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On the Solution of Evolution p (.) −Bilaplace Equation with Variable Exponent

Abderrazak Chaoui and Manal Djaghout

abstract: A high-order parabolic p (.) −Bilaplace equation with variable exponent is studied. The well-
posedness at each time step of the problem in suitable Lebesgue Sobolev spaces with variable exponent with
the help of nonlinear monotone operators theory is investigated. The solvability of the proposed problem as
well as some regulrarity results are shown using Roth-Galerkin method.
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1. Introduction

We consider a bounded open domain Ω of Rn, with a Lipschitz-continuous boundary ∂Ω and I = [0, T ] ,

T ∈ R. Our aim is to prove the existence and uniqueness of weak solution u and some a priori error
estimates to the following hight order evolution problem

∂u

∂t
+ △

(

|△u|
p(x)−2

△u
)

= f in I × Ω (1.1)

u = 0, ∇u = 0 on Σ = I × ∂Ω (1.2)

u (0, x) = u0, on Ω (1.3)

where f is contiuous function satisfies

|f (γ, x)| ≤ g (x) + c |γ|r−1

for some bounded positive function g : Ω −→ R and r ≻ 1. u0 is given functions in W 2,p(x) (Ω). Here
p (.) : Ω −→ R denotes the variable exponent which is assumed to be in L∞

+ (Ω) such that 1 ≺ p− ≤
p (x) ≤ p+ ≺ ∞ where p− = inf

x∈Ω
p (x) and p+ = sup

x∈Ω

p (x) a. e. in Ω. During the last decades, the

high-order PDEs with variable exponent has undergone rapid development. From a mathematical point
of view, equation (1.1) can be seen as a natural generalization of parabolic bi p-Laplace equation

∂u

∂t
+ △

(

div
(

|△u|
p−2

∇u
))

= f

which falls within the framework of nonlinear PDEs where the exponent p is constant. One of our
motivation for studying (1.1) comes from applications in area of elasticity, more precisely, it can be used
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in modelling of travelling waves in suspension bridges (see [12]- [13]. Other interesting applications are
related to improve the visual quality of damaged and noisy images if 1 ≺ p− ≤ p+ ≺ 2 (see [14] and
refereces cited therein) and the mathematical modeling of non-Newtonian fluid motions (see [15]). Note
that in the stationary case and for p (x) ≡ 2 problem (1.1) − (1.3) becames △2u = f which models
the deformations of a thin homogeneous plate embedded along its beam and subjected to a distribution
f of load normal to the plate (we refer to [7]). Among the most recent work concerning the p-Laplace
equation, we can review Lazer et al. [13], where the authors tried to demonstrate the existence of periodic
solutions for models of nonlinear supported bending beams and periodic flexing in floating beam. In [6]
the authors used discontinuous Galekin method to approximate a biharmonic problem. They also gave
an a priori analysis of the error in norm L2. In [7] the author has studied a problem p-biharmonic using
discontinuous Galerkin finite element Hessian. An imagery problem caused by p(.)-Lplace operator with
1 ≤ p (.) ≤ 2 (only) has been considered in [14]. To solve the problem, the authors regularized the
proposed PDE to be able to use a fixed point iterative method. Other related parabolic problems can be
found in the references [15] - [17].

The paper is structured as follows: We present in section 2 some basic notations and material needed
for our work. Section 3 is devoted to the time discretization and the existence of a weak solution ui to
the problem under investigation at each time step ti in suitable Lebesgue Sobolev spaces with variable
exponent using nonlinear monotone operators theory. Finally, in section 4, we show our main result
with the help of Galerkin-Finit element method and some a priori estimates from which we can extract
subsequences that converge to the weak solution.

2. Preliminaries

We define the variable exponent Lebesgue space Lp(.) (Ω) as follows

Lp(.) (Ω) =

{

u : Ω −→ R, u measurable and

∫

Ω

|u (x)|p(x)
dx ≺ ∞

}

(2.1)

Note that Lp(.) (Ω) equipped with the Luxembourg norm

‖u‖Lp(.)(Ω) = inf

{

γ ≻ 0,

∫

Ω

∣

∣

∣

∣

u (x)

γ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

(2.2)

is a Banach space. Note that all definitions and properties of Lebesgue and Sobelv spaces with variable
exponent below are taken from references [1] - [5].

