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Gevrey Class Regularity and Stability for the Debye-Hiickel System in Critical
Fourier-Besov-Morrey Spaces
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ABSTRACT: In this paper, we study the analyticity of mild solutions to the Debye-Hiickel system with small
initial data in critical Fourier-Besov-Morrey spaces. Specifically, by using the Fourier localization argument,
the Littlewood-Paley theory and bilinear-type fixed point theory, we prove that global-in-time mild solutions
are Gevrey regular. As a consequence of analyticity, we get time decay of mild solutions in Fourier-Besov-
Morrey spaces. Finally, we show a blow-up criterion of the local-in-time mild solutions of the Debye-Hiickel
system.

Key Words: Debye-Hiickel system, Space analyticity, Blow-up criterion, Littlewood-Paley theory,
Fourier-Morrey-Besov spaces.

Contents
1 Introduction 1
2 Preliminaries 4
3 Gevrey Class Regularity 8
3.1 Proof of Theorem 1.3. . . . . . . . . . e e 13
4 Time decay of mild solutions 14
4.1 Proofof Theorem 1.4 . . . . . . . . . e 14
5 Blow-up criteria 14
5.1 Proof of Theorem 1.5. . . . . . . . . . . . . . 15

1. Introduction

In this paper, we consider the following Cauchy problem for the Debye-Hiickel system in R™ x R™:

v — Av = -V - (vVo) in R x (0, 00),
Ow — Aw =V - (wVe) in R x (0, 00), (1.1)
Ap=v—w in R™ x (0, 00), '

v(z,0) =vo(z), w(z,0)=we(x) inR",

where the unknown functions v = v(z,t) and w = w(z,t) denote densities of the electron and the hole in
electrolytes, respectively, ¢ = ¢(x,t) denotes the electric potential, vo(x) and wg(x) are the initial data.
Throughout this paper, we assume that n > 2.
Notice that the function ¢ is determined by the Poison equation in the third equation of (1.1), and it
is given by
¢ = (=A)" (w —v) = FH(|¢]?F(w —v)), (1.2)

where F is the Fourier transform. So, the system (1.1) can be reduced to the following system:
o —Av==V-(vV(=A)Hw—-v)) inR"x (0,00)

hw—Aw =V - (wV(=A)"Hw—v)) inR"x (0,00) (1.3)
v(x,0) =vo(z), w(z,0)=wo(z) in R™.
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Also the system (1.1) can be rewritten as the following equivalent integral system coming from the famous
Duhamel principle:

—et2 — Blo
{v(t)—e vo — B(v, 9) (1.4)

w(t) =e"®wo + B(w, ¢),
where

B(v, ) := —/0 t=TAY . (vV(—A)fl(w — v)) (1)dr,

t
B(w, ¢) ;:/ AV (wV (=A) " Hw —v)) (r)dr,
0
Any solution that satisfies system (1.4) is called a mild solution of the system (1.1).
The Debye-Hiickel system (1.1) is scaling invariant in the following sense: if (v,w) solves (1.1)
with the initial data (vo,wo) (¢ can be determined by (v,w)), then (v,,w,) with (vy,w,) (z,t) =
(721), A/Qw) (’yac7 'yzt) is also a solution to (1.1) with the initial data

(00,7, wo,y) () == (v*v0,7*wo) (v2) (1.5)
(¢, can be determined by (v, w-)).

Definition 1.1. A critical space for the initial data of the system (1.1) is any Banach space E C 8’ (R™)
whose norm is invariant under the scaling (1.5) for all v > 0, i.e.,

[(vo.,wo,7) (@)l 5 & [l (vo, wo) ()]l 5 -
X . —24 4 A —24 g A

In accordance with these scales, we can show that the space pairs S"Np7)\7q”' P S"Np7)\7q‘“' v
critical for (1.1) (see Remark 2.5 for details).

There is a huge literature on well-posedness for fluid dynamics PDEs with singular data in differ-
ent spaces, where the conditions are taken in norms of critical spaces. For instance, for Navier-Stokes
equations and related models, we have well-posedness results in the critical case of the following spaces:
Lebesgue space LP [29], Marcinkiewicz space LP*>° [40], Sobolev spaces H® [19], Lei-Lin spaces X*
[10,9,11], Besov spaces Bj , [41], Triebel-Lizorkin spaces F;, [15], Morrey spaces Mg‘ [30], Besov-Morrey
spaces Ny . [32], Fourier-Besov spaces I B, , [17,25], Fourier-Herz spaces FB{ , = B , [14], Fourier-
Besov-Morrey spaces N7 [4,3,2,5,20,1], BMO~! [31] and pseudomeasure spaces PM [35], among
others.

