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Amenable Quasi-lattice Ordered Groups and True Representations

Mamoon Ahmed

abstract: Let (G, P ) be a quasi-lattice ordered group. In previous work, the author constructed a universal
covariant representation (A, U) for (G, P ) in a way that avoids some of the intricacies of the other approaches
in [11] and [8]. Then showed if (G, P ) is amenable, true representations of (G, P ) generate C∗-algebras which
are canonically isomorphic to the C∗-algebra generated by the universal covariant representation. In this
paper, we discuss characterizations of amenability in a comparatively simple and natural way to introduce
this formidable property.
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1. Introduction

Nica introduced a class of groups termed quasi-lattice ordered groups. To each quasi-lattice ordered group
(G,P ) there corresponds representations of P by isometries called covariant representations. There is
also a unique covariant representation with the universal property. Nica used this universal object to
define amenability, which is an interesting property of some quasi-lattice ordered groups. The term
‘amenability’ is already used in group representation theory, but an amenable quasi-lattice ordered group
(G,P ) is not necessarily amenable in the usual sense. However, a quasi-lattice ordered group (G,P ) is
necessarily amenable in Nica’s sense if G is amenable in the usual sense. In this paper we follow Nica’s
sense.

Recall that, for a quasi-lattice ordered group (G,P ), a representation of (G,P ) by isometries is a pair
(A, V ) consisting of a unital C∗-algebra A and a map V from P to A that satisfies the following three
conditions:

(i) Ve = 1A;

(ii) V ∗
p Vp = 1A for all p ∈ P ;

(iii) VpVq = Vpq for all p, q ∈ P .
If in addition V satisfies

VpV
∗

p VqV
∗

q =

{
Vp∨qV

∗
p∨q, if p, q have a common upper bound in P ;

0, otherwise.

then V is a covariant isometric representation.
To set up our notions, we denote the C∗-algebra generated by the set {Vp : p ∈ P} by C∗(V ). We

also write AV = {VpV
∗

p : p ∈ P} and BV = {VpV
∗

q : p, q ∈ P}. Furthermore, recall from [2] that a
covariant representation (A, V ) of a quasi-lattice ordered group (G,P ) is called a true representation if∏

p∈F (1 − VpV
∗

p ) 6= 0 for all finite subsets F of P\{e}.
In [2, Proposition 2.4] we showed that a true representation (A, V ) of a quasi-lattice ordered group

(G,P ) has four properties and we mention here
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1. The set BV is linearly independent with span(BV ) dense in C∗(V ).

2. There is a continuous linear map ΦV of C∗(V ) onto span(AV ) such that

ΦV (VpV
∗

q ) =

{
VpV

∗
p , if p = q

0, otherwise.

Then in [2, Theorem 3.2] we showed, every quasi-lattice ordered group (G,P ) has a universal covariant
representation (A,U). So, (C∗(U), U) will be referred to as the universal covariant representation and
C∗(U) will be given the symbol C∗(G,P ). In fact, [2, Theorem 3.2] tells that the universal covariant
representation (A,U) in true. Moreover, for a covariant representation (A, V ) of the lattice ordered group
(G,P ), there is a ∗-homomorphism φ : C∗(G,P ) → C∗(V ) such that φ(Up) = Vp. Later on we showed
in [2, Theorem 3.6] that the C∗-algebra generated by a true representation of an amenable quasi-lattice
ordered group (G,P ) is canonically isomorphic to the C∗-algebra generated by the universal covariant
representation.

We would like to point out that amenability of the quasi-lattice ordered group (G,P ) is in some sense
a topological restriction on the span(BV ). In this paper, we discuss characterizations of amenability in a
comparatively simple way, which can be established by investigating the behavior of ΦU on the range of
a positive, faithful, linear map rather than the whole algebra C∗(G,P ).

