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abstract: We consider a first-order delay differential equation involving iterative terms. We prove the
existence of positive periodic and bounded solutions by utilizing the Schauder’s fixed point theorem combined
with the Green’s functions method. Furthermore, by virtue of the Banach contraction principle, the uniqueness
and stability of the solution are also analyzed. Our new results are illustrated with two examples that show
the feasibility of our main findings.
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1. Introduction

Our foremost concern in this work is to establish some sufficient criteria that assure the existence,
uniqueness and stability of positive periodic and bounded solutions to the following first-order differential
equation with a time-varying delay and iterative terms:

y′ (t) + k (t) y (t) = ay[2] (t) − b
(

y[2] (t)
)2

− qy[2] (t) E (t, y (t) , y (t − τ (t))) , (1.1)

where y[2] (t) = y (y (t)) is the second iterate of y, a, b, q > 0, k ∈ C (R, (0, +∞)) , τ ∈ C (R, (0, +∞))
are two w-periodic functions and E ∈ C

(

R
3, (0, +∞)

)

is a w-periodic function with respect to the first
variable and satisfies the following Lipschitz condition:

|E (t, y1, y2) − E (t, z1, z2)| ≤ ℓ1 |y1 − z1| + ℓ2 |y2 − z2| . (1.2)

It is worth noting here that equation (1.1) which involves the second iterate of the state variable can be
seen as a special type of the following delayed differential equation:

y′ (t) + k (t) y (t) = ay (t − τ1 (t, y (t))) − b (y (t − τ1 (t, y (t))))2

− qy (t − τ1 (t, y (t))) E (t, y (t) , y (t − τ (t))) ,

where τ1 (t, y (t)) = t − y (t) can denote the gestation period, the life cycle, the time taken from birth
to maturity or between oviposition and eclosion of adults and so on. The dependence on the population
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density may have been due to the competition for food during larval stages in insect populations or to the
fact that some density-dependent factors such as hormones and growth factors affect the cell population
dynamics, just to name a few.

These equations are widely used for describing various phenomena in diverse areas of sciences such as
classical electrodynamics, biology, epidemiology, ecology, population dynamics and so on and so forth. For
instance, equation (1.1) is usually relevant to the dynamics of single-species population growth with har-
vesting strategy where y (t) represents the population density at time t, k (t) is per capita daily adult mor-

tality rate, ay[2] (t)−b
(

y[2] (t)
)2

is the recruitment term and qy (t − τ1 (t, y (t))) E (t, y (t) , y (t − τ (t))) is
the harvesting term which may be due to live capture, fishing, hunting or trapping individuals where q is
the catchability coefficient, τ (t) is referred to as the time delay required for harvesting mature individuals
and E is the harvesting or fishery effort that depends on both the current and the past densities. So, our
new results shed lights on an important question which is about the effect of the harvesting strategy on
the population dynamics. Indeed, such external factor which reduces the population affects the mathe-
matical model as it plays a key role in the dynamics of the population and, in some cases, can even lead
to the eventual extinction.

Despite the long history of iterative differential equations, there were very little works available in the
literature that dealt with these equations. But although the authors generally face some difficulties in
studying them, such equations have recently attracted considerable attention that led to several recent
contributions including (see [1]- [12]).

The purpose of this work is twofold: first, it aims to contribute to the emerging literature on this
topic, and, secondly, to highlight the impact of the harvesting strategy on the population dynamics as our
new findings highlights on this effect where the harvesting term involves two delays, the first lag depends
on time while the second one which gives the second iterate y[2] (t) , depends not only on the time but
also depends on the population density.

The plan of this manuscript is organized as follows. In Section 2, we present some definitions and
materials needed to establish our main results. In Section 3, we give certain conditions for which the
Schauder’s fixed point theorem could be applied and hence could guarantee the existence of at least one
positive periodic and bounded solution of equation (1.1). Further, by means of the Banach contraction
principle, we are also able to derive the existence and uniqueness result and also establish the continuous
dependence of the unique solution on parameters. In Section 4, two examples are included to show the
validity of the assumptions presented in this paper. Finally, the conclusion has been presented in the last
section.