The system (1.1) has been studied extensively in various function spaces. Karch in [28] established
the proof of existence and uniqueness of global solutions of the system (1.1) for initial data in the Besov
spaces By ., with the condition of —1 < s <0 and p = ;45. Later, Zhao et al. [43] established the global

are

and local well-posedness for the system (1.1) in the critical Besov space By, i+; (R™) with 2 < p < 2n and
1 <7 < oo (which improved the corresponding results of Karch obtained in [28]). Kurokiba and Ogawa
in [33] obtained similar results for the initial data in critical Lebesgue and Sobolev spaces. Very recently,

Azanzal, Abbassi and Allalou [3] proved that small data global existence and large data local existence of

: . . s . —24+ 42 24 g A
mild solutions of the system (1.1) in critical Fourier-Morrey-Besov space ?Np g DX f}'Np g More

related research can be consulted in [36,37]. It should be noted that for the Navier-Stokes equations,
there is no existence result for initial data in a space with regularity index s < —1. In fact, the nonlinear
term of (1.1) appears to be more closely related to the quadratic nonlinear heat equation (~ u?) than to
the Navier-Stokes equations (~ u - Vu).Thus, the Debye-Hiickel system has a better property than the
Navier-Stokes equations in regard to the existence of solutions.
We mention here that if w vanishes (w = 0), the system (1.1) becomes to the well-known Keller-Segel

model of chemotaxis:

v =A7Av—V-(vV¢) inR"x (0,00),

Ap=v in R™ x (0, 00), (1.6)

v(x,0) = vo(z), in R™.
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In the paper [12] the local well-posedness of the system (1.6) has been proved in the three-dimensional
case. Iwabuchi and Nakamura [26,27] get the global well-posednes of (1.6) for small initial data in the

critical space f'B;erE (R™) with 1 <p<ooand 1<r<oo.

Our first aim in this paper is to show the analyticity of mild solutions to the system (1.1) by using
the method of Gevrey estimate, which was first introduced by Foias and Temam [23]. Since then,
the Gevrey class technique has become an important approach in the study of the space analyticity of
solutions, which was later developed by several researchers, particularly with regard to the Navier-Stokes
equations (NSE). Gruji and Kukavica [24] showed the Gevrey regularity in LP for the NSE, Bae [0]
proved the Gevrey estimate of solution for NSE in the critical Lie-Lin space X~!. More similar studies
on the analyticity of solutions for NSE can be seen in Lemarie-Rieusset [34] and the references therein.
Biswas [13] established Gevrey class regularity of solutions to a large class of dissipative equations in
Besov type spaces defined via caloric extension. In 2016, Zhao [42] proved that the global mild solutions
to the system (1.1) are Gevrey regular for all 2 < p < 2n and 1 < r < co. Recently, Cui and Xiao
[17] established the Gevrey class regularity for (1.1) in the Fourier-Besov space B, ,. Inspired by this,
we will establish the Gevrey class regularity for the system (1.1) in the Fourier-Besov-Morrey spaces
INS A g (larger than FB;  -spaces, ie., IN; = FB; ). The Gevrey class technique enables us to avoid
cumbersome recursive estimation of hlgher order derlvatives (any order derivative of the solution (v, w)
enjoys the same behavior with (v,w) in some sense), see [39]. The second aim of this paper is decay of
Fourier-Besov-Morrey norms of mild solutions. In the end, we prove the blow-up criteria of the local mild
solution of the Debye-Hiickel system (1.1). In some suitable sense, our results extend/ complement some
previous works such as [17,42,43,44,21,22].

Let us define our setting before we present our results. Denote the set of all polynomials by P and
the Morrey spaces by M, with norm

HfHMA = sup. Sup?” v I fll Lo (B(wo,r)) < 00
zoER

We define

) NI
EN;MZ ={fe8\?P| HfH?NZ,A,q — ZQJS!I ’wijMA <00, (1.7)
JEZ P

where {apJ} is the Littlewood-Paley decomposition (see Section 2 for details). The Fourier-Besov-Morrey
spaces ?N; A,q Were introduced by [20] in the context of active scalar equations. Later, these spaces were
employed to investigate the global well-posedness of the Navier-Stokes-Coriolis system in [18]. The space
(1.7) belongs to a class WhObe definition of the norm is based on Fourier transform, but it is not contained
in L?, i.e., there is f € N7 |  with infinite L*-norm.

Throughout this paper, we use ?N; A,q b0 denote the homogenous Fourier-Besov-Morrey spaces and
X4 to denote the indicator function of a set A. Let X, Y be Banach spaces, we use (v, w) € X to denote

(v,w) € X x X and
vl xay = lvllx + llvlly 5 [[(v,w)llx = [vlx + w]x,

C will denote constants which can be different at different places, A ~ B means that there are two
constants Cy,Cy > 0 such that
C1B < A< (0B,

V < W denotes the estimate V' < CW for some constant C' > 1, and p’ is the conjugate of p satisfying
l—|—1%:1f01"1§p§oo.

p
Since the argument employed in the proof of the global-in-time existence of mild solution of the system
no A

-2
(1.1) with small initial data in TN )\Z”’Jr” is crucial in the proof of our first main result, let us recall the
result obtained in [3].

Theorem 1.2. Letn > 2, p, > 2, max{n — (n — 1)p,0} < A< n, 1 <p<oo, q€[l,o0], (vo,wp) €

o4 mn 4 A
IN, AZ”’J”’ and p—lo + pi, = 1. Then there exists T > 0 such that the system (1.1) has a unique local mild
A, 0
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solution
(v,w) € X, where

_oqym Ay 2 , —2+Z+34+2
XZEPO([O,T);EN 2+pl+p+PD)m£p0([0’T);gN Po),

P,Aq P\
and
o4 mn A
(v,w) € € ([O,T);ENP’AZ”’”) .
Besides, there exizts K > 0 such that if (vo,wo) satisfies ||(vo,wo)| _syzn,a < K, then the above
. p’ P

P,A,q
assertion holds for T' = oco; i.e., the mild solution (v,w) is global.

