∈ G} such that zno
6= zo. Then

zno
∈ Q ∩ (G \ {zo}) proving that Q ∩ (G \ {zo}) 6= ∅, as targeted. �

Corollary 3.17. Suppose I is an admissible ideal on N. If there exists a sequence (zn)n∈N of distinct
elements in a set Q ⊆ Z which is b-I-convergent to zo ∈ Z, then zo is a limit point of Q.

Corollary 3.18. Suppose I is an admissible ideal on N. If there exists a sequence (zn)n∈N of distinct
elements in a set Q ⊆ Z which is b-I-convergent to zo ∈ Z, then zo ∈ Clb(Q).

Definition 3.19. Let (zn)n∈N be a sequence in a space Z. A point zo ∈ Z is said to be a b-cluster point
of (zn)n∈N if for every b-open set Q containing zo, the set {n ∈ N : zn ∈ Q} is infinite.

Theorem 3.20. Suppose I is an admissible ideal on N, and (zn)n∈N is a sequence in Z. If (zn)n∈N has
a b-I-convergent subsequence, then (zn)n∈N has a b-cluster point.

Proof. Let (znk
) be a subsequence of (zn)n∈N such that znk

b−I
−−→ zo ∈ Z. To show zo is a b-cluster point

of (zn)n∈N, let G be an arbitrary b-open set containing zo. Then {k ∈ N : znk
/∈ G} ∈ I. Since I is an

admissible ideal, {k ∈ N : znk
∈ G} is infinite. Therefore {n ∈ N : zn ∈ G} is an infinite set, and hence

zo is a b-cluster point of (zn)n∈N. �

Theorem 3.21. If (zn)n∈N be a sequence in a b-closed set F ⊆ Z which is b-I-convergent to zo ∈ Z,
then zo ∈ F .
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Proof. Assume on contrary that zo /∈ F . Since F is b-closed, F = Clb(F ). Thus zo /∈ Clb(F ). Then

there exists a b-open set G containing zo such that F ∩ G = ∅, by Lemma 2.2. of [10]. Since zn
b−I
−−→ zo,

{n ∈ N : zn /∈ G} ∈ I and hence {n ∈ N : zn ∈ G} /∈ I. This gives {n ∈ N : zn ∈ G} 6= ∅. Pick
no ∈ {n ∈ N : zn ∈ G}. Then zno

∈ G. On the other side, for each n, zn ∈ F and this implies zno
∈ F .

Therefore F ∩ G 6= ∅, a contradiction. Hence zo ∈ F . �

Corollary 3.22. If (zn)n∈N be a sequence in a closed set F ⊆ Z which is b-I-convergent to zo ∈ Z, then
zo ∈ F .

Theorem 3.23. Let g : Z → W be a b-irresolute function. If (zn)n∈N be b-I-convergent to zo ∈ Z, then
(g(zn))n∈N is b-I-convergent to g(zo).

Proof. Let Q be any b-open set in W containing g(zo). Since g : Z → W is b-irresolute, there exists a

b-open set P in Z containing zo such that g(P ) ⊆ Q. Since zn
b−I
−−→ zo, {n ∈ N : zn /∈ P } ∈ I. It is

obvious that {n ∈ N : g(zn) /∈ Q} ⊆ {n ∈ N : zn /∈ P }. Consequently, {n ∈ N : g(zn) /∈ Q} ∈ I which

shows that g(zn)
b−I
−−→ g(zo), and this proves the theorem. �

Theorem 3.24. Let f : Z → W be a b-continuous function. If (zn)n∈N be b-I-convergent to zo ∈ Z, then
(f(zn))n∈N is I-convergent to f(zo).

Proof. The proof is parallel to that of Theorem 3.23. �

For our next result, we define a new function as follows:

Definition 3.25. A function g : Z → W is said to be quasi-b-irresolute if for each z ∈ Z and for every
b-open set Q containing g(z), there exists an open set P containing z such that g(P ) ⊆ Q.

Example 3.26. Consider Z = {a, b, c} with σ = {∅, {a, b}, Z} and W = {x, y} with ρ = {∅, {x}, W}.
Then BO(W ) = {∅, {x}, W}. Define f : Z → W by f(a) = f(b) = x and f(c) = y. Then f is a
quasi-b-irresolute function.

Theorem 3.27. Suppose I is an admissible ideal on N, and Z is a first countable space. Then g : Z → W
is quasi-b-irresolute if and only if for every sequence (zn)n∈N which is I-convergent to zo ∈ Z, the sequence
(g(zn))n∈N is b-I-convergent to g(zo).