Definition 2.1. Let u : Ω −→ R be a measurable function then, the expression

ρp(.) (u) =

∫

Ω

|u (x)|
p(x)

dx (2.3)

is called modular of u.

Definition 2.2. For some p ∈ L∞
+ (Ω) and m ∈ N

∗, we introduce the exponent variable Sobolev space

W m,p(.) (Ω) =
{

u ∈ Lp(.) (Ω) ; Dαu ∈ Lp(.) (Ω) , ∀α ∈ N
n and |α| ≤ m

}

(2.4)

equipped with the following norm

‖u‖m, p(.) =
∑

|α|≤m

‖Dαu‖Lp(.)(Ω) (2.5)

Remark 2.3. 1) Let p, q and r ∈ L∞
+ (Ω) , u ∈ Lp(.) (Ω) , v ∈ Lq(.) (Ω) such that

1

p (x)
+

1

q (x)
=

1

r (x)
.
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Then

‖uv‖Lr(.)(Ω) ≤

(

1
(

p
r

)− +
1

(

q
r

)−

)

‖u‖Lp(.)(Ω) ‖v‖Lq(.)(Ω) (2.6)

2) Suppose that p (x) ≤ q (x) a. e. in Ω. Then

Lq(.) (Ω) →֒ Lp(.) (Ω) (2.7)

3)

‖u‖Lp(.)(Ω) = k ⇐⇒ ρp(.)

(u

k

)

= 1 (2.8)

4)
(

‖un − u‖Lp(.)(Ω) −→
n−→∞

0
)

⇐⇒
(

ρp(.) (un − u) −→
n−→∞

0
)

(2.9)

5) Let p, q ∈ L∞
+ (Ω) and m ∈ N

∗ with p (x) ≤ q (x) a. e. in Ω. Then

W m,q(.) (Ω) →֒ W m,p(.) (Ω) (2.10)

6)

min
{

‖u‖
p−

Lp(.)(Ω)
, ‖u‖

p+

Lp(.)(Ω)

}

≤ ρp(.) ≤ max
{

‖u‖
p−

Lp(.)(Ω)
, ‖u‖

p+

Lp(.)(Ω)

}

(2.11)

Definition 2.4. (see Definition 4.1.1 page 98 in [5]) A function β : Ω −→ R is locally log-Hölder
continuous on Ω if ∃C ≻ 0 such that

|β (x) − β (y)| ≤
C

log
(

e + 1
|x−y|

) , ∀x, y ∈ Ω. (2.12)

If

|β (x) − β∞| ≤
C

log (e + |x|)
,

for some β∞ ≥ 1, C > 0 and all x ∈ Ω, then we say β satisfies the log-Hölder decay condition (at
infinity). We denote by P log (Ω) the class of variable exponents which are log-Hölder continuous, i.e.
which satisfy the local log-Hölder continuity condition and the log-Hölder decay condition.

Definition 2.5. (See [5] Definition 11. 2. 1 ) Let p ∈ P log (Ω) . We define also

W
2,p(.)
0 (Ω) := C∞

0 (Ω)
W 2,p(.)(Ω)

Remark 2.6. i) Note That if p− > 1,then spaces W 2,p(.) (Ω) and W
2,p(.)
0 (Ω) are separable and reflexive

Banach spaces.
ii) (Poincaré inequality) Let p ∈ L∞ (Ω) with p− ≥ 1, ∃C (Ω, p (.)) such that

‖u‖p(.) ≤ C ‖∇u‖p(.) , ∀u ∈ W
1,p(.)
0 (Ω) (2.13)

Definition 2.7. A function u is a weak solution of problem (1.1) − (1.3) if it satisfies :
i)

u ∈ L∞
(

(0, T ) , W
2,p(.)
0 (Ω)

)

∩ W 1,2
(

(0, T ) , L2 (Ω)
)

ii)

∫ T

0

∫

Ω

∂u

∂t
vdxdt +

∫ T

0

∫

Ω

(

|△u|
p(x)−2

△u
)