In section 2, we give the important background material about quasi-lattice ordered groups and
covariant representations. We also refer to important theorems from [2]. In section 3, we develop some
techniques for determining whether a quasi-lattice ordered group is amenable and show our main theorem.
In section 4, we discuss amenability of a quasi-lattice ordered group and show that the amenability of a
given quasi-lattice ordered group (G,P ) can be established by investigating the behavior of ΦU on the
range of a positive, faithful, linear map rather than the whole algebra. The idea of using an action to
reduce the amenability question in this way is drawn from [8, Remark 3.6, Proposition 4.2]. In our paper,
care has been taken to minimize the amount of vector valued integration theory used.

2. Preliminaries

Let P be a subsemigroup of a group G with identity e such that P
⋂
P−1 = {e}. There is a relation

‘ ≤ ’ on G with respect to P where x ≤ y if x−1y ∈ P . This relation is a partial order on G which is left
invariant in the sense that x ≤ y implies zx ≤ zy for any x, y, z ∈ G. This partial order is known as the
natural partial order determined by P .

Convention 2.1. We now use (G,P ) to refer to the group G with the natural partial order ≤ on G
determined by P .

Definition 2.2. The partially ordered group (G,P ) is quasi-lattice ordered if every finite subset of G
with an upper bound in P has a least upper bound in P [3, Section 2].

Equivalently, (G,P ) is quasi-lattice ordered if and only if every element of G with an upper bound
in P has a least upper bound in P , and every two elements in P with a common upper bound in P have
a least upper bound in P [11, Section 2.1].

Notation 2.3. The least upper bound or sup of the elements x and y will be denoted by x ∨ y.

The following property about quasi-lattice ordered groups can be found in [3].

Lemma 2.4. Let (G,P ) be a quasi-lattice ordered group. If x, y ∈ G have a common upper bound in
P and z ∈ G satisfies z(x ∨ y) ∈ P then zx and zy have a common upper bound in P . If, in addition,
z ≤ zx ∨ zy, then zx ∨ zy = z(x ∨ y).

Definition 2.5. Let (G,P ) be a quasi-lattice ordered group. A representation of (G,P ) by isometries is
a pair (A, V ) consisting of a unital C∗-algebra A and a map V from P to A that satisfies the following
three conditions:
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(i) Ve = 1A;

(ii) V ∗
p Vp = 1A for all p ∈ P ;

(iii) VpVq = Vpq for all p, q ∈ P .
If in addition V satisfies

VpV
∗

p VqV
∗

q =

{
Vp∨qV

∗
p∨q, if p, q have a common upper bound in P ;

0, otherwise.

then V is a covariant isometric representation.

Notation 2.6. The C∗-algebra generated by the set {Vp : p ∈ P} will be denoted by C∗(V ). We write
AV = {VpV

∗
p : p ∈ P} and BV = {VpV

∗
q : p, q ∈ P}.

Remark 2.7. A covariant isomeric representation of the quasi-lattice ordered group (G,P ) may be defined
as a pair (A, V ) consisting of a unital C∗-algebra A and a map V from P to A such that

1. Ve = 1A;

2. VpVq = Vpq for all p, q ∈ P ,

3. V ∗
p Vq =

{
Vp−1(p∨q)V

∗
q−1(p∨q), when p, q have a common upper bound in P ;

0, otherwise.

To see that the first definition implies the second, notice first that if p, q ∈ P have no common upper
bound in P then the covariance condition gives VPV

∗
p VqV

∗q = 0 and hence

V ∗
p Vq = (V ∗

p Vp)V ∗
p Vq(V ∗

q Vq) = 0

However if p, q have a common upper bound in P , then

V ∗
p Vq = (V ∗

p Vp)V ∗
p Vq(V ∗

q Vq) = V ∗
p Vp∨qV

∗
p∨qVq.

But p ≤ p ∨ q, so p−1(p ∨ q) ∈ P . Therefore,

Vp∨qV
∗

p∨q = VpVp−1(p∨q)V
∗

q−1(p∨q)V
∗

q

thus the result follows. The reverse implication is easily checked.

Definition 2.8. A covariant representation (A, V ) of a quasi-lattice ordered group (G,P ) is called a true
representation if

∏
p∈F (1 − VpV

∗
p ) 6= 0 for all finite subsets F of P\{e}.

Remark 2.9. The name ‘true’ reflects that Vp is a true isometry (that is, VpV
∗

p 6= 1) for all p ∈ P .