Proof. The forward implication is very transparent. For reverse implication, assume that g is not quasi-
b-irresolute. Then there is some zo ∈ Z at which g is not quasi-b-irresolute. This means that there
is a b-open set Q in W containing g(zo) such that g-image of every open set containing zo intersects
W \ Q. Since Z is a first countable space, it has a countable local base, say {P1, P2, . . . , Pn, . . . } at

zo. For each n ∈ N, let Gn :=
n
⋂

k=1

Pk. Then {G1, G2, . . . , Gn, . . . } is also a local base at zo, and

G1 ⊇ G2 ⊇ · · · Gn ⊇ · · · . Moreover, for every n ∈ N, g(Gn) ∩ (W \ Q) 6= ∅. So for every n ∈ N, pick
wn ∈ g(Gn) ∩ (W \ Q). Then there exists zn ∈ Gn such that g(zn) = wn for every n. Since Q is a
b-open set containing g(zo) and {n ∈ N : g(zn) = wn /∈ Q} = N /∈ I (as I is non-trivial), (g(zn))n∈N is
not b-I-convergent to g(zo). Now, we claim that (zn)n∈N is I-convergent to zo. For this purpose, let U be
any open set containing zo. Since {G1, G2, . . . , Gn, . . . } is a local base at zo, there is some no ∈ N such
that Gno

⊆ U . Thus for all n ≥ no, zn ∈ Gno
and so zn ∈ U . This yields {n ∈ N : zn /∈ U} is finite

and consequently, δ{n ∈ N : zn /∈ U} = 0. Since I is an admissible ideal, {n ∈ N : zn /∈ U} ∈ I. Thus

zn
I
−→ zo. Therefore by our hypothesis, g(zn)

b−I
−−→ g(zo). Thus we arrive at a contradiction. Hence g is a

quasi-b-irresolute function. �

Corollary 3.28. Suppose I is an admissible ideal on N, and Z is a first countable space. Then h : Z → W
is continuous if and only if for every sequence (zn)n∈N which is I-convergent to zo ∈ Z, the sequence
(h(zn))n∈N is I-convergent to h(zo).
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Lemma 3.29. [23] Let (Z×W, τ) be the topological product of the spaces (Z, σ) and (W, ρ). If U ∈ BO(Z)
and V ∈ BO(W ), then U × V ∈ BO(Z × W ).

Theorem 3.30. Let (
m
∏

i=1

Zi, σ) be the topological product of the spaces (Zi, σi) for i = 1, 2, . . . , m, and

let (zi(n))n∈N be a sequence in Zi. If (z1(n), z2(n), . . . , zm(n))n∈N be b-I-convergent to (x1, x2, . . . , xm) ∈
m
∏

i=1

Zi, then (zi(n))n∈N is b-I-convergent to xi ∈ Zi for all i = 1, 2, . . . , m.

Proof. Pick io ∈ {1, 2, . . . , m} arbitrarily and then fix it. To show zio
(n)

b−I
−−→ xio

, let Qio
be any b-open

set in Zio
containing the point xio

. Define Q =
m
∏

i=1

Ui, where

Ui =

{

Zi, if i 6= io

Qio
, if i = io.

Then by Lemma 3.29, Q is a b-open set in
m
∏

i=1

Zi. Moreover, (x1, x2, . . . , xm) ∈ Q, by construc-

tion of Q. Since (z1(n), z2(n), . . . , zm(n))n∈N is b-I-convergent to (x1, x2, . . . , xm), we have {n ∈ N :
(z1(n), z2(n), . . . , zm(n)) /∈ Q} ∈ I. One can easily check that {n ∈ N : zio

(n) /∈ Qio
} ⊆ {n ∈ N :

(z1(n), z2(n), . . . , zm(n)) /∈ Q}. Since I is an ideal, it follows that {n ∈ N : zio
(n) /∈ Qio

} ∈ I. Hence

zio
(n)

b−I
−−→ xio

. As io ∈ {1, 2, . . . , m} was arbitrary, the proof completes here. �

Theorem 3.31. Let (
∏

α∈∆

Zα, σ) be the topological product of a family of topological spaces {(Zα, σα) : α ∈

∆}, where ∆ is an indexing set, and for each α ∈ ∆, let (zα(n))n∈N be a sequence in Zα. If (zα(n))n∈N

be b-I-convergent to xα ∈ Zα for all α ∈ ∆, then ((zα(n))α∈∆)n∈N is I-convergent to (xα)α∈∆ ∈
∏

α∈∆

Zα.

Proof. To prove ((zα(n))α∈∆)n∈N is I-convergent to (xα)α∈∆, let Q be an arbitrary open set in
∏

α∈∆

Zα

containing (xα)α∈∆. Then we can find a basic open set
∏

α∈∆

Qα such that (xα)α∈∆ ∈
∏

α∈∆

Qα ⊆ Q,

where Qα is open in Zα for each α ∈ ∆ and Qα = Zα except for finitely many values of α. Let
∆o = {α ∈ ∆ : Qα 6= Zα}. Then ∆o is a finite subset of ∆. Now, for k ∈ {n ∈ N : (zα(n))α∈∆ /∈ Q},
(zα(k))α∈∆ /∈ Q. It implies that (zα(k))α∈∆ /∈

∏

α∈∆

Qα (since
∏

α∈∆

Qα ⊆ Q), and hence there exists at least

one αo ∈ ∆o such that zαo
(k) /∈ Qαo

. Thus k ∈ {n ∈ N : zαo
(n) /∈ Qαo

} ⊆
⋃

α∈∆o

{n ∈ N : zα(n) /∈ Qα}.