△vdxdt =

∫ T

0

∫

Ω

fvdxdt,

∀v ∈ L∞
(

(0, T ) , W
2,p(.)
0 (Ω)

)

(2.14)
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3. Semi discretized problem

Let us divide the interval I = [0, T ] to n subintervals where τ = T
n

, ti = iτ , ui (x) = u (ti, x) and

δui (x) = ui(x)−ui−1(x)
τ

. Then reccurent approximation scheme for i = 1, ..., n is

(

ui − ui−1, v
)

+ τ
((

∣

∣△ui
∣

∣

p(x)−2
△ui

)

, △v
)

= τ
(

f i, v
)

, ∀v ∈ W
2,p(.)
0 (Ω) (3.1)

Let us show that problem(3.1) admits a weak solution at each time step ti.

Theorem 3.1. Let f i ∈ Lq(.) (Ω) , then for i = 1, ..., n problem (3.1) admits a unique weak solution ui

in W
2,p(.)
0 (Ω)

Proof. Let us introduce the operator A : W
2,p(.)
0 (Ω) −→

(

W
2,p(.)
0 (Ω)

)∗

defined by

Aui = ui + τ△2
p(x)u

i where △2
p(x)u := △

(

|△u|
p(x)−2

△u
)

We apply monotone operators theory, we should prove that A is hemicontinuous, coercive and monotone

operator. Let us define the functional E on W
2,p(.)
0 (Ω) as follows

E
(

ui
)

=

∫

Ω

(

1

2

(

ui
)2

+
τ

p (x)

∣

∣△ui
∣

∣

p(x)
)

dx

we have

(

E′
(

ui
)

, v
)

=
d

dt

{

J
(

ui + tv
)}

t=0
=

d

dt

{

1

2

∫

Ω

[(

ui + tv
)]2

+ τ

∫

Ω

1

p (x)

∣

∣△
(

ui + tv
)∣

∣

p(x)
dx

}

t=0

=

{
∫

Ω

(

ui + tv
)

vdx + τ

∫

Ω

1

p (x)
△v.p (x)

∣

∣△
(

ui + tv
)∣

∣

p(x)−1
dx

}

t=0

=

∫

Ω

uivdx + τ

∫

Ω

(

∣

∣△ui
∣

∣

p(x)−2
△ui

)

△vdx

=

∫

Ω

uivdx + τ

∫

Ω

△
(

∣

∣△ui
∣

∣

p(x)−2
△ui

)

vdx

=
(

ui, v
)

+ τ
(

△2
p(x)u

i, v
)

=
(

A
(

ui
)

, v
)

, ∀v ∈ W
2,p(x)
0 (Ω) (3.2)

this implies that E (.) is differentiable in Gateau sens and E′ = A. Therefore A is hemicontinuous.
On the other hand, from the inequality (see [8])

|b|
p(x)

≥ |a|
p(x)

+ p |a|
p(x)−2

a (b − a) +
|b − a|

p(x)

2p(x)−1 − 1
for p (x) ≥ 2 and a, b ∈ R

n
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we get

(

A
(

ui
)

− A
(

vi
)

, ui − vi
)

=
(

ui − vi, ui − vi
)

+ τ
(

△2
p(x)u

i − △2
p(x)v, ui − v

)

=
∥

∥ui − vi
∥

∥

2
+ +τ

(

△2
p(x)u

i − △2
p(x)v, ui − v

)

≥ τ
(

△2
p(x)u

i − △2
p(x)v, ui − vi

)

= τ

∫

Ω

∣

∣△ui
∣

∣

p(x)−2
△ui

(

△ui − △vi
)

dx

−τ

∫

Ω

∣

∣△vi
∣

∣

p(x)−2
△v
(

△ui − △vi
)

dx

≥
2

p (x)
(

2p(x)−1 − 1
)

∫

Ω

∣

∣△ui − △vi
∣

∣

p(x)
dx

≥
2

p+ (2p+−1 − 1)

∫

Ω

∣

∣△ui − △vi
∣

∣

p(x)
dx

≥
2

p+ (2p+−1 − 1)
min

{

∥

∥△ui − △vi
∥

∥

p−

Lp(.) ,
∥

∥△ui − △vi
∥

∥

p+

Lp(.)