Now we give the first result of this paper, which shows that mild solutions obtained in Theorem 1.2
are analytic in the sense of the Gevrey class.

Theorem 1.3. Letn > 2, py > 2, max{n — (n — 1)p,0} < A< n, 1 <p<oo, q€[l,o0], (vo,wp) €

2+ 55+5 11
:}-Np,k,q andp—o—k%—l.
Then, there exizts Ko > 0 such that if (vo,wo) satisfies ||(vo,wo)|| _opn s < Ko, the global-in-time
gN 7T

A,
mild solution obtained in Theorem 1.2 is analytic in the sense that o

I (/1710 1Pl |1x < (w0, w0l sz
TN PP

PiA,q

where eVHP! is the Fourier multiplier with symbol eVilel,

In the above theorem, we have proved analyticity of mild solutions, so that we can further obtain the
time decay estimates of mild solutions.

Theorem 1.4. Under the assumptions of Theorem 1.2. The global-in-time mild solution (v,w) € X and
(e‘/ﬂD'v,e‘/ﬂD'w) € X obtained from Theorem 1.3 satisfies the following time decay estimate:

_1
—opm A St H(Uovw())” —2p g A,
P ?pr)\,q}” P

where (—A)Y/ 2y = F-1 (|£|3"(v))

Lastly, if we suppose that the maximal time of existence is finite, the following theorem guarantees a
blow-up criterion for solutions of the system (1.1).

Theorem 1.5. Let T denote the mazimal time of existence of a solution

- y —24 242 x Pt
(v,w) € L ([O,T);E'N )0’61 <[O’T)’3Np,>\,q)'

PiA,q

If T* < oo, then

v, w no A\ — OQ.
v )||41([0,T*>,5N£’:;’)

2. Preliminaries

Existence and analyticity of Lei-Lin solution to the Debye-Hiickel system

In this section, we recall some basic properties of Fourier-Besov-Morrey spaces and other analysis
tools that we will employ throughout this study.

The function spaces M;,‘ are defined as follows.
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Definition 2.1. [30] Let 1 <p < o0 and 0 < X\ < n.
e The homogeneous Morrey space Mg‘ is the set of all functions f € LP (B (xzo,1)) such that

_2
[fllay = sup supr™ 2 || fll Lo(B(zo,r) < 00, (2.1)
zoER™ >0

where B (xo,r) s the open ball in R™ centered at xo and with radius r > 0.
The space M) endowed with the norm HfHM; is a Banach space.

When p = 1, the L' -norm in (2.1) is understood as the total variation of the measure f on B (xq,)
and M;‘ as a subspace of Radon measures. When A = 0, we have Mg =LP.

o The mized Morrey-sequence space lq(M;‘) consists of all sequences {f;}icz of measurable functions
in R™ such that ||{fi}i€Z||l(1(M;}) < 00. For { fi}icz € 19(M) we define

1
q

{fitiezlliuony) = Z||fi||§/[;

JEL

The proofs of the results discussed in this work are based on a dyadic partition of unity in the
Fourier variables, known as the homogeneous Littlewood-Paley decomposition. We present briefly this
construction below. For more detail, we refer the reader to [8].

Let f € 8 (R™). Define the Fourier transform as

A

O =51© = @0t [ e pa)ds
and its inverse Fourier transform as
fo =571 w) = 2m) 2 [ enepee
Let ¢ € 8 (R?) be such that 0 < ¢ <1 and supp(p) C {{ € R?: 2 < [¢] < £} and

Zw (277¢) =1, forall £ #0.
JEZL
We denote |
20 =207, 50 3 A

k<j—1
and
hz) =F to(x), glx)=9F"6(z)

We now present some frequency localization operators:

Ajf=F "o« f= 2dj/ h(27y) fz —y)dy

R4
and
Sif= > Af=9"16xf= 2dJ/ 9 (27y) f(z — y)dy.
k<j—1 Re
where Aj = §; —S;_1 is a frequency projection to the annulus {|¢| ~ 27} and S; is a frequency to the
ball {J¢| S 27}, o
From the definition of A; and Sj, one easily derives that

AjAcf=0, if[j—Fk>2
A, (Sk—lfAkf) =0, if|j—Fkl>5

—

Ajf = ‘ij-
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The following Bony paraproduct decomposition will be applied throughout the paper.

wv = Tv + Tyu + R(u,v)

Tov= Z S'j,luAjv, R(u, v) = Z Ajuﬁjv, Ajv = Z Aj/v.

JEL JEL 7" —il<1

where

Lemma 2.2. [20] Let 1 < pl,pg,pg < oo and 0 < A1, Ao, Az < n.

. .. , . . 1 _ A3 A A
(i) (Holder’s inequality) Let - = —- —|— oy ond £% = 2L+ 22, then we have
||fg||M;§ < 1l gl - (22)
1
(ii) (Young’s inequality) If ¢ € L* and g € Mpl, then
e % allen < ol lgllyes (2.3

where x denotes the standard convolution operator.
Now, we recall the Bernstein-type lemma in Fourier variables in Morrey spaces.

Lemma 2.3. [20] Let 1 < ¢ < p < 00,0 < A, A < n, % < %M and let v be a multi-index. If

supp(f ) C {|€] < A27}, then there is a constant C' > 0 independent of f and j such that

_n=X
P

1GE) Fllye < © 1l (24)

Let us now recall the definition of Fourier-Besov-Morrey spaces N, , ,(R"), see [20].