Therefore {n ∈ N : (zα(n))α∈∆ /∈ Q} ⊆
⋃

α∈∆o

{n ∈ N : zα(n) /∈ Qα}. On the other side, for each

α ∈ ∆o, Qα is a b-open subset of Zα containing xα, using Lemma 3.3. Since zα(n)
b−I
−−→ xα, we have

{n ∈ N : zα(n) /∈ Qα} ∈ I for all α ∈ ∆o. Since ∆o is finite, we have
⋃

α∈∆o

{n ∈ N : zα(n) /∈ Qα} ∈ I and

consequently, {n ∈ N : (zα(n))α∈∆ /∈ Q} ∈ I. Hence ((zα(n))α∈∆)n∈N is I-convergent to (xα)α∈∆. �

Definition 3.32. A point zo ∈ Z is said to be b-ω-accumulation (resp., ω-accumulation) point of a subset
Q ⊆ Z if for every b-open (resp., open) set U containing zo, U ∩ Q is an infinite set.

Definition 3.33. A point zo of a space Z is said to be a b-I-cluster (resp., I-cluster (see [19])) point of
a sequence (zn)n∈N in Z if for any b-open (resp., open) set Q containing zo, {n ∈ N : zn ∈ Q} /∈ I.

Theorem 3.34. Let I be an admissible ideal on N and g : Z → W a b-irresolute function. If z0 be a
b-I-cluster point of a sequence (zn)n∈N in Z, then g(z0) is b-I-cluster point of g(zn)n∈N in W .

Proof. To show g(z0) is b-I-cluster point of g(zn)n∈N, let T be any b-open set containing g(z0). By b-
irresoluteness of g, there exists a b-open set Q containing z0 such that g(Q) ⊆ T . Since z0 is a b-I-cluster
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point (zn)n∈N, so {n ∈ N : zn ∈ Q} /∈ I. It can be easily verify that {n ∈ N : zn ∈ Q} ⊆ {n ∈ N : g(zn) ∈
T }, where {n ∈ N : zn ∈ Q} /∈ I. From here we conclude that {n ∈ N : g(zn) ∈ T }. Hence g(z0) is
b-I-cluster point of g(zn)n∈N. �

Theorem 3.35. Let I be an admissible ideal on N. If each sequence (zn)n∈N in Z has a b-I-cluster point,
then every infinite subset of Z possesses a b-ω-accumulation point. Converse is true if I is an admissible
ideal containing no infinite subset of N.

Proof. Suppose that Q is an infinite subset of Z, and (zn)n∈N is a sequence of distinct elements of Q.
By hypothesis, (zn)n∈N has a b-I-cluster point, say zo in Z. Then for every b-open set U containing zo,
we have {n ∈ N : zn ∈ U} /∈ I. Because of I is admissible, {n ∈ N : zn ∈ U} is an infinite set. Hence U
contains infinitely many points of Q i.e., U ∩ Q is infinite. So zo is a b-ω-accumulation point of Q.

For converse, let I be an admissible ideal containing no infinite subset of N, and every infinite subset
of Z has a b-ω-accumulation point. Let (zn)n∈N be a sequence in Z, and Q be its range set. Now, if Q
be infinite, then by hypothesis, Q has a b-ω-accumulation point zo ∈ Z. Then for every b-open set U
containing zo, U ∩ Q is an infinite set. Consequently, U contains infinitely many points of Q and hence
of the sequence (zn)n∈N. Thus {n ∈ N : zn ∈ U} is infinite and so {n ∈ N : zn ∈ U} /∈ I as I contains no
infinite set. So zo is a b-I-cluster point of (zn)n∈N. If Q be finite, then there is a point yo ∈ Z such that
zn = yo for infinitely many n. As a result, for every b-open set U containing yo, {n ∈ N : zn ∈ U} being
infinite is not in I. So yo is a b-I-cluster point of (zn)n∈N. �

Corollary 3.36. Let I be an admissible ideal on N. If each sequence (zn)n∈N in Z has a b-I-cluster point,
then every infinite subset of Z possesses an ω-accumulation point.

For our next result let us recall b-compact and b-Lindelöf spaces. A space Z is a called b-compact or
γ-compact (see [13]) (resp., b-Lindelöf (see [25,12]) space if every b-open cover of Z has a finite (resp.,
countable) subcover.

Theorem 3.37. Let I be an admissible ideal on N. If Z be a b-Lindelöf space such that each sequence in
Z has a b-I-cluster point, then Z is a b-compact space.

Proof. Suppose that Q = {Qα : α ∈ ∆} is an arbitrary b-open cover of Z, where ∆ is an index set. Since
Z is a b-Lindelöf space, Q has a countable subcover, say Q0 = {Q1, Q2, . . . , Qn, . . . }. Inductively, let us
define J1 = Q1 and for m > 1, Jm is the first member of the sequence (Qn) which is not covered by
m−1
⋃

i=1

Ji. We claim that the construction process of Ji’s will stop after a finite number of steps. If not,

then one can pick a point z1 ∈ J1 and for every m > 1, zm ∈ Jm such that zm /∈ Ji for all i < m. Thus
(zm)m∈N is a sequence in Z. By hypothesis, (zm)m∈N has a b-I-cluster point zo ∈ Z. Then zo ∈ Jio

for
some io because {Jm : m ∈ N} covers Z. Since Jio

is a b-open set containing zo, {m ∈ N : zm ∈ Jio
} /∈ I.

Since I is an admissible ideal, M = {m ∈ N : zm ∈ Jio
} must be an infinite set. So there exists m > io

such that m ∈ M and hence zm ∈ Jio
. This leads a contradiction. So there exists mo ∈ N such that

{J1, J2, . . . , Jmo
} is a finite subcollection of Q that covers Z. Hence Z is b-compact. �

Corollary 3.38. Let I be an admissible ideal on N. If Z be a b-Lindelöf space such that every sequence
in Z has a b-I-cluster point, then Z is a compact space.