}

(3.3)

Now, using Calderon-Zygmund and Poincaré inequalities we obtain that the norm ‖.‖
W

2,p(.)
0 (Ω)

is equiv-

alent to the semi norm ‖△ (.)‖Lp(.)(Ω) over the space W
2,p(.)
0 (Ω) .

This allows us to write

(

A
(

ui
)

− A
(

vi
)

, ui − vi
)

≥ C
(

p+
)

min

{

∥

∥ui − vi
∥

∥

p−

W
2,p(.)
0 (Ω)

,
∥

∥ui − vi
∥

∥

p+

W
2,p(.)
0 (Ω)

}

(3.4)

from which we conclude the monotonicity of A.

Similarly
(

A
(

ui
)

, ui
)

≥ C
(

p+
)

min

{

∥

∥ui
∥

∥

p−

W
2,p(.)
0 (Ω)

,
∥

∥ui
∥

∥

p+

W
2,p(.)
0 (Ω)

}

(3.5)

this proves the coercivity of A.

Finaly, by Hölder inequality we have

∣

∣

(

f i, v
)∣

∣ =

∣

∣

∣

∣

∫

Ω

f ivdx

∣

∣

∣

∣

≤ C
∥

∥f i
∥

∥

q(x)
‖v‖p(x)

taking into account that Lq+

(Ω) →֒ Lq(x) (Ω) and W
2,p(.)
0 (Ω) →֒ Lq(x) (Ω) we arrive at

∣

∣

(

f i, v
)
∣

∣ ≤ C
∥

∥f i
∥

∥

Lq+ (Ω)
‖v‖

W
2,p(.)
0 (Ω)

(3.6)

Hence, f i ∈
(

W
2,p(.)
0 (Ω)

)∗

.This achieves the proof. �

4. Galerkin-Finit element discretization and existence results

We consider a triangulation Υh made of triangles T whose edges are denoted by e. We assume that
the intersection of tow different elements is either empty, a vertex, or a whole edge e and we assume also
that this triangulation is regular in Ciarlet sens i. e.

∃σ ≻ 0;
hT

ρT

≤ σ, ∀T ∈ Υh

where hT is the diameter of T and ρT is the diameter of its largest inscribed bull. We define h =
max
T ∈Υh

hT . Let us define the broken Laplace operator

(△hv)\T := △
(

v\T

)

, ∀T ∈ Υh (4.1)
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For h ≻ 0, we introduce the following spaces

Xh =
{

φ ∈ C0
(

Ω
)

; ∀T ∈ Υh; φ\T ∈ P k (T ) , φ\∂Ω∩Υh
= 0 and ∇φ\∂Ω∩Υh

= 0
}

(4.2)

Remark 4.1. We will regularize the problem (3.1) to give the people who are interested in the numerical
approximation a possibility of treating it by using the fixed point iterative methods.

Let u0
h = ΠL2u0. For i = 1, ..., n, the dsiscret formulation of the regularized problem is to seek solution

ui
h ∈ Xh such that

(

δui
h, v
)

+
((

kǫ

(∣

∣△ui
h

∣

∣

)

△ui
h

)

, △v
)

=
(

f i
h, v
)

, ∀v ∈ Xh (4.3)

where

kǫ (r) =
(

r2 + ǫ
)

p(x)−2
2 , for some ǫ ≻ 0

Let us define Rothe function by the piecewise linear interpolation with respect to the time t

un
h (t) ≡ uτ,h,ǫ =: ui−1

h + (t − ti−1) δui
h, i = 1, ..., n

together with step functions
un

h (t) = ui
h, i = 1, ..., n

and regularized energy functional

Jǫ

(

ui
)

=

∫

Ω

(

1

2

∣

∣ui
h

∣

∣

2
+

τ

p (x)

[

∣

∣△ui
h

∣

∣

2
+ ǫ
]

p(x)
2

+

∫ ui
h

0

f (s, x) ds

)

dx (4.4)

Now, we are able to announce our main result

Theorem 4.2. Suppose that p− ≥ 2 and 1 ≺ r ≺ p−, then problem (1.1) − (1.3) admits a weak solution
u in the sens of the definition 2.5.