Recall that:

1. The C∗-algebra generated by AV is commutative and hence any product in span(AV ) may be
rearranged as necessary.

2. For a quasi-lattice ordered group (G,P ) and a finite subset F of P . A subset I of F is an initial
segment if and only if whenever x, y ∈ F , x ≤ y and y ∈ I imply that x ∈ I.

Definition 2.10. A universal covariant representation (A,U) of the quasi-lattice ordered group (G,P )
is a covariant representation such that if (B, V ) is any other covariant representation of (G,P ), there is
a unique ∗-homomorphism φ : C∗(U) → C∗(V ) such that φ(Up) = Vp for all p ∈ P .

Recall the following facts from [2]

• [2, Theorem 3.2] Let (G,P ) be a quasi-lattice ordered group. Then there is a universal covariant
representation (A,U) of (G,P ).
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• [2, Theorem 3.6] The C∗-algebra generated by a true representation of an amenable quasi-lattice or-
dered group (G,P ) is canonically isomorphic to the C∗-algebra generated by the universal covariant
representation.

• For any covariant representation (B, V ) of (G,P ), [2, Theorem 3.2] provides a unique ∗-homomor-
phism φ : C∗(G,P ) → C∗(V ) such that φ(Up) = Vp. Where C∗(G,P ) is the C∗-algebra C∗(U)
generated by the universal covariant representation.

Throughout this paper (A,U) denotes the universal covariant representation of the quasi-lattice or-
dered group (G,P ) and ΦU is the ∗-homomorphism of C∗(G,P ) onto span(AU ) given by

ΦU (UpU
∗
q ) =

{
UpU

∗
p , if p = q

0, otherwise.

in [2, Proposition 2.4].

Definition 2.11. A quasi-lattice ordered group (G,P ) is a amenable if ΦU is faithful on positive elements,
in the sense that if a ∈ C∗(G,P ) then ΦU (a∗a) = 0 implies a = 0.

3. Characterization of amenability

In this section, we develop some techniques for determining whether a quasi-lattice ordered group is
amenable and show our main theorem. We start this section with some technical lemmas, then we show
our main theorem in the section.

Throughout this paper (A,U) denotes the universal covariant representation of the quasi-lattice or-
dered group (G,P ) and ΦU is the ∗-homomorphism of C∗(G,P ) onto span(AU ) given by

ΦU (UpU
∗
q ) =

{
UpU

∗
p , if p = q

0, otherwise.

in [2, Proposition 2.4].

Lemma 3.1. Let (G,P ) be a quasi-lattice ordered group and (B(ℓ2(P )), T ) be the Toeplitz representation
of (G,P ). Then ΦT is faithful on positive elements.

Proof. The canonical orthonormal basis for ℓ2(P ) consists of the maps {δp : p ∈ P} defined for each
q ∈ P by:

δp(q) =

{
1 if p = q,

0 otherwise.
(3.1)

It follows from the definition of T that

(TpT
∗
q δr)(s) =

{
δr(qp−1s) if p−1s ∈ P,

0 otherwise.

=

{
1 if p−1s ∈ P and qp−1s = r,

0 otherwise.

Now p−1s ∈ P and qp−1s = r if and only if q−1r ∈ P and s = pq−1r, and hence

TpT
∗
q δr =

{
δpq−1r if q−1r ∈ P,

0 otherwise.

Now if a =
∑

p,q∈F αp,qTpT
∗
q ∈ span(BT ), then for all r ∈ P ,
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(aδr|δr) = (
∑

p,q∈F,q≤r

αp,qδpq−1r|δr)

=
∑

p,q∈F,q≤r

αp,q(δpq−1r|δr).

Now, using the orthonormality of {δp : p ∈ P},

(δpq−1r|δr) 6= 0 if and only if p = q.

Which implies that

(aδr|δr) =
∑

p,q∈F,q≤r

αq,q(δr|δr)

= (
∑

p,q∈F,q≤r

αq,qδr|δr)

= (ΦT (a)δr|δr).