4. b-convergence of net in topological spaces

Before entering into this section, let us collect following mathematical tools.

Definition 4.1. [17] A directed set is a pair (D, ≥) where D is a non-empty set and ≥ a binary relation
on D such that ≥ is reflexive, transitive and for every pair of elements m, n ∈ D, there exists p ∈ D
such that p ≥ m and p ≥ n.

Definition 4.2. [17] Let X be a non-empty set, and (D, ≥) a directed set. By a net in X, we mean a
mapping s : D → X which will be denoted by (sd)d∈D or simply by (sd).
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We define b-convergence of a net in topological space as follows:

Definition 4.3. A net s : D → Z in a space Z is said to b-converge to zo ∈ Z, symbolized as s
b
−→ zo, if

for any b-open set Q containing zo, there exists do ∈ D such that for all d ≥ do, sd ∈ Q. In this regard,
we call zo as a b-limit of the net (sd) and write b-lim sd = zo.

Existence of b-convergent of a net in topological space is considered in the following example.

Example 4.4. Let Z = {a, b, c} and σ = {∅, {a}, {b}, {a, b}, Z}. Then BO(Z) = {∅, {a}, {b},
{a, b}, {a, c}, {b, c}, Z}. Let D = {{a}, {a, b}, Z}, and define ≥ on D as: for all U, V ∈ D, U ≥ V if and
only if U ⊆ V . Then (D, ≥) is a directed set. Define a net s : D → Z by s{a} = s{a,b} = c and sZ = a.

Then s
b
−→ c.

Remark 4.5. Since every open set is b-open, it is clear that b-convergence of a net implies ordinary
convergence of that net whereas converse is not valid at all. For justification, if we consider the indiscrete
topology on N and a net s : N → N defined by sn = n for all n ∈ N, then one can easily check that (sn)
converges to 10 but not b-converges to 10.

Theorem 4.6. If Z be a b-T2 space, then every b-convergent net in Z has unique b-limit.

Proof. Let s : D → Z be a net in Z such that sd
b
−→ x and sd

b
−→ y, where x, y ∈ Z and x 6= y. Since Z is

b-T2, there exist P , Q ∈ BO(Z) such that x ∈ P , y ∈ Q and P ∩ Q = ∅. Also, there exist m, n ∈ D such
that sd ∈ P for every d ≥ m and sd ∈ Q for every d ≥ n. Since D is a directed set, there exists p ∈ D
such that p ≥ m and p ≥ n. Thus, for all d ≥ p, sd ∈ P and sd ∈ Q, showing that P ∩ Q 6= ∅. This is a
contradiction. Hence, every b-convergent net in Z has unique b-limit. �

Theorem 4.7. If every b-convergent net in a B∗-space (see [23]) Z has unique b-limit, then Z is a b-T2

space.

Proof. If possible, assume that Z is not b-T2. Then there exists a pair x, y with x 6= y in Z such that for
every P ∈ BO(Z, x) (the collection of all b-open subsets of Z containing x) and Q ∈ BO(Z, y), we have
P ∩ Q 6= ∅. Consider D = BO(Z, x) × BO(Z, y) with a binary relation ≥ defined by (P, Q) ≥ (U, V ) if
and only if P ⊆ U and Q ⊆ V . Since Z is a B∗-space, intersection of two b-open subsets of Z is again a
b-open set, and consequently, (D, ≥) is a directed set. Moreover, for every (P, Q) ∈ D, P ∩ Q 6= ∅, and
pick z(P,Q) ∈ P ∩ Q. Define a net s : D → Z by s(P,Q) = z(P,Q) for every (P, Q) ∈ D. We now show that
the net s b-converges to x. For this, let G be any b-open set containing x. Then (G, Z) ∈ D. Now, for
every (P, Q) ≥ (G, Z), we have P ⊆ G and s(P,Q) = z(P,Q) ∈ P ∩ Q ⊆ P . Thus s b-converges to x. In a
similar fashion, we can show that s b-converges to y also. This contradicts our hypothesis. Hence Z is a
b-T2 space. �

Theorem 4.8. Let zo be a point of a B∗-space Z, and Q ⊆ Z. Then

1. zo ∈ Db(Q) if and only if there exists a net (sd)d∈D in Q \ {zo} such that sd
b
−→ zo.

2. zo ∈ Clb(Q) if and only if there exists a net (sd)d∈D in Q such that sd
b
−→ zo.

3. Q is b-closed if and only if there is no net in Q which b-converges to a point of Z \ Q.

4. Q is b-open if and only if there is no net in Z \ Q which b-converges to a point of Q.

Proof. 1. Let zo ∈ Db(Q). Then for every A ∈ BO(Z, zo), A ∩ (Q \ {zo}) 6= ∅. Pick zA ∈ A ∩ (Q \ {zo}).
Now, let ≥ be a binary relation on D = BO(Z, zo) defined by U ≥ V if and only if U ⊆ V . Since Z is a
B∗-space, BO(Z, zo) is closed under finite intersection. Consequently, (D, ≥) is a directed set. Define a

net s : D → Q \ {zo} by sU = zU for all U ∈ D. To show sU
b
−→ zo, let G be any b-open set containing

zo. Then for every U ≥ G, we have U ⊆ G and sU = zU ∈ U ∩ (Q \ {zo}) ⊆ U ⊆ G. Thus sU
b
−→ zo.
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Conversely, suppose that (sd)d∈D is a net in Q \ {zo} and sd
b
−→ zo. To show zo ∈ Db(Q), let G be

any b-open set containing zo. Since sd
b
−→ zo, there exists do ∈ D such that whenever d ≥ do, sd ∈ G. On

the other hand, sd ∈ Q \ {zo} for all d ∈ D. Thus for every d ≥ do, sd ∈ G ∩ (Q \ {zo}), showing that
G ∩ (Q \ {zo}) 6= ∅. Hence zo ∈ Db(Q).