To show this theorem, we need the following lemmas

Lemma 4.3. For i = 1, ..., n, the full discretized problem (4.3) admits a unique solution ui
h ∈ Xh,

Proof. Let us define the functional Jλ
ǫ : Xh −→ R by

Jλ
ǫ (v) =

∫

Ω

(

1

2τ

∣

∣v − ui−1
h

∣

∣

2
+

1

p (x)

[

∣

∣△ui
h

∣

∣

2
+ ǫ
]

p(x)
2

+
1

λ

∫ λv+(1−λ)u
i−1
h

0

f (s, x) ds

)

dx (4.5)

where 0 ≺ λ ≺ 1.

We have
∫

Ω

∣

∣

∣

∣

∫ v

0

f (s, x) ds

∣

∣

∣

∣

dx ≤

∫

Ω

∫ v

0

(c |s|
r

+ g (x)) dsdx

≤
c

r

∫

Ω

|v|
r

dx + ‖g‖∞

∫

Ω

∫ v

0

dsdx

≤ c

∫

Ω

|v|r dx + ‖g‖∞

∫

Ω

|v (s, x)| dx

≤ c ‖v‖
r

Lr + ‖g‖∞ ‖v‖L1 (4.6)

Now taking into account that for r ≻ 1, ‖△ (.)‖Lr is norm on W
2,r
0 equivalent to ‖.‖W 2,r and using

ǫ − Y oung
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inequality we arrive at

∫

Ω

∣

∣

∣

∣

∫ v

0

f (s, x) ds

∣

∣

∣

∣

dx ≤ c ‖v‖
r
Lr +

ǫr′

r′
‖g‖

r′

∞ +
1

rǫǫ
‖v‖

r
L1

≤ c ‖△v‖
r

Lr +
ǫr′

r′
‖g‖

r′

∞ +
c

rǫǫ
‖v‖

r

Lr

≤ c ‖△v‖
r

Lr +
ǫr′

r′
‖g‖

r′

∞ +
c

rǫǫ
‖△v‖

r

Lr (4.7)

where r′ = r
r−1 . Now choosing ǫ =

(

r′

2

)
1

r′

in (4.7) and we have

∫

Ω

∣

∣

∣

∣

∫ v

0

f (s, x) ds

∣

∣

∣

∣

dx ≤ c ‖△v‖
r

Lr + ‖g‖
r′

∞ (4.8)

Since r ≺ p−, one can write

∫

Ω

∣

∣

∣

∣

∫ v

0

f (s, x) ds

∣

∣

∣

∣

dx ≤ c + c

∫

Ω

|△v|
r

dx ≤ c + c

∫

Ω

p+

p (x)

(

|△v|
2
)

p(x)
2

dx

≤ c + c

∫

Ω

1

2p (x)

(

|△v|
2

+ ǫ
)

p(x)
2

dx (4.9)

from which we can conclude the coercivity of Jλ
ǫ . Consequently, there exists a unique ui

h ∈ Xh

minimize Jλ
ǫ . This achieves the proof. �

Lemma 4.4. The solution ui
h of (4.3) satisfies the following energy a priori estimate

Jǫ

(

ui
)

+ τ

i
∑

j=1

∥

∥

∥
δu

j
h

∥

∥

∥

2

≤ Jǫ

(

u0
)

(4.10)

Proof. Testing with v = ui
h in (4.3) and using convexitry properties we can arrive at the desired reult. �

Lemma 4.5. There exists C ≻ 0 such that

‖∂tu
n
h (t)‖

L2((0,T ),W −2,q+ (Ω)) + ‖un
h (t)‖L2((0,T ),H−2(Ω)) ≤ C (4.11)

Proof. Note that the above notations allows us to rewrite (4.3) as

∫ T

0

(∂tu
n
h, v) dt +

∫ T

0

(

[

∣

∣△un
h

∣

∣

2
+ ǫ
]

p(x)−2
2

△un
h, △v

)

=

∫ T

0

(fn
h , v) , ∀v ∈ Xh

0 (4.12)