Definition 2.4. (Homogeneous Fourier-Besov-Morrey spaces )

Let 1 <p,q < 00,0 <A <nands € R. The homogeneous Fourier-Besov-Morrey space ?NS BWRC defined
as the set of all distributions f € 8"\P, P is the set of all polynomials, such that the norm 1 gNs s
finite, where

<pJfH > for q < o0

supjez2 ngij for q=oc.

def (Z ez 2%

Ifllons =

(2.5)

Note that the space IN; ».q(R™) equipped with the norm (2 5) is a Banach space. Since M = L?, we

have FN° - FB’

0. and N7 o ; = x° where x° is the Lei-Lin space [10].

p.q

no A 21 A
Remark 2.5. The space pair S:N R S'NP,AZ’”J”’ is critical for (1.1). For this,

set o, (€) = Y2 (Y€), then its Foumer transform is 0o, (£) = ¥2 "y ('y’lf) .

Let
1O = (2Htom I omng) (€)= (2R R ) 2 (37
By change of variable, we get:

o (2—j+[logz v]-log, 75) to (v77¢€) H

def

—n

, 2
||fj||_mg =7 M

© (2—j+[10g2 'v]v,y—lf) 0 (7—15)}

- _a
=7*"" sup supr »
zoER™ r>0

LP(B(zo,r))

A
— 2y Ey T sup sup (y7ir) (2 ”“Og”]n) 00(77)‘

zoER™ >0

_ o223 -2)log; —j+[logy ] )A H
= ) tos: Hso(2 27 ) vo(n) »

LP(B(y~tzo,y~1r))
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which implies

i(— no A
{2725 D)1 £5(6) ey Hire
i(2—nm A o o4 m A ~
= {2 H 2w R Doy 150(O)laey Hira

o —[lo —n_ A i—lo _94m A N
- ||{2(1 g2 7~ [logz Y1) (2= 35— 5 ) 9 (i —log2 7)( 2+p,+p)||(pj—[log2V]UO(§)||M;}}H1‘1

~lloll_aiged
P,X.q
and since
0056 = Y @ (€)fx(©),
|k—j|<2
we can get
l[vo,~ || 2+ 43 ~ ||vol| 2
P,X.q P,A.q
Similary, we have
l[wo, |l -2+ 542 ~ [lwo| —2 542
P,X.q PyA.q
Consequently,
”(UO,W?U}OW)” 72+ﬁ+% ~ ||(v0,w0)|| 72+p£,+% :
PAq S:Np)uq

Lemma 2.6. The derivation 8? cgNstlel Ly g

A pAg i a bounded operator.

Proof: We have
logvllan: |, = {270,080} jezllioony)
= {27 ¢;1€1°} jezllia o)
< {27276, 8} sez oy (2.6)
S
where in (2.6) we used the fact that |¢] ~ 27 for all j € Z.
Remark 2.7. As a consequence of Lemma 2.6, we have the following estimates:
9ol < el
19 ol ol
180l < olgse
The definition of mixed space-time spaces is given below.

Definition 2.8. [21]
Let seR, 1 <p<oo, 1<gp<oo, 0<A<n,and I =10,T), T € (0,00|]. The space-time norm is
defined on u(t,x) by

. — 1/q
lutt, @)lleoirons o = { 302 Il A }
JEL

and denote by LP(I,IN, , ) the set of distributions in 8'(R x R™)/P with finite || - ”LP([’STN; L) horm.
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According to Minkowski inequality, it is easy to verify that

L? (I;&’N;Aﬂ) — LP (I,&’N;Aﬂ) , if p <y, (2.7)
L (Iv m;,A7q) — L? (Ia S:NZ7A7q) ) if P Z q,

1/p
o NI
where Jult, ) lun(ra ) = ([ Il r)
At the end of this section, we will recall an existence and uniqueness result for an abstract operator

equation in a Banach space that will be used to show Theorem 1.2 in the sequel. For the proof, we refer
the reader to see [34,7].

Lemma 2.9. Let X be a Banach space with norm ||.|x and B : X x X — X be a bounded bilinear
operator satisfying
[1B(u, v)[x < CollullxIlvllx

for all u,v € X and a constant Cy > 0. Then, if 0 < e < 4—50 and if y € X such that |ly||x < e, the
equation x := y + B(xz,x) has a solution T in X such that ||T||x < 2e. This solution is the only one
in the ball B(0,2¢). Moreover, the solution depends continuously on y in the sense: if ||y |x < e, o' =
y' + B(2',2'), and |2’ x < 2¢, then

_ 1
7= a'lx < 37— v = Vllx-

3. Gevrey Class Regularity

Let us sketch the proof of Theorem 1.2. Setting V(¢) = eVIPly(t), W(t) = eVPly(t), and B(t) =
eVilDlg(t) = W (t) — V(t). Then we see that (V(t), W(t)) satisfies the following integral system:

V(t) = eVAIDI+tA ) _ /t [(Vi=VEIDI+(t=9)A] g . o v5IDI (e—ﬁ\D\V(s)e—ﬁ‘D‘W(s)) ds
= eVHUDIHtAy BO(‘{’ ),

W (t) = eVaIDI+1a +/ (Vi=VE) DI+ (t—9)A] g . (V5D (e—\/g\D\W(S)e—\/E\D\V(I)(S)) ds
1= eVt Ay, 4 B((]W, ).