2. Proof is similar to that of 1.

3. Let Q be b-closed in Z. If possible, suppose that (sd)d∈D is a net in Q such that sd
b
−→ zo ∈ Z \ Q.

Then by 2, zo ∈ Clb(Q) = Q (since Q is b-closed). Now, zo ∈ Z \ Q implies zo /∈ Q, a contradiction.

Conversely, let there is no net in Q which b-converges to a point of Z \ Q. Now, let x ∈ Clb(Q). Then

by 2, there exists a net (sd)d∈D in Q such that sd
b
−→ x. By hypothesis, x ∈ Q. Thus Clb(Q) ⊆ Q. Since

Q ⊆ Clb(Q), Clb(Q) = Q. Hence Q is b-closed.

4. Follows from 3. �

Corollary 4.9. Let zo be a point of a space Z, and Q ⊆ Z. Then

1. if there exists a net (sd)d∈D in Q \ {zo} such that sd
b
−→ zo, then zo ∈ Db(Q).

2. if there exists a net (sd)d∈D in Q such that sd
b
−→ zo, then zo ∈ Clb(Q).

3. if Q is b-closed, then there is no net in Q which b-converges to a point of Z \ Q.

4. if Q is b-open, then there is no net in Z \ Q which b-converges to a point of Q.

Theorem 4.10. Let Z and W be two spaces, and f : Z → W be a function. Then

1. f is quasi-b-irresolute if and only if for every net (sd)d∈D converging to zo ∈ Z, the net (f(sd))d∈D

b-converges to f(zo).

2. if f is b-irresolute, then whenever a net (sd)d∈D b-converges to zo ∈ Z, the net (f(sd))d∈D b-
converges to f(zo).

3. if f is b-continuous, then whenever a net (sd)d∈D b-converges to zo ∈ Z, the net (f(sd))d∈D con-
verges to f(zo).

Proof. 1. Firstly, suppose f is quasi-b-irresolute. To show f(sd)
b
−→ f(zo), let Q be any b-open set

containing f(zo). Since f is quasi-b-irresolute, there exists an open set P containing zo such that f(P ) ⊆
Q. Since sd −→ zo, there exists do ∈ D such that for all d ≥ do, sd ∈ P . This implies f(sd) ∈ f(P ) ⊆ Q

for all d ≥ do. Hence f(sd)
b
−→ f(zo).

Conversely, let the condition holds. On contrary, suppose that f is not quasi-b-irresolute. Then there
exists a point zo ∈ Z and a b-open set Q ∋ f(zo) such that for every P ∈ σ(zo) = {U ⊆ Z : U ∈
σ and zo ∈ U}, f(P ) ∩ (W \ Q) 6= ∅. Pick wP ∈ f(P ) ∩ (W \ Q). Then for every P ∈ σ(zo), there exists
zP ∈ P such that f(zP ) = wP . Let ≥ be a binary relation on D = σ(zo) defined by U ≥ V if and only
if U ⊆ V . Then clearly, (D, ≥) is a directed set. Consider the net s : D → Z defined by sU = zU for all

U ∈ D. It is obvious that sU −→ zo. Then by hypothesis, f(sU )
b
−→ f(zo). But by construction, f(sU )

never b-converges to f(zo). Thus we reach at a contradiction. Hence f is quasi-b-irresolute.

2, 3. Proofs are omitted for their easiness. �

Recall that a point zo ∈ Z is said to be a b-cluster point (see [27]) of a net s : D → Z if for every
b-open set Q containing zo and for each d ∈ D, there is some do ≥ d such that sdo

∈ Q.

Theorem 4.11. Let s : D → Z be a net in a space Z, and for each do ∈ D, let Qdo
= {sd : d ≥

do and d ∈ D}. Then a point y ∈ Z is a b-cluster point of (sd)d∈D if and only if y ∈
⋂

d∈D

Clb(Qd).
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Proof. Let y is a b-cluster point of the net (sd)d∈D. Then for every b-open set G containing y, the net
sd is frequently in G. That is, for each d ∈ D, there exists do ∈ D such that do ≥ d and sdo

∈ G.
Moreover, sdo

∈ Qd. Thus Qd ∩ G 6= ∅ for every d ∈ D, and so y ∈ Clb(Qd), by Lemma 2.2 of [10].
Hence y ∈

⋂

d∈D

Clb(Qd).