It follows from theorem3 and theorem 4 in [18] that

‖∂tu
n
h‖

W −2,q+ (Ω) = sup
v∈W

2,p−

0

(∂tu
n
h, PL2v)

‖v‖
W 2,p−

≤ C
∥

∥△un
h

∥

∥

p−−1

Lp− + C

Estimate (4.10) concludes the proof. �
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Proof. (of the theorem 4.1) The precident a priori estimates allow us to conclude that un
h (t) has a

subsequence still denoted by un
h (t), and that there exists a function u for which we have when

ǫ, h, and τ = T
n

−→ 0

un
h ⇀ u in L∞

(

(0, T ) , W
2,p(x)
0 (Ω)

)

∩ W 1,2
(

(0, T ) , L2 (Ω)
)

un
h −→ u in W 1,2

(

(0, T ) , H1
0 (Ω)

)

f (un
h, .) −→ f (u, .) in Lr′

((0, T ) , Ω)
[

∣

∣△un
h

∣

∣

2
+ ǫ
]

p(x)−2
2

△un
h ⇀ η in L∞

(

(0, T ) , Lq(x) (Ω)
)

δun
h ⇀ ∂tu in H1

(

(0, T ) , W −1,q+

(Ω)
)

∩ L2
(

(0, T ) , H2
0 (Ω)

)

(4.13)

relation (4.13)ii comes from the fact that

∫ T

0

∫

Ω

∣

∣

∣
un

h (t) − un−1
h (t)

∣

∣

∣

2

dxdt ≤ τ2 ‖∂tu
n
h‖2

L2((0,T )×Ω)

According to Kolmogorov compactness creterion we get the desired result.
Now, passing to the limit as ǫ, h, and τ = T

n
−→ 0 in (4.12) taking into account (4.13) we obtain

∫ T

0

(∂tu, v) dt +

∫ T

0

(η, △v) dt =

∫ T

0

(f, v) dt, ∀v ∈ Xh
0 (4.14)

Let us prove that

η = |△u|p(x)−2 △u

choosing v = un
h in (4.13) and v = u in (4.14) we find that

∫ T

0

(un
h, ∂tu

n
h) dt +

∫ T

0

(

[

∣

∣△un
h

∣

∣

2
+ ǫ
]

p(x)−2
2

△un
h, △un

h

)

=

∫ T

0

(

fn
h , un

h

)

(4.15)

and

∫ T

0

‖∂tu‖2
dt +

∫ T

0

(η, △u) dt =

∫ T

0

(f, u) dt (4.16)

in view of the monotonicity of the operator △2
p(x)u := △

(

|△u|
p(x)−2

△u
)

we can write

∫ T

0

(

[

∣

∣△un
h

∣

∣

2
+ ǫ
]

p(x)−2
2

△un
h − |△v|

p(x)−2
△v, △un

h − △v

)

dt ≥ 0, ∀v ∈ C∞
0 ((0, T ) × Ω) (4.17)

by virtue of (4.14) − (4.16) we will arrive at

∫ T

0

(

η − |△v|
p(x)−2

△v, △u − △v
)

dt ≥ 0, ∀v ∈ C∞
0 ((0, T ) × Ω) (4.18)

Taking v = u − λθ for some λ ≻ 0 and θ ∈ C∞
0 ((0, T ) × Ω) we obtain

∫ T

0

(

η − |△ (u − λθ)|p(x)−2 △ (u − λθ) , △θ
)

dt ≥ 0 (4.19)
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Let λ tend towards 0, we arrive at

∫ T

0

(

η − |△u|
p(x)−2

△u, △θ
)

dt ≥ 0 (4.20)

by repeating the same procedure with v = u + λθ, we conclude

∫ T

0

(

η − |△u|
p(x)−2

△u, △θ
)

dt = 0, ∀θ ∈ C∞
0 ((0, T ) × Ω) (4.21)

The desired result followes from the density of C∞
0 ((0, T ) × Ω) . This achieves the proof. �

Remark 4.6. Note that with additional assumptions on f and p, the results obtained in Theorem 4.1
can be extended to the case p ≡ p (t, x) with a less regular solution in an anisotropic space.
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