We recall an auxiliary lemma that will help us to prove that the global-in-time mild solutions of the
system (1.1) are Gevrey regular.

Lemma 3.1. [38] Let 0 < s <t < oco. Then the following inequality holds

1
tlal — §(t2 = s")al* = sla — b] — s|b| <

N —

for all a, b e R".

Now, we will establish some important linear estimates in Fourier-Besov-Morrey spaces.

—24 A
P

Lemma 3.2. Let 0 <A <n, 1 <p<oo, 1<g<0o0 and (vg,wy) € FN P (R™). Then there exists

PA,q
a constant Cy > 0 such that

(¥ P16 vy, eIl etAw) | x < Chll(vo, wo) | sy 43, (3.2)

Pe

PiA.q

Proof: We have
e(VHDI+AY,, e*%(\/lelfl)QJr%e%tAvo.
Using the Fourier transform, multiplying by ¢, and taking the Mf,‘—norm we obtain

— 1.02j,32 .
[ evtPletAugllyiy Se 149%1(3) o570l nex -
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Multiplying by 925+ +55) and taking [9(Z)-norm we get

leVHPletAy, | wniz Shvoll aimis
£r0 ([Oam[??Np,k,qp/ i p0> ?prhqp ?
and
A
eV!Plet B, argeaegy S ool aeais
20 ([0,00[iTN | | “o TNy g
Then
Pl ol S flooll  arsy
P, q
Similary,

||e‘/Z|D|€tAwo||X Sllwoll  —2vm s
TN, ST

We complete the proof of Lemma 3.2.

Lemma 3.3. [16/ Let 0 < T <o00,s€R,0<A<n,1<p<oo,1<qpr<oco andl<r<p. There
exists a constant C' > 0 such that

t
/ eA(t_T)h(T)dT

0

S CHhH s—2—%+% ’
L ([0,T), NS | ) Lr([0,7),5N,  , )

forall h € L7([0,T),IN, 5 )
The next lemma will be applied in the proof of Theorem 1.5.
Lemma 3.4. Let T >0, s € R, and u,0 € S" (R™). Then,

t
[ 29w,

P,

t
42 5 [ Tl d,
4 0 p,\,q

for all t € (0,T].
Proof: Observe that

t t
(t=2)Ayy . 0 H d :/ 9754
/0 He V- (uVo) . z ; Z

jez

q

cpj?(e(tfzmv - (uV0)) o

QU

z

Q=

cpjef(tfz”gﬁ?(v : (uVG))Hq dz

M3

t
_ Jsq
(%

jez

1
q

t
5/0 22J5q||¢j9(v-(uv0))||§w; dz

jez

t
S /0 V- (UVG)”?N;M dz

t
< / [uV8llgness dz, (3.3)
0 PisAq

where in (3.3) we have used Remark 2.7.
In the following proposition, we will establish the bilinear estimate which will be crucial in the proof

of Theorem 1.2.
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Proposition 3.5. Under the hypothesis of Theorem 1.3, there exists a constant Cy > 0 such that
IB(V, ®@)||x < Coll(V,W)|%

for all VW € X.

Proof: First, using Lemma 3.3 and Lemma 3.1 and Remark 2.7, we have

[B(V, @) .
200 <[0,oo[;3'3\f2;rqp,+ v )

S eI - (e VAPV (s)emVRIPITa(s) ) | PR
Ll([O,oo[,?pr/\yqp/ P)

§H@FW\@—ﬁWquaw@mv¢@gn Ca
Lt ([o,oo[,&prMP’ ”)

Then, it suffices to show that

[e¥P1 (=AY (s)eVFIPITa(5)) | _H%ﬂimwﬁﬁ- (3.4)

Ll([O,oo[,?pr/\yq

Applying Bony para-product decomposition and quasi-orthogonality property for Littlewood-Paley de-
composition, for fixed j, we obtain

AjevTIP] (e—mmVe—ﬁ\D\w)): S AgeVTIPle VARG, Ve VAIPIA V)

[k—j|<4
+ Y AV TPl (e vAPIg  vaeVAIPIA, V)
|[k—j|<4
+ 3 AyeVTIPl (e VAIPIA, Ve VAIPIA, V)
k>j—3

. pl 2 3
=R} + R} + R

Then, by the triangle inequalities in M;‘ and in [9(Z), one has

.C p’ P PO
0,00[TN,

IB(V, @) ( TP +2)
L£ro | |

Q=

< ZQJ TP )qu(A V7D (e—ﬁIDIVe—x/E\D‘V@)) HLl(OOO L)
JEZ

1
q

IN

223 —1+2+3 )qHR1||L1(OOO )
JEZ

Q=

(12420 g2
N Zz]( z p)qIIRquLl([o,oo[,M,é)
jez

Q=

(—1+2+2)a)| 73
. Z2J( » p)q||R?Hqu([0,oo[7M2>
jez

= Il —|—IQ —|—13
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By using the Young inequality in Morrey spaces and the Bernstein-type inequality with |y| = 0, we have

; 43 [l 7
[ P W

Thus, using Young’s inequality in Morrey spaces (2.3), the estimate (2.4) and Lemma 3.1, we get