Hence, by continuity of ΦT , (ΦT (a)δr|δr) = (aδr|δr) for all a ∈ C∗(T ) and r ∈ P . Thus if ΦT (a∗a) = 0
for some a ∈ C∗(T ), then

‖aδr‖2 = (a∗aδr|δr) = (ΦT (a∗a)δr|δr) = 0

for all r ∈ P . Hence a = 0 as required. �

Lemma 3.2. Let (A,U) be the universal covariant representation of the quasi-lattice ordered group
(G,P ), (B(ℓ2(P )), T ) the Toeplitz representation of (G,P ), φ : C∗(G,P ) → C∗(T ) be the ∗-homomor-
phism in Equation 3.1 supplied by [2, Theorem 3.2] and ΦU : C∗(G,P ) → span(AU ) be the ∗-homomor-
phism in [2, Proposition 2.4]. Then ker(φ) = {a ∈ C∗(G,P ) : ΦU (a∗a) = 0}.

Proof. Suppose φ(a) = 0. By [2, Remark 2.5], ‖ΦU (a∗a)‖ = ‖φ ◦ ΦU (a∗a)‖ since ΦU (a∗a) ∈ span(AU ).
Thus by [2, Lemma 3.5]

‖ΦU (a∗a)‖ = ‖ΦT ◦ φ(a∗a)‖ = 0

and hence ‖ΦU (a∗a)‖ = 0.
Now suppose ΦU (a∗a) = 0. Then by [2, Lemma 3.5]

‖ΦT ◦ φ(a∗a)‖ = ‖φ ◦ ΦU (a∗a)‖ = 0.

But ΦT is faithful on positive elements by 3.1, so

φ(a)∗φ(a) = φ(a∗a) = 0.

Thus
‖φ(a)‖2 = ‖φ(a)∗φ(a)‖ = 0

and the result follows.
�

Now we introduce our main theorem of this section which allows us to determine whether a given
quasi-lattice ordered group is amenable.

Theorem 3.3. Let (G,P ) be a quasi-lattice ordered group. Then the following are equivalent

1. (G,P ) is amenable.

2. Any two true representations of (G,P ) generate canonically isomorphic C∗-algebras.
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3. The C∗-algebra generated by the Toeplitz representation of (G,P ) is canonically isomorphic to the
universal covariant representation.

The proof requires the following lemma.

Lemma 3.4. The Toeplitz representation of a quasi-lattice ordered group (G,P ) is a true representation.

Proof. Consider δe ∈ ℓ2(P ), defined by

δe(s) =

{
1 if s = e,

0 otherwise.

Then for any p ∈ P \ {e}, (T∗
pδe)(s) = δe(ps) = 0 for all s ∈ P , and hence (1 − TpT∗

p)δe = δe. This gives( ∏
p∈F (1 − TpT∗

p)
)
δe = δe for any F ⊂ P , and the result follows. �

Proof of Theorem 3.3. By [2, Theorem 3.6], 1 implies 2. Since the Toeplitz representation of a quasi-
lattice ordered group (G,P ) is true by Lemma 3.4, then trivially 2 implies 3. Finally, note that if
φ : C∗(G,P ) → C∗(T ) is the ∗-homomorphism supplied by [2, Theorem 3.2] and ker(φ) = {0}, then
by Lemma 3.2 the set {a ∈ C∗(G,P ) : ΦU (a∗a) = 0} = ker(φ) = {0}. Hence (G,P ) is amenable, so 3
implies 1. �

4. Faithful representations

The aim of this section is to show that the amenability of a given quasi-lattice ordered group (G,P )
can be established by investigating the behavior of ΦU on the range of a positive, faithful, linear map
rather than the whole algebra. We also show that an action of a compact group on C∗(G,P ) can be used
to construct such a map. The idea of using an action to reduce the amenability question in this way is
drawn from [8, Remark 3.6, Proposition 4.2]. In our paper, care has been taken to minimize the amount
of vector valued integration theory used.

Definition 4.1. A ∗-homomorphism Φ : A → A on a C∗-algebra A is said to be positive if Φ(a∗a) is
positive for all a ∈ A. The map Φ is said to be faithful if Φ(a∗a) = 0 implies a = 0.