Conversely, if possible, suppose that y is not a b-cluster point of (sd)d∈D. Then there exists a b-open
set G ∋ y and a do ∈ D such that whenever d ≥ do, sd /∈ G, and as a result Qdo

∩ G = ∅. Thus
y /∈ Clb(Qdo

) and hence y /∈
⋂

d∈D

Clb(Qd). This is a contradiction. Hence y is a b-cluster point of the net

(sd)d∈D. �

Theorem 4.12. Let (
m
∏

i=1

Zi, σ) be the topological product of the spaces (Zi, σi) for i = 1, 2, . . . , m, and

let (zi(d))d∈D be a net in Zi. If the net (z1(d), z2(d), . . . , zm(d))d∈D is b-convergent to (x1, x2, . . . , xm) ∈
m
∏

i=1

Zi, then (zi(d))d∈D is b-convergent to xi ∈ Zi for all i = 1, 2, . . . , m.

Proof. Proof is very straightforward. �

5. b-I-convergence of net in topological spaces

Throughout this section, I will stand for a non-trivial ideal on a directed set D. For every n ∈ D,
let Dn = {m ∈ D : m ≥ n}. Then Fo = {A ⊆ D : A ⊇ Dn for some n} is a filter on D, and
Io = {A ⊆ D : D \ A ∈ Fo} is a non-trivial ideal on D. A non-trivial ideal I on D is called D-admissible
(see [20]) if Dn ∈ FI for all n ∈ D.

Definition 5.1. Let Z be a space. A net s : D → Z is said to be b-I-convergent to zo ∈ Z, symbolically

we write sd
b−I
−−→ zo, if for every b-open set Q containing zo, we have {d ∈ D : sd /∈ Q} ∈ I. We call zo

as b-I-limit of the net (sd) and write b-I-lim sd = zo.

We now give a supporting example in favor of the existence of b-I-convergence of net in topological
spaces.

Example 5.2. Consider Z = {p, q, r} with σ = {∅, {p}, {q}, {p, q}, Z}. Then

BO(Z) = {∅, {p}, {q}, {p, q}, {p, r}, {q, r}, Z}.

Consider the directed set D = {{p}, {p, q}, Z} directed by the relation ≥ as: for all U, V ∈ D, U ≥ V
if and only if U ⊆ V . Let I = {∅, {{p}, {p, q}}, {{p}}, {{p, q}}}. Then I is a non-trivial ideal on D.
Consider the net s : D → Z defined by s{p} = s{p,q} = r and sZ = p. Then for every b-open set Q

containing p, {d ∈ D : sd /∈ Q} = ∅ or {{p}, {p, q}}, both of which are members of I. Thus sd
b−I
−−→ p.

Lemma 5.3. Suppose (sd)d∈D is a net in a space Z, zo ∈ Z, and I a non-trivial ideal on D. If I be

D-admissible and sd
b
−→ zo, then sd

b−I
−−→ zo. Converse holds if I = Io.

Proof. To show sd
b−I
−−→ zo, let Q be any b-open set containing zo. Since sd

b
−→ zo, there exists no ∈ D

such that for all d ≥ no, sd ∈ Q. This implies Dno
= {d ∈ D : d ≥ no} ⊆ {d ∈ D : sd ∈ Q}. Since I is

D-admissible, Dno
∈ FI whence D \ Dno

∈ I and hence {d ∈ D : sd /∈ Q} = D \ {d ∈ D : sd ∈ Q} ∈ I,

as required. Conversely, let sd
b−Io−−−→ zo. To show sd

b
−→ zo, let G be any b-open set containing zo. Then

{d ∈ D : sd /∈ G} ∈ Io implying that {d ∈ D : sd ∈ G} = D \ {d ∈ D : sd /∈ G} ∈ Fo. Thus there exists
do ∈ D such that {d ∈ D : sd ∈ G} ⊇ Ddo

= {d ∈ D : d ≥ do}. This yields that for all d ≥ do, sd ∈ G.

Hence sd
b
−→ zo. �

Theorem 5.4. If Z be a b-T2 space, and (sd)d∈D a net in Z such that sd
b−I
−−→ z ∈ Z and sd

b−I
−−→ w ∈ Z,

then z = w.
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Proof. Proof is obvious. �

Theorem 5.5. If every b-I-convergent net in a B∗-space Z has unique b-I-limit for every D-admissible
ideal I, then Z is b-T2.

Proof. If possible, assume that Z is not b-T2. Then there exists a pair x, y with x 6= y in Z such that for
every P ∈ BO(Z, x) and Q ∈ BO(Z, y), we have P ∩ Q 6= ∅. Consider D = BO(Z, x) × BO(Z, y) with a
binary relation ≥ defined by (P, Q) ≥ (U, V ) if and only if P ⊆ U and Q ⊆ V . Since Z is a B∗-space, it
follows that (D, ≥) is a directed set. Moreover, for every (P, Q) ∈ D, P ∩Q 6= ∅, and pick z(P,Q) ∈ P ∩Q.
Define a net s : D → Z by s(P,Q) = z(P,Q) for every (P, Q) ∈ D. Then the net s b-converges to x as well
as y also. Let I be any D-admissible ideal on D. Then by Lemma 5.3, the net s b-I-converges to x as
well as y. This contradicts our hypothesis. Hence Z is a b-T2 space. �

Theorem 5.6. A b-irresolute mapping f : Z → W preserves b-I-convergence of nets. Conversely, if Z
be a B∗-space and f : Z → W preserves b-I-convergence of nets for every D-admissible ideal I, then f is
b-irresolute.

Proof. Let (sd)d∈D be a net in Z such that sd
b−I
−−→ zo ∈ Z. To show f(sd)

b−I
−−→ f(zo), let G be any

b-open set containing f(zo). Since f is b-irresolute, there exists a b-open set H in Z containing zo such

that f(H) ⊆ G. Because sd
b−I
−−→ zo, {d ∈ D : sd /∈ H} ∈ I. Since f(H) ⊆ G, {d ∈ D : f(sd) /∈ G} ⊆ {d ∈

D : sd /∈ H}. As I is an ideal, it follows that {d ∈ D : f(sd) /∈ G} ∈ I, as desired.
Conversely, if possible, suppose that f is not b-irresolute at some zo ∈ Z. Then there exists a b-

open set G containing f(zo) such that for every H ∈ BO(Z, zo), we have f(H) * G. Thus for every
H ∈ BO(Z, zo), one can pick a point zH ∈ H such that f(zH) /∈ G. Define a binary relation ≥ on
D = BO(Z, zo) such that U ≥ V if and only if U ⊆ V for all U, V ∈ D. Then (D, ≥) is a directed set. Let

us define a net s : D → Z by sU = zU for all U ∈ D. Then one can easily verify that sU
b
−→ zo. Let I be

a D-admissible ideal on D. By Lemma 5.3, it follows that sU
b−I
−−→ zo. By hypothesis, f(sU )

b−I
−−→ f(zo).

This yields {U ∈ D : f(sU ) /∈ G} ∈ I. But by construction, {U ∈ D : f(sU ) /∈ G} = D. Hence D ∈ I, a
contradiction as I is a non-trivial ideal on D. �

We say that a filter F on a space Z b-converges to zo ∈ Z (or zo is a b-limit of the filter F) if Nb(zo) ⊆ F,
and zo is a b-cluster point of the filter F if every b-neighbourhood of zo intersects each member of F.
These concepts coincide with the Definition 3.7 of [27] where various topological properties regarding
these concepts have been presented nicely. Our next result is a new characterization of b-limit (resp.,
b-cluster point) of a certain type of filter in terms b-I-convergence (resp., b-I-cluster point, which is defined
below) of net.

Definition 5.7. A point zo ∈ Z is said to be b-I-cluster point of a net s : D → Z if for every b-open set
Q containing zo, {d ∈ D : sd ∈ Q} /∈ I.

Theorem 5.8. For every net s : D → Z, there is a filter G on Z such that zo ∈ Z is a b-I-limit of the net
(sd)d∈D if and only if zo is a b-limit of the filter G. Moreover, zo is b-I-cluster point of the net (sd)d∈D

if and only if zo is a b-cluster point of the filter G.

Proof. Let s : D → Z be a net, and I a non-trivial ideal on D. For every A ∈ FI (associated filter of I),
let A+ := {sd : d ∈ A}. Then each A+ is a non-empty subset of Z because each A ∈ FI is non-empty
(since FI is filter). We consider the family B = {A+ : A ∈ FI} of subsets of Z. It is quite obvious that
B serves as a filter base for some filter on Z. Indeed, for A+, B+ ∈ B, we have A, B ∈ FI. Since FI is a
filter, so A∩B ∈ FI and hence (A∩B)+ ∈ B. Since A∩B ⊆ A as well as B, we have (A∩B)+ ⊆ A+ ∩B+,
by construction of (·)+. Consider the filter G generated by the filter base B. We shall now show that G

fulfils our desired properties.

Let sd
b−I
−−→ zo. To show zo is a b-limit of the filter G, let R ∈ Nb(zo). Then there exists Q ∈ BO(Z, zo)

such that Q ⊆ R. Since sd
b−I
−−→ zo, so {d ∈ D : sd /∈ Q} ∈ I whence {d ∈ D : sd ∈ Q} ∈ FI. Name
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{d ∈ D : sd ∈ Q} = E. Then E+ ⊆ Q. Since E+ ∈ B, E+ ∈ G and hence Q ∈ G which further implies
R ∈ G (since G is filter). Thus Nb(zo) ⊆ G, as aimed.

Conversely, let zo be a b-limit point of the filter G. To show sd
b−I
−−→ zo, let Q be any b-open set

containing zo. Then Q ∈ Nb(zo). But Nb(zo) ⊆ G. Thus Q ∈ G. Since B generates G, so there exists
B ∈ FI such that B+ ⊆ Q. This implies that {d ∈ D : sd /∈ Q} ⊆ D \ B ∈ I, since B ∈ FI. Hence
{d ∈ D : sd /∈ Q} ∈ I. This shows that the net (sd)d∈D b-I-converges to zo.

Now, suppose that zo is a b-I-cluster point of the net (sd)d∈D. To show zo is a b-cluster point of the
filter G, let U ∈ Nb(zo). Then there exists B ∈ BO(Z, zo) such that B ⊆ U . By hypothesis, we have
{d ∈ D : sd ∈ B} /∈ I. This implies that {d ∈ D : sd /∈ B} /∈ FI. This means that {d ∈ D : sd /∈ B} can’t
contain any member of FI. Now. for every G ∈ G, there exists A ∈ FI such that A+ ⊆ G, since B is a
filter base for G. Since A * {d ∈ D : sd /∈ B}, there exists n ∈ A such that sn ∈ B. Also sn ∈ A+. So
A+ ∩ B 6= ∅. Moreover, A+ ∩ B ⊆ G ∩ U . Hence G ∩ U 6= ∅. So every b-open set containing zo intersects
every member of G, as aimed.

Conversely, let zo be a b-cluster point of the filter G, and Q be a b-open set containing zo. Claim:
{d ∈ D : sd ∈ Q} /∈ I. If possible, suppose that {d ∈ D : sd ∈ Q} ∈ I. Then {d ∈ D : sd /∈ Q} ∈ FI.
Name {d ∈ D : sd /∈ Q} = A. Then A+ ∈ B ⊆ G. By hypothesis, Q ∩ A+ 6= ∅. Let y ∈ Q ∩ A+. Then
y ∈ A+ implies y = sn for some n ∈ A which further yields that sn /∈ Q. Thus y /∈ Q, a contradiction as
y ∈ Q. Hence {d ∈ D : sd ∈ Q} /∈ I, which witnessing that zo is a b-I-cluster point of the net (sd)d∈D. �

In our following result, existence of b-I-cluster point of net has been investigated carefully. We recall
that a space Z is b-compact if and only if every family of b-closed sets having finite intersection property
has non-empty intersection (see [27], Proposition 3.3).

Theorem 5.9. Given a b-compact space Z, every net s : D → Z has a b-I-cluster point for every
non-trivial ideal I on D. Converse holds if I is a D-admissible ideal.

Proof. Let Z be a b-compact space, and (sd)d∈D a net in Z with a nontrivial ideal I on D. For every
A ∈ FI, let A+ := {sd : d ∈ A}. Then every A+ is a non-empty subset of Z because each A ∈ FI

is non-empty. Evidently, the family A = {A+ : A ∈ FI} of subsets of Z has the finite intersection
property. Indeed, for A+, B+ ∈ A, A, B ∈ FI implies A ∩ B ∈ FI yielding that (A ∩ B)+ 6= ∅. Moreover,
(A ∩ B)+ ⊆ A+ ∩ B+. Thus A+ ∩ B+ 6= ∅. Hence the family B = {Clb(A

+) : A ∈ FI} of b-closed (since
every Clb(A+) is b-closed) subsets of Z has the finite intersection property also, since A+ ⊆ Clb(A

+).
Since Z is b-compact, so ∩{Clb(A

+) : A ∈ FI} 6= ∅. Pick zo ∈ ∩{Clb(A
+) : A ∈ FI}. Claim: zo is a

b-I-cluster point of the net (sd)d∈D. For this, let Q be any b-open set containing zo. If possible, suppose
that {d ∈ D : sd ∈ Q} ∈ I. Then {d ∈ D : sd /∈ Q} ∈ FI. This implies that zo ∈ Clb({d ∈ D : sd /∈ Q}+).
So Q ∩ {d ∈ D : sd /∈ Q}+ 6= ∅. Pick x ∈ Q ∩ {d ∈ D : sd /∈ Q}+. Then x = sn for some
n ∈ {d ∈ D : sd /∈ Q}. This gives sn = x /∈ Q, whereas x ∈ Q also. Thus we reach at a contradiction.
Hence {d ∈ D : sd ∈ Q} /∈ I, as expected.

Conversely, if possible, suppose that Z is not a b-compact space. Then we have a b-open cover
U = {Uα : α ∈ ∆} of Z which has no finite subcover, where ∆ is an index set. Let D be the family
of all finite subsets of ∆. Then (D, ≥) is a directed set, where ≥ is defined as J ≥ K if and only
if K ⊆ J for J, K ∈ D. Since U has no finite subcover, for every J ∈ D, we can pick up a point
zJ ∈ Z \ ∪{Uα : α ∈ J}. Define a net s : D → Z by sJ = zJ for all J ∈ D. Let I be a D-admissible ideal
on D. Then by hypothesis, the net (sJ )J∈D has a b-I-cluster point, say zo ∈ Z. So there exists αo ∈ D

such that zo ∈ Uαo
. Evidently, {J ∈ D : sJ ∈ Uαo

} /∈ I. This yields that {J ∈ D : sJ /∈ Uαo
} /∈ FI. This

tells us that {J ∈ D : sJ /∈ Uαo
} can’t contain any member of FI. Since I is a D-admissible ideal, so for

every J ∈ D, {K ∈ D : K ≥ J} ∈ FI. In particular, for {αo} ∈ D, we have {K ∈ D : K ≥ {αo}} ∈ FI.
Hence {K ∈ D : K ≥ {αo}} * {J ∈ D : sJ /∈ Uαo

}. Thus there exists Ko ∈ D such that αo ∈ Ko and
sKo

= zKo
∈ Uαo

. But zKo
∈ Z \ ∪{Uα : α ∈ Ko}. This shows that zKo

/∈ Uαo
, a contradiction. Hence Z

is a b-compact space. �

We conclude this write-up by stating the following result which characterizes b-I-cluster points of net
in terms of a specific subset of Z.
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Theorem 5.10. Let s : D → Z be a net in a space Z, and I a non-trivial ideal on D. For every
A ∈ FI, let A+ := {sd : d ∈ A}. Then zo ∈ Z is a b-I-cluster point of the net (sd)d∈D if and only if
zo ∈

⋂

A∈FI

Clb(A
+).
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