”}/%}”Ll([O,oo[,M;): Z @jeﬁm(e_ﬁ‘D‘Sk—1V€_‘/§‘D‘AkV‘I’)

lk—jl<4 L1([0,00[,M3)

|| S e [ S e vty T s eV, T8

k—j|<4 m<k—2
[k=il< = L1(0,00[ M)

—| 3 / eVTUS-lEvolh |57 o T (€ — y)p V() dy

[k—j|<4 m<k—2

L1([0,00, M)
S Z ||(Sk—l‘/AkV‘I’)||L1([o,oo[,M;)
|k—j|<4
S Z 2k||%0k‘1’||Lpo 1,M3) Z ||%0lV||L»o (I,LY)
|k—j|<4 1<k—2
(B2 T
S D> 2k||wk¢||LPO(IM>\) Z 2t ||901V||Lpo(1,mg)
k—jl<4
2454 24 21 (2—
< 2 210l Z 2 2750V o100
|k—j|<4 1<k—2
1
SIVI - aemeez >0 24 2 2O 08,
~ M}x
Loo(LIN, \ F ) ki<a i<he2 L0
2 ~
SIvi : 2 2" 70|y @)
£00 (1IN :q s +p0)|kzjl:<4 k=N LPo (1,M))
—1-_2
<IvI ez 20T X
L£Po (1IN, | P 0
k)(1— ("+ + /)
22 S )X{k’ |k’\<4}(]_k)2 ||80k ||Lp0(IMX)
kez
(1—2_A
SV emaaiz 20TV T (@0« G,
oo (LIN, |\ P D)
with
—k(1— 2 k(L&+2+ ,)
P =2 = p)X{k’;|k’|§4} and Gy =2 ||‘Pk‘1’||Lp0(1Mx)

Hence, by using the Young inequality for series, one has

Eq 5 ||V|| -2+ L+ 2 +2 2 ||3)1€’||l1 Z)Hgk”lq(l
Lro(LIN, | P
S ”V” —2+ "+ +A= 2 ||(I)|| '—3+%+l,
£ro (I,S’Np N q 290(1 ?N: Po )
Similary, we get
E2 S ||(I)|| l % 2 ||V|| —o4 + + 2
£ro (1,9 A 2”0(1 FN x,qp )
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For I3, first we use the Young inequality in Morrey spaces (2.3), the Bernstein-type inequality with |y| = 0
together with the Holder inequality, to get

IR L1 (10,00, 302)

-

-1 Aje\/F\D\(e*\/g\D\AkVe*\/aD'KkV‘I’)

k>j—3 L1([0,00[, M)
= 3 gVl (e VAPIA Ve VAIPIA, VD)

k>j—3 LL([0,00[, M)

|| S e (e—ﬁ\%kr/)* 3 e VT, o

k2j-3 Im—k|<1 L1 ([0,00[, M)

=1 3 ¢ | VU g Ve —y) ST 6, Ve(y)dy

k>j—3 R™ |m—k|<1 L1 ((0,0000)
< D7 ARV # AV 11 (0,00 003)
k>j—3
= Z ||90kV||L/’6(]’M/\) Z loi V| Loo(r,L1)
k>j—3 Pl =K<t
T (A =~
S Z ||90kV||LP6(I’M>\) Z 2l2(”'+p)||<Pz‘I’||Lﬂo(I,Mg)
k>j—3 Pl =K<t
1
> 2 N\ o7
S D 10Vl (D 207%) 7 o biae
~ L0 (I, M) L Bmydg2
k>j—3 PN |l—k|<1 Loo(LINF P ")
<@ PSS =2 o V|
SO, i 2 A,
SH(I)” 24 Ag2 2j(—1—p—’§—%)x
Lo0 (1IN, | P o)
~G-R(1-2-2 . BE+3+5) o
S 2O Ty e (G R)2 TG ”‘ka”L%(I,M;)
keZ
(-2 -2
S ”(I)” —of Ay 2 2j( P P)(iPk/ >k9k)j7
LPO(I,IN, | P Poroy
~ —K (=23 RE+e+7), o
with P =275 (075 p)X{k';ka} and §x =27 " 0 lonVIl g g ey
p

Then, applying the Young inequality for series, we obtain

E; < |2 aymiai 2 |Pr oz lSkllie@)
£ro(I,FN_, PP POy
’ PAq
S 1|2 copn a2 ||V niAL2 .
< |2P0(I,?Npifqp/+p+po) lsPG(I,S"N:’/:qurPB)
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Consequently,
||3(V7‘1’)|| 2+t +p20
£ro(I,FN, M )
S ||V| — mog Ay 2 |¢| no A, 2
IV ot O e
+||(I)|| —2+ + +— ||V|| i/*%*,%/
SPO(I,S"NPAQ 200(1 IN, 0)
Analogously,
1BV, @)l Lo+
£°0(I, TN, §, 0)
SVl —armiaiz |2 nAiz
- SPO(Ia?Np,ifqp/ TPt 2P0 (1, S"N:/ g )
+ || apn a2 |V niAl2
itV i,
Therefore
IB(V, @)l x
S ”V” 2 242 ||(I)|| “,+%+l,
Seo (1IN, | P Oy erb, N 7
+ |||l ayniay 2 [V RS
£r0 (1,9 p,Q:qp/ererO) ero(1, 3le+p+p6)
Since & = (—A)"L(W — V) = FL(€| 2F(W — V)), then
1BV, ®)llx < ||V|| raiaez X)W = V)| ndy2
LPo(LIN, | | ) 220 (1NT e "0
+||(_A)71(W_V)H ;,+ +2 XHVH —24 242 +2
£r0(LIN) 0) Spg(IgN o o
SVl —2p LAy 2 x [|[W V] , —2 B A2
SPO(I;?NP,/\JJ 0) SpO(I?Nqu pO)
+w =V oz X[V SR TR R
gﬂo([; p»qu’ P PO) SPO(IfN g 0)
<||(V,W oymiasz2 X (VW _ 2
NIt IO gy
< Col (V,W)][%-

Remark 3.6. By following a similar argument to the one presented above, we get

||UV¢|| L LS < [l(v, w)| R A R ||('U7w)|| 72+;‘,+p+ 2
L ([O’W[’?Np,x,q ) £e0(LFN, | q ) EPO(I TN L. ?0
Particularly,
<
HUV(ZS”?N;:: +2 S ||(v,w)|| ;2:{1%+% ”(ww)”?j\rf,:q% :

3.1. Proof of Theorem 1.3

From Proposition 3.5, we have
I(B(V, @), B(W,®))|x < Coll(V. W)k
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By Lemma 2.9, we know that if ||(eVPlet2 vy, eVilPletAug)||x < € with & = & then the system (1.1)
has a unique analytic solution in B(0,2¢) :={y € X : |ly||x < 2¢}.

We explain that it is possible to choose the initial data such that ||(eViPletAyg, eVilPletby)| x < e.
According to Lemma 3.2, we have

[(eVHPle 20, V1Pl B o) [x < Call (w0, wo)l|_ —avz s (3.7)
Np,/\,q
So, if we choose || (v, wo)||  _spzn s < Ko with Ko = m, then Lemma 2.9 together with the estimates
P/ p

P,X.q
(3.6) and (3.7) assures that the Debye-Hiickel system (1.1) has a unique analytic solution so that

I (P, e/1P10) f1x < Crll(wo,wo)l|_—arsrs-
FN PP

p.Aa
This completes the proof of Theorem 1.3.
4. Time decay of mild solutions
As an application of the analyticity of solutions discussed above, we shall prove Theorem 1.4
4.1. Proof of Theorem 1.4

By using the definition of the Fourier-Besov-Morrey spaces, we have

[CRSEO! p—

\ = H (—A)%e_\/ﬂD‘e‘/ﬂD‘v(t)H
TN,

D
_ (Z 9i(—2++3)a
JEZL

= (e (o))

M}x
jEL P

_o4m oy A
+p,+p
P,X.q

gpjg((_m%efﬂ\D\eﬂ\D\v(t))

TN

1
q );
M3

Q=

Suppose the function g(z) = ze~V# where z > 0. From the derivation of the function g, one can infer
1
that g(x) < g((%)) <t~ 2. Therbey,

Vit
H(_A)%v(t)H —2+ 24 St_% e\/ZIDM)(t)H —2+ g A
N PP gN PP
pa2d PAg
_1
St HUOH —2p LA -
P,A.q
Similarly,
3 1
H(—A)zw(t)H argey ST e\/ﬂDlw(t)H, 2 Bt
?pr pr,A,q
1
,S t2 HwOH{ —24Z 42
PyA,q
Thus,
(0o, cps 50 P
FN pror TN 7T
v P X
_1
St 2 H(U()aw())” Coym A .
gN PP

PiA,q

5. Blow-up criteria

By following the techniques described in [10], we will show the blow-up criteria of solutions if the
maximal time of existence is finite.
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5.1. Proof of Theorem 1.5
Let T* < oo be the maximal existence time of solutions of the system (1.1) in

(0o ) 0 (o ) o ()

DA A
By contradiction assume that 7" < oo and
-
|l s <. (5.1)
0 FNP

P
PA,q

Let Ty € (0,T*) so that

R

v, W nyay <
(v, )Ilzl([TmT*);wp,@)

PiA.q

For t € [Ty, T*) and s € [Ty, t], we consider the following integral system:

v(s) =Py — /S e5mTAY . (UV(—A)_l(w — v)) (r)dr
o (5.2)
w(s) =e*Bwg + /T eTIAY (WY (=A) " Hw — v)) (1)dr.

The same calculus used to prove Proposition 3.5 yields

o)l g3
P,A.q

< |o(T om0V oA
SIO ey # Ty

STl armia + sup [(v(s),wS)) —zimiall(v,w)]
FN P P P P

,1+LL,+A
/T
PAq To<s<t TN, A Lt <[TO’S)’3~NPV>\,<1 )

1
SI@ ez +7 500 ()0 argis
?Np)\,q To<s<t S:Np)\,q

and

w(s Coim A

|| ( )” Npi—f—qp,-%—;

Slw(To)ll —ayzia + [0V (
IFN pro P !

PA,q

oo A
[To,S),?N;ﬂ p)

SwTo)ll —arzea + sup [[(v(s),w()l _opniall(v,w)]
FN PP FN PP £

N To<s<t

1
SIw@oll_ —aemea + 7 sup [[(v(s)w(s))]  _orm.a
gN PP Tp<s<t gN_ PP

P,A,q

It follows that

[CORTC) [
PAq

1
S (R ) [ S ORI

TN, 2 Ty<s<t g

Consequently,
sup |[[(v(s), w(s))| oy ia S20(w(To), w(To)ll  »inya,VE € [To,T7).
FN P P FN P P

To<s<t PiA,q PiX,q
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Put

N =max | 2[[(w(T0), wTo)I| o nya s max [[®),w®)]|  oonia |-
TN, ST te[0,To] TN, g "

Hence, we deduce

(@), wE)l  »yn,a SN,VEE[To,T7). (5.3)
TN, P
Let (kn),cn @ sequence such that s, /T, where , € (0,77), for all n € N. We want to prove that
lim |[(v,w) (k) = (v, w) (kn)| oy n.a =0 (5.4)
n,m—00 ?pr/\yqp P

In order to achieve this aim, we use the integral form of (v, w) to obtain

(v, w)(Km) = (v, w)(Kn)

_ ([eﬁmA o ennA] Km A

o eHnA]

vo, [e wo)

_ </ " e("fm*z)Av . (UV¢) dZ, _/ " e(’im*z)Av . (wv¢) dz)

Kn

- </ ' elrn =B (glkm=r)A _ 117 . (1V¢) dz, —/ ’ elrn =8 (e(km—r)A _ )7 . (wVg) dz)

0 0
= A1(m,n) + Az2(m,n) + As(m,n).

First, we have

Q=

e e

WA _ J(—2+2+2)q €17 _ ornlél® 119
Aol aigy = § 2P CHE IR, (ennléF o) g0,

P,X.q JEZL

Q=

j(—24+ 242 2 T*EPN 5 119
< §:2J( 7 p)qH(pj (enm\ﬁ\ — Tl UO”_M; ’
JEZL

—24 g A
provided that x, < T*, for all n € N. As a result, by using the fact that vg € FN_, * 7

A
from dominated convergence theorem that

lim ||[e”’”A — e”"A]v0||
n,Mm—00

, it derives

» =0.
“rprty
PiA.q
By following a similar argument, one has
lim ||[e""”A — e"“"A]wOH oymn 2 =0.
n,m—00 ‘ p’ TP
PA,q

Consequently

nﬂlrilgloo ”‘Al(m’n)H&“Niiﬂ;_Lﬁ% =0.
piAsq

Furthermore, using Lemma 3.4 and the estimate (3.5), one reaches

/ Km
K

n

-
< n
SLvel s

elrm—2)Ay . (vv¢)H C2ymd dz
TN, h T

n P,X.q
3

SNl sy 100l gy ds
Kn PiX,q PA,q
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By using (5.3), Holder’s inequality, and the estimate (5.1), one obtains

/me
Kn

1

T+ 2

en =AY (o7 _ds</ Il d)
?Np,k,q K

P D
n S:prk,q

< O(T* = kp)?.

As a consequence,

lim et =49 (0V0)|| s dz =0,
Kn JALq

n,m—oo FN
P

Analogously, one can infer

Kom
lim He“m—zmv - (wV¢)H inandz =0,
n7m—>‘00 P ?N N p/ P

n P,Aq

Thereby, we have

Lastly,

n,}ggoo H‘AQ(m’n)H&“NiT"ﬂﬁ% dz = 0.
piAsq

| [ e 1) (0V6) del iy
0 FN P P

P,A.q

Q=

S PRI [ e ()T T
JEL 0 !

1
* q

ST PO [ g1 TR )T, b
JET 0 !

where k,, < T*, for all n € N. By using the assumption (5.1) and the estimate (5.3) , we get

o
/ ||UV¢||?N,1+%+% dz < oo.
0

PiA,q

Thus, by dominated convergence theorem, we deduce

=0.

lim
n,m—oo

/ e(””7Z)A(e("””"”*"””")A — 1)V (vV9) dz
0

_opm A
FN it
P\, q

Moreover, by applying an analogous process, we conclude that

Therefore,

lim
n,m—00

/ e("””'"*Z)A(e("m*"”)A - 1)V (wVe) dz
0

o4 A
A
PiA.q

n’}rllgloo ||.A3(m,n)||{ N;i+q§+% =0.

Consequently,

This implies that ((v,w)(k,))nen satisfies the Cauchy criterion at T* in the Banach space FN

nﬂlrl;rgoo [(v, w) (Km) — (v, w) ()l 24 LA = 0.

P, q

oA
2+p,+p
PiA,q
2+2+3

Then, there exists an element v*, w* in ?N;_ g such that

. * * j—
i 10 () = %0 gy =0

17
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We point out that the above limits are independent of (k,)nen. In other words,

lim
AT

(1], w) (t) - (U*,’LU*)H —2p A = 0.
TN P P
P\, q

Now, consider the system (1.1) with the initial data (v*,w*), instead of (vo,wo)

0w = Av —V - (vV¢),

Ow = Aw + V - (wV ),
Ap=v—w,

v(z,0) =v*, w(z,0)=w*

_ no A
We assure, by Theorem 1.2, the existence and uniqueness of (6,) € C( [0,t0), EFTpr\Z’”’Jr P (R™) ) (to > 0)

for the Debye-Hiickel system (1.1). Therefore

= v (ww)(t), ift €[0,7%)
(@, @)(¢) = { Q) (t—T*) ifte [T T +to]

is a solotion of (5.5) with initial data (vg, wo) on the interval [0, T* + to] which contradicts the maximality
of T*.
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