Proposition 4.2. Let (A,U) be the universal covariant representation of the quasi-lattice ordered group
(G,P ) and let Φ : C∗(G,P ) → C∗(G,P ) be a positive, faithful, linear map such that ΦU ◦ Φ = Φ ◦ ΦU .
Then (G,P ) is amenable if and only if ΦU is faithful on positive elements in the range of Φ.

Proof. Suppose ΦU is positive on faithful elements in the range of Φ. Suppose also that ΦU (a∗a)) = 0
for some a ∈ C∗(G,P ). Then

ΦU ◦ Φ(a∗a) = Φ ◦ ΦU (a∗a) = 0.

Now Φ(a∗a) is positive since Φ is positive. Hence Φ(a∗a) = 0 since ΦU is faithful on positive elements of
Φ(C∗(G,P )). So a = 0 by the faithfulness of Φ, and that (G,P ) is amenable. The reverse implication is
trivial. �

One way to construct a positive, faithful linear map Φ is to integrate over a continuous action. An
action of a group K on a C∗-algebra A is a group homomorphism α : K → Aut(A) where Aut(A) is the
group of automorphisms on A with composition as a product. An action α will be called continuous if
for each a ∈ A, the map defined on K by γ 7→ αγ(a) is continuous.

Theorem 4.3. Let (G,P ) be a quasi-lattice ordered group, K a compact group with a continuous action
α on C∗(G,P ) and µ be the Haar probability measure on K. Then there is a continuous, positive, faithful,
linear map

Φα : C∗(G,P ) → C∗(G,P )

such that

(Φα(a)η | ξ) =

∫

K

(αγ(a)η | ξ)dµ(γ)

for all a ∈ C∗(G,P ), η, ξ ∈ HV , for some Hilbert space HV .
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The proof of this theorem requires the following proposition.

Proposition 4.4. Let f : K → B(H) be a continuous function from a compact group K into the bounded
linear operators on a Hilbert space H. Then there is a unique T ∈ B(H) such that

(Tη | ξ) =

∫

K

(f(s)η | ξ)dµ(s)

for all η, ξ ∈ H, where µ is the Haar probability measure on K. Moreover, ‖T ‖ ≤ ‖f‖∞.

Proof. First note that for all s ∈ K and η, ξ ∈ H ,

|(f(s)η | ξ)| ≤ ‖f(s)η‖ ‖ξ‖ ≤ ‖f(s)‖ ‖η‖ ‖ξ‖ ≤ ‖f‖∞‖ ‖η‖ ‖ξ‖

by the Cauchy-Schwartz inequality and boundedness of f(s). Hence, the function s 7→ (f(s)η | ξ) is
integrable.

Define a map F : H → C by

F (ξ) =

∫

K

(ξ |f(s)η) dµ(s).

Then one can see that F is linear by the linearity of the integral and the inner product. Moreover,

|F (ξ)| = |

∫

K

(ξ |f(s)η) dµ(s)| ≤

∫

K

|(ξ |f(s)η)| dµ(s) ≤ ‖f‖∞‖η‖ ‖ξ‖

and hence F is bounded with ‖F‖ ≤ ‖f‖∞‖η‖. By the Riesz representation Theorem there is a vector
Tη ∈ H such that

(ξ |Tη) = F (ξ) =

∫

K

(ξ |f(s)η) dµ(s)

and ‖Tη‖ ≤ ‖F‖ ≤ ‖f‖∞‖η‖.

Now, the map T : η 7→ Tη is bounded and linear since given k ∈ C and η, ζ ∈ H ,

(T (η + kζ) | ξ) =

∫

K

(f(s)(η + kζ) |ξ) dµ(s)

=

∫

K

(f(s)η | ξ) dµ(s) + k

∫

K

(f(s)ζ | ξ) dµ(s)

= (Tη |ξ) + k(Tζ | ξ)

= (Tη + kTζ | ξ)

for all ξ ∈ H . Hence T (η + kζ) = Tη + kTζ. Thus we have T ∈ B(H) and ‖T ‖ ≤ ‖f‖∞. �

Proof of Theorem 4.3. Given a ∈ C∗(G,P ), the map γ 7→ αγ(a) is continuous. Proposition 4.4 guarantees
the existence of a unique element Φα(a) ∈ C∗(G,P ) such that

(Φα(a)η | ξ) =

∫

K

(αγ(a)η | ξ) dµ(γ).

The map Φα : C∗(G,P ) → C∗(G,P ) is clearly linear, since αγ is linear for each γ ∈ K. Moreover,
Proposition 4.4 gives that

‖Φα(a)‖ ≤ sup
γ∈K

‖αγ(a)‖ ≤ ‖a‖

since C∗-homomorphisms are contractive. Hence Φα is continuous.
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To see that Φα is positive, note that for all a ∈ C∗(G,P ) and η ∈ HV we have

(Φα(a∗a)η | η) =

∫

K

(αγ(a∗a)η | η) dµ(γ)

=

∫

K

(αγ(a)η |αγ(a)η) dµ(γ)

=

∫

K

‖αγ(a)η‖2 dµ(γ)

≥ 0.

Note also that if Φα(a∗a) = 0, then

0 =

∫

K

‖αγ(a)η‖2 dµ(γ).

Hence, the map γ 7→ ‖αγ(a)η‖2 is identically zero since it is continuous and positive valued. In particular,
for γ = e, the identity of K,

aη = αγ(a) = 0

for all η ∈ H . Thus a = 0 and Φα is faithful on positive elements. �

We finish off this section with the following special case of the above techniques.

Proposition 4.5. Let (G,P ) be a quasi-lattice ordered group and G an abelian group and let ΦU :
C∗(G,P ) → span(AU ) be the ∗-homomorphism in [2, Proposition 2.4]. Suppose there exists a group
homomorphism ψ : G → G. Then there is a positive, faithful, linear map Φ of C∗(G,P ) onto the
C∗-subalgebra

K = span{VpV
∗

q : p, q ∈ P, ψ(p) = ψ(q)}

such that

Φ(VpV
∗

q ) =

{
VpV

∗
q if ψ(p) = ψ(q),

0 otherwise.

Moreover, ΦU ◦ Φ = ΦU = Φ ◦ ΦU .

Proof. I claim

1. There is a continuous action α of the dual group Ĝ on C∗(G,P ) such that for each γ ∈ Ĝ and p ∈ P ,
αγ(Up) = γ ◦ ψ(p)Up, and

2. For each z ∈ Ĝ ∫

Ĝ

γ(z) dµ(γ) =

{
1 if z = e,

0 otherwise.

To prove the first claim, note that given γ ∈ Ĝ, the map γU : P → C∗(G,P ) defined by (γU)p =
γ◦ψ(p)Up for all p ∈ P , induces a covariant representation of (G,P ). Witness that (γUe) = γ◦ψ(e)Ue = 1,
and

(γU)p(γU)q = γ ◦ ψ(p)Up γ ◦ ψ(q)Uq = γ ◦ ψ(pq)Upq = (γU)pq

for all p, q ∈ P . Also, if p, q ∈ P have a common upper bound in P , then by the covariance condition

(γU)∗
p(γU)q = γ ◦ ψ(p)U∗

p γ ◦ ψ(q)Uq

= γ ◦ ψ(p) γ ◦ ψ(q)U∗
pUq

= γ ◦ ψ(p−1 (p ∨ q))γ ◦ ψ(q−1 (p ∨ q))Up−1 (p∨q) U
∗
q−1 (p∨q)

= (γU)p−1 (p∨q) (γU∗)q−1 (p∨q).
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However if p, q have no common upper bound,

(γU)∗
p(γU)q = γ ◦ ψ(p) γ ◦ ψ(q)U∗

pUq = 0

by the covariance condition. Thus (C∗(G,P ), γU) is a covariant representation of (G,P ) as required.
Now, since (C∗(G,P ), U) is universal, there is a ∗-homomorphism

αγ : C∗(G,P ) → C∗(G,P )

such that for each p ∈ P ,
αγ(Up) = (γU)p = γ ◦ ψ(p)Up.