2. Relevant preliminaries

In this section, we shall recall some relevant preliminaries, which are crucial in our arguments.
For w > 0 and c1, c2 ≥ 0, let us consider the Banach space

Pw = {y ∈ C(R,R), y(t + w) = y(t)} ,

equipped with the sup norm and

Kw(c1, c2) = {y ∈ Pw, 0 < y (t) ≤ c1, |y(t2) − y(t1)| ≤ c2 |t2 − t1| , ∀t1, t2 ∈ R} ,

a compact and convex subset of Pw.

Lemma 2.1. [12]If y1, y2 ∈ Kw(c1, c2), then
∥

∥

∥
y

[2]
1 − y

[2]
2

∥

∥

∥
≤ (1 + c2) ‖y1 − y2‖ .

Lemma 2.2. [12]It holds

Kw(c1, c2) = {y ∈ Pw, 0 < y (t) ≤ c1, |y(t2) − y(t1)| ≤ c2 |t2 − t1| , ∀t1, t2 ∈ [0, w]} .

Remark 2.3. It follows from Lemma 2.1 that
∥

∥

∥

∥

(

y
[2]
1

)2

−
(

y
[2]
2

)2
∥

∥

∥

∥

≤ 2c1 (1 + c2) ‖y1 − y2‖ ,

for all y1, y2 ∈ Kw(c1, c2).
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3. Main results

We first begin by giving an equivalence between our equation (1.1) and an integral one.

Lemma 3.1. y ∈ Kw(c1, c2) ∩ C1 (R,R) is a solution of equation (1.1) if and only if y ∈ Kw(c1, c2) is a
solution of the following integral equation:

y (t) =

∫ t+w

t

G (t, s)

{

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

}

ds, (3.1)

where

G (t, s) =
exp

(∫ s

t
k (u) du

)

exp
(∫ w

0
k (u) du

)

− 1
. (3.2)

Proof. Let y ∈ Kw(c1, c2) ∩ C1 (R,R) be a solution of equation (1.1). Multiplying both sides of this

equation by exp
(

∫ t

0
k (u) du

)

we arrive at

d

ds

[

y (s) exp

(
∫ s

0

k (u) du

)]

ds

=

[

ay[2] (t) − b
(

y[2] (t)
)2

− qy[2] (t) E (t, y (t) , y (t − τ (t)))

]

exp

(
∫ t

0

k (u) du

)

.

Integrating from t to t + w we have

∫ t+w

t

d

ds

[

y (s) exp

(
∫ s

0

k (u) du

)]

ds

=

∫ t+w

t

[

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

]

exp

(
∫ s

0

k (u) du

)

ds.

By the periodic properties we obtain that

∫ t+w

t

d

ds

[

y (s) exp

(
∫ s

0

k (u) du

)]

ds

= y (t)

[

exp

(
∫ t+w

0

k (u) du

)

− exp

(
∫ t

0

k (u) du

)]

= y (t)

[

exp

(
∫ t

0

k (u) du

) (

exp

(
∫ t+w

t

k (u) du

)

− 1

)]

.

Thus

y (t) =

∫ t+w

t

G (t, s)

{

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

}

ds.

Conversely, assume that y satisfies the integral equation (3.1), by differentiation one can easily verify
that y is a solution of equation (1.1). �

Remark 3.2. If
1

exp
(∫ w

0
k (u) du

)

− 1
= α1,

exp
(∫ w

0
k (u) du

)

exp
(∫ w

0
k (u) du

)

− 1
= α2,

then G (w + t, w + s) = G (t, s) for all s, t ∈ R and

0 < α1 ≤ G (t, s) ≤ α2. (3.3)

Furthermore, function G satisfies

∫ t1+w

t1

|G (t2, s) − G (t1, s)| ds ≤ wkα2 |t2 − t1| , (3.4)
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for all t, s, t1, t2 ∈ R where
k = sup

t∈[0,w]

k (t) .

From the last lemma, we define an operator F : Kw(c1, c2) → Pw as follows:

(Fy) (t) =

∫ t+w

t

G (t, s)

{

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

}

ds. (3.5)

So equation (1.1) associated with the periodic properties can be converted into a fixed point problem. In
other words, if y is a fixed point of the operator F then y is a solution of equation (1.1) and vice versa.

3.1. Existence

Now, we intend to state and prove our first main result. For this purpose, we will use Schauder’s
fixed point theorem to prove that operator F has at least one fixed point in Kw(c1, c2) which means that
equation (1.1) has at least one positive periodic and bounded solution.

Lemma 3.3. Operator F is continuous.

Proof. It is not difficult to show that F (t + w) = F (t) . For y1, y2 ∈ Kw(c1, c2), we have

|(Fy1) (t) − (Fy2) (t)| ≤ a

∫ t+w

t

G (t, s)
∣

∣

∣
y

[2]
1 (s) − y

[2]
2 (s)

∣

∣

∣
ds

+ b

∫ t+w

t

G (t, s)

∣

∣

∣

∣

(

y
[2]
1 (s)

)2

−
(

y
[2]
2 (s)

)2
∣

∣

∣

∣

ds

+ q

∫ t+w

t

G (t, s)
∣

∣

∣
y

[2]
1 (s) E (s, y1 (s) , y1 (s − τ (s))) ds

−y
[2]
2 (s) E (s, y2 (s) , y2 (s − τ (s)))

∣

∣

∣
ds.

But
∣

∣

∣
y

[2]
1 (s) E (s, y1 (s) , y1 (s − τ (s))) − y

[2]
2 (s) E (s, y2 (s) , y2 (s − τ (s)))

∣

∣

∣

≤ |E (s, y1 (s) , y1 (s − τ (s)))|
∣

∣

∣
y

[2]
1 (s) − y

[2]
2 (s)

∣

∣

∣

+ y
[2]
2 (s) |E (s, y1 (s) , y1 (s − τ (s))) − E (s, y2 (s) , y2 (s − τ (s)))| .

By using (1.2) and Remark 2.3 we get

|E (s, y1 (s) , y1 (s − τ (s)))| ≤ E0 + (ℓ1 + ℓ2) c1, (3.6)

where
E0 = max

t∈[0,w]
E (t, 0, 0) ,

and
∣

∣

∣
y

[2]
1 (s) E (s, y1 (s) , y1 (s − τ (s))) − y

[2]
1 (s) E (s, y2 (s) , y2 (s − τ (s)))

∣

∣

∣

≤ (E0 + (ℓ1 + ℓ2) c1) (c2 + 1) ‖y1 − y2‖ + c1 (ℓ1 + ℓ2) ‖y1 − y2‖

≤ (E0 (c2 + 1) + c1 (c2 + 2) (ℓ1 + ℓ2)) ‖y1 − y2‖ . (3.7)

It follows from (3.3), (3.7), Lemma 2.1 and Remark 2.3 that

‖Fy1 − Fy2‖ ≤ λ ‖y1 − y2‖ ,

where
λ = α2w ((c2 + 1) (a + 2bc1) + q (E0 (c2 + 1) + c1 (c2 + 2) (ℓ1 + ℓ2))) ,

from which we infer that F is a Lipschitz continuous operator and hence continuous. �
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Lemma 3.4. If awα2 ≤ 1 and

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s))) > 0. (3.8)

Then

0 < (Fy) (t) ≤ c1,

for all y ∈ Kw(c1, c2) and t ∈ R.

Proof. Let y ∈ Kw(c1, c2). Since awα2 ≤ 1, it follows from (3.3) that

(Fy) (t) ≤ a

∫ t+w

t

G (t, s) y[2] (s) ds

≤ awα2c1

≤ c1,

and by taking into account (3.3), (3.6) and (3.8) we get

(Fy) (t) =

∫ t+w

t

G (t, s)

{

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

}

> wα1 min
s∈[0,w]

{

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s)))

}

> 0.

Consequently, 0 < (Fy) (t) ≤ c1 for all y ∈ Kw(c1, c2) and t ∈ R. �

Lemma 3.5. If

α2c1 (kw + 2) (qE0 + a + bc1 + qℓ1c1 + qℓ2c1) ≤ c2, (3.9)

then

|(Fy) (t2) − (Fy) (t1)| ≤ c2 |t2 − t1| ,

for all t1,t2 ∈ R and y ∈ Kw(c1, c2).

Proof. Let t1,t2 ∈ R and y ∈ Kw(c1, c2). We have

|(Fy) (t2) − (Fy) (t1)| ≤ a

∫ t1

t2

y[2] (s)G (t2, s) ds + a

∫ t2+w

t1+w

y[2] (s)G (t2, s) ds

+ a

∫ t1+w

t1

y[2] (s) |G (t2, s) − G (t1, s)| ds

+ b

∫ t1

t2

(

y[2] (s)
)2

G (t2, s) ds + b

∫ t2+w

t1+w

(

y[2] (s)
)2

G (t2, s) ds

+ b

∫ t1+w

t1

|G (t2, s) − G (t1, s)|
(

y[2] (s)
)2

ds

+ q

∫ t1

t2

G (t2, s) y[2] (s) E (s, y (s) , y (s − τ (s))) ds

+ q

∫ t2+w

t1+w

G (t2, s) y[2] (s) E (s, y (s) , y (s − τ (s))) ds

+ q

∫ t1+w

t1

|G (t2, s) − G (t1, s)| y[2] (s) E (s, y (s) , y (s − τ (s))) ds.
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From (3.3), (3.4) and (3.6) we arrive at

|(Fy) (t2) − (Fy) (t1)| ≤ 2ac1α2 |t2 − t1| + c1awkα2 |t2 − t1|

+ 2bc2
1α2 |t2 − t1| + bc2

1wkα2 |t2 − t1|

+ 2qα2c1 (E0 + (ℓ1 + ℓ2) c1) |t2 − t1|

+ qc1 (E0 + (ℓ1 + ℓ2) c1) wkα2 |t2 − t1|

≤ α2c1 (kw + 2) (qE0 + a + bc1 + qℓ1c1 + qℓ2c1) |t2 − t1| .

It follows from (3.9) and Lemma 2.2 that

|(Fy) (t2) − (Fy) (t1)| ≤ c2 |t2 − t1| ,

for all t1,t2 ∈ R and y ∈ Kw(c1, c2). �

Theorem 3.6. Suppose that conditions (3.8), (3.9) and awα2 ≤ 1 hold, then equation (1.1) has at least
one positive periodic and bounded solution in Kw(c1, c2).

Proof. From Lemmas 3.4 and 3.5 we conclude that operator F maps the compact subset Kw(c1, c2) into
itself and since Lemma 3.3 guarantees the continuity of the operator F, then all conditions of Schauder’s
fixed point theorem are satisfied. Accordingly, F has at least one fixed point y ∈ Kw(c1, c2) such that
Fy = y. Thanks to Lemma 3.1, equation (1.1) has at least one positive periodic and bounded solution. �

3.2. Uniqueness

Theorem 3.7. Suppose that conditions (3.8), (3.9) and awα2 ≤ 1 are fulfilled. If λ < 1, then equation
(1.1) has a unique positive periodic and bounded solution y ∈ Kw(c1, c2).

Proof. Let y1, y2 ∈ Kw(c1, c2). From the proof of Lemma 3.3 we have

‖Fy1 − Fy2‖ ≤ λ ‖y1 − y2‖ .

Since λ < 1, then F is a contraction. So, by the Banach fixed point theorem, F has a unique fixed point
which is the unique positive periodic and bounded solution of equation (1.1). �

3.3. Stability

Theorem 3.8. The unique solution obtained in Theorem 3.7 depends continuously on the death rate k

and the harvesting effort E.

Proof. Let

y1 (t) =

∫ t+w

t

G1 (t, s)

{

ay
[2]
1 (s) − b

(

y
[2]
1 (s)

)2

− qy
[2]
1 (s) E1 (s, y1 (s) , y1 (s − τ (s)))

}

ds,

and

y2 (t) =

∫ t+w

t

G2 (t, s)

{

ay
[2]
2 (s) − b

(

y
[2]
2 (s)

)2

− qy
[2]
2 (s) E2 (s, y2 (s) , y2 (s − τ (s)))

}

ds,

where

G1 (t, s) =
exp

(∫ s

t
k1 (u) du

)

exp
(∫ w

0 k1 (u) du
)

− 1
and G2 (t, s) =

exp
(∫ s

t
k2 (u) du

)

exp
(∫ w

0 k2 (u) du
)

− 1
,
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are two different solutions of equation (1.1). We have

|y1 (t) − y2 (t)| ≤ a

∫ t+w

t

∣

∣

∣
y

[2]
1 (s)G1 (t, s) − y

[2]
2 (s)G2 (t, s)

∣

∣

∣
ds

+ b

∫ t+w

t

∣

∣

∣

∣

(

y
[2]
1 (s)

)2

G1 (t, s) − y
[2]
2 (s)G2 (t, s)

∣

∣

∣

∣

ds

+ q

∫ t+w

t

∣

∣

∣
y

[2]
1 (s) E1 (s, y1 (s) , y1 (s − τ (s)))G1 (t, s)

−y
[2]
2 (s) E2 (s, y2 (s) , y2 (s − τ (s)))G2 (t, s)

∣

∣

∣
ds.

Thus

|y1 (t) − y2 (t)|

≤ a

∫ t+w

t

G1 (t, s)
∣

∣

∣
y

[2]
1 (s) − y

[2]
2 (s)

∣

∣

∣
ds + a

∫ t+w

t

y
[2]
2 (s) |G1 (t, s) − G2 (t, s)| ds

+ b

∫ t+w

t

G1 (t, s)

∣

∣

∣

∣

(

y
[2]
1 (s)

)2

−
(

y
[2]
2 (s)

)2
∣

∣

∣

∣

ds + b

∫ t+w

t

(

y
[2]
2 (s)

)2

|G1 (t, s) − G2 (t, s)| ds

+ q

∫ t+w

t

G1 (t, s) y
[2]
1 (s) |E1 (s, y1 (s) , y1 (s − τ (s))) − E2 (s, y1 (s) , y1 (s − τ (s)))| ds

+ q

∫ t+w

t

y
[2]
1 (s) E2 (s, y1 (s) , y1 (s − τ (s))) |G1 (t, s) − G2 (t, s)| ds

+ q

∫ t+w

t

y
[2]
1 (s)G2 (t, s) |E2 (s, y1 (s) , y1 (s − τ (s))) − E2 (s, y2 (s) , y2 (s − τ (s)))| ds

+ q

∫ t+w

t

∣

∣

∣
y

[2]
1 (s) − y

[2]
2 (s)

∣

∣

∣
G2 (t, s) E2 (s, y2 (s) , y2 (s − τ (s))) ds.

The mean value theorem leads to

∫ t+w

t

|G1 (t, s) − G2 (t, s)| ds ≤ σ ‖k1 − k2‖ , (3.10)

where

σ =
w2ew(‖k2‖+max(‖k1‖,‖k2‖))

(

exp
(∫ w

0
k1 (u) du

)

− 1
) (

exp
(∫ w

0
k2 (u) du

)

− 1
) +

w2ew max(‖k1‖,‖k2‖)

exp
(∫ w

0
k1 (u) du

)

− 1
.

It follows from (1.2), (3.3), (3.6), (3.10), Lemma 2.1 and Remark 2.3 that

‖y1 − y2‖ ≤ awα2 (1 + c2) ‖y1 − y2‖ + ac1σ ‖k1 − k2‖

+ 2bwα2c1 (1 + c2) ‖y1 − y2‖ + bc2
1σ ‖k1 − k2‖

+ qc1wα2 ‖E1 − E2‖ + qc1 (E0 + (ℓ1 + ℓ2) c1) σ ‖k1 − k2‖

+ qc1wα2 (ℓ1 + ℓ2) ‖y1 − y2‖

+ qwα2 (E0 + (ℓ1 + ℓ2) c1) (1 + c2) ‖y1 − y2‖ .

Therefore,

‖y1 − y2‖ ≤
1

1 − λ
[c1σ (a + bc1 + q (E0 + (ℓ1 + