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On Some Closed-form Evaluations for the Generalized Hypergeometric Function

Arjun K. Rathie and B. R. Srivatsa Kumar

ABSTRACT: The main objective of this note is to provide eight closed-form evaluations for the generalized
hypergeometric function with argument 1. This is achieved by separating a generalized hypergeometric func-
tion into even and odd components together with the use of several known sums involving ratios of binomial
coefficients recently obtained by Sofo.
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1. Introduction

The generalized hypergeometric function ,Fy(z) with p numerator and ¢ denominator parameters is
defined by [7]

a1,02,...,0p o0 (al) (a2) (a ) P
F, iz | = R 11
prq bl,bQ,...,bq nZ:O (bl)n(bQ)n(bq)n n! ( )

where (a),, is the well-known Pochhammer’s symbol defined by

ala+1)...(a+n—-1) ;neN

(@n =19, n = 0.

In terms of gamma function, we have
I'(a+n)

I(a)
Here, as usual the parameters a; (1 < j <p) and b; (1 < j < ¢) can have arbitrary complex values with
zero or negative integer values of b; excluded. The generalized hypergeometric function ,Fj(z) converges
for |z] <oo,(p<q), |2|<1(p=g+1)and |2| =1 (p = ¢+ 1 and Re(s) > 0), where s is the parametric

excess defined by
S = Z bj — Z Q.

j=1 j=1

(a)n =

It is interesting to mention here that the generalized hypergeometric function occurs in many theoretical
and practical applications such as mathematics, theoretical physics, engineering and statistics. For more
details about this function, we refer the standard texts [1, 2, 4, 9].

On the other hand, the binomial coefficients are defined by

n!

(n): ol —m)! in > m,

m 0 in < m,
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for non-negative integers n and m. It is well-known that the binomial and reciprocal of binomial coeffi-
cients play an important role in many areas of mathematics (including number theory, probability and
statistics). A large number of very interesting results can be seen the research papers by Mansour [3],
Pla [5], Rockett [8], Sofo [10, 11], Suri [12], Sury et al. [13], Trif [14] and Zhao and Wang [15]. However,
in our present investigations, we are interested in the following results obtained by Sofo [10, 11]. These
are
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In terms of the generalized hypergeometric function, the results (1.2)-(1.9) can be written in the following
manner.

— 1 1 9
2" 9 97 456
r T 1.1
342 5 11 3 2 357 ( 0)
L )
— 1 1 9
) 2559v/2 552
3F2 2 2 ;—]. :91n(\/§+1)+ \/———, (111)
11 35 5
iy



ON SOME CLOSED-FORM EVALUATIONS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 3

-1 2
~ 214
373" 10037 10
F 1| = i 1.12
a8 , 78 ’ 243 9’ (1.12)
L ©3°3
Ry
373" 10 40 160+/37
F T R e 1.1
s ,T8 9 "ar ™ 729 (1.13)
L ©3°3
rl1125
6’5’5’5367 40 15
F. 1| =Zm2- 21 1.14
51 7355 11 g 2= 53, (1.14)
L 6723’36
rl1125
6'3°2°36 571 (5 4
F. =222 2, 1.15
Plrassu F(G-%) e
L 6723’36
-2 4
2299
Y oY 3
4F3 35 37 ;]. =3In3+ % - 2, (116)
2. L3
L 373
-2 4
2299
Y oY 23
4F3 33 ;—]_ =92 — \/—7T. (117)
574 9
L 373

Further, it is well-known that the process of resolving a generalized hypergeometric function ,F;(z) into
even and odd components can lead to new results. We shall employ this procedure combined with the
results (1.10) to (1.17) in Section 2 to obtain eight new closed-form evaluations of the series 4F3(1),
6F5(1) and 7F6(1).

2. Closed-form evaluations

In this section, we shall establish the following eight new closed-form evaluations for the generalized
hypergeometric function 4F3(1), ¢F5(1) and 7Fs(1).
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Proof. In order to establish the results (2.1)-(2.8), we shall use the following general results recorded in
(6, p. 441].
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The results (2.9) and (2.10) can be established by resolving the generalized hypergeometric function

a1,02, ..., 0g+1
g+157q i1
b bo,.. . b

into even and odd components and making use of the following identities:
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Therefore, for the derivation of the results (2.1) and (2.2), we substitute the results (1.10) and (1.11) by
letting ¢ = 2 and substituting a; = 1/2,a2 = 1, a3 = 9/2, by = 5 and by = 11/2 in (2.9) and (2.10)
respectively, and after some simplification, we obtain the results (2.1) and (2.2).

Similarly, other results (2.3) to (2.8) can be established by choosing the appropriate parameters and
making use of the results (1.12) to (1.17) respectively. We omit these details. O

3. Concluding remark

In this short note, we have provided eight closed-form evaluations for the generalized hypergeometric
function with argument 1 with the help of the results obtained earlier by Sofo. The results established
have been verified numerically using MAPLE.
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