The map α : γ 7→ αγ is an action since for all γ, χ ∈ Ĝ and p ∈ P ,

αγχ(Up) = (γχ) (ψ(p))Up = γ ◦ ψ(p)χ ◦ ψ(p)Up = αγ ◦ αχ(Up).

Thus αγχ = αγ ◦αχ since these maps are ∗-homomorphisms. To see that the map γ 7→ αγ(a) is continuous
for each a ∈ C∗(G,P ), fix ǫ > 0 and a ∈ C∗(G,P ). Then there is aǫ ∈ span(BU ) such that ‖a−aǫ‖ < ǫ/3.

Consider a sequence {γm}∞
m=1 in Ĝ which converges to some γ ∈ Ĝ. Now, since Ĝ has the topology of

pointwise convergence, then for all p, q ∈ P :

αγ
m

(Up U
∗
q ) = γm ◦ ψ(p) γm ◦ ψ(q)Up U

∗
q −→ γ ◦ ψ(p) γ ◦ ψ(q)Up U

∗
q = αγ(Up U

∗
q ),

and hence by the linearity of these maps there is a positive integer M such that ‖αγ
m

(aǫ)−αγ(aǫ)‖ < ǫ/3
whenever m ≥ M .

Now, since C∗-homomorphisms are norm-reducing, we have

‖αγ
m

(a) − αγ(a)‖ ≤ ‖αγ
m

(a) − αγ
m

(aǫ)‖ + ‖αγ
m

(aǫ) − αγ(aǫ)‖ + ‖αγ(aǫ) − αγ(a)‖

≤ 2‖a− aǫ‖ + ‖αγ
m

(aǫ) − αγ(aǫ)‖

< ǫ

whenever m ≥ M . Thus {αγ
m

(a)}∞
m=1 converges to αγ(a), and hence γ 7→ αγ(a) is continuous.

To prove the second claim, note that if z = e then
∫

Ĝ

γ(z) dµ(γ) =

∫

Ĝ

dµ(γ) = 1

since µ is a probability measure. If z 6= e then there exists χ ∈ Ĝ such that χ(z) 6= 1. Hence by the
translation invariance of µ,

∫

Ĝ

γ(z) dµ(γ) =

∫

Ĝ

(χγ)(z) dµ(γ) = χ(z)

∫

Ĝ

γ(z) dµ(γ)

which implies that
∫
Ĝ
γ(z) dµ(γ) = 0.

Now, suppose G has the discrete topology. Then the dual group Ĝ is compact in the dual topology,
which here is the topology of pointwise convergence. Hence, by the first claim and Theorem 4.3 there
is a continuous, positive, faithful, linear map Φ : C∗(G,P ) → C∗(G,P ) such that for all p, q ∈ P and
η, ξ ∈ HU ,

(Φ(UpU
∗
q )η | ξ) =

∫

Ĝ

(αγ(UpU
∗
q )η | ξ) dµ(γ)

=

∫

Ĝ

(γ ◦ ψ(p) γ ◦ ψ(q)UpU
∗
q η | ξ) dµ(γ)

=
( ∫

Ĝ

γ ◦ ψ(pq−1) dµ(γ)
)

(UpU
∗
q η | ξ)
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where µ is the left invariant Haar probability measure on the compact group G. Then by the second
claim

(Φ(UpU
∗
q )η | ξ) =

{
(UpU

∗
q η | ξ) if ψ(pq−1) = e,

0 otherwise

and thus

Φ(UpU
∗
q ) =

{
UpU

∗
q if ψ(p) = ψ(q),

0 otherwise.

Thus Φ(C∗(G,P )) = K by the linearity and continuity of Φ. Also note that

ΦU ◦ Φ(UpU
∗
q ) =

{
ΦU (UpU

∗
q ) if ψ(p) = ψ(q),

0 otherwise

=

{
UpU

∗
q if p = q,

0 otherwise

= ΦU (UpU
∗
q )

= Φ ◦ ΦU (UpU
∗
q )

and thus ΦU ◦ Φ = ΦU = Φ ◦ ΦU by linearity and continuity of Φ and ΦU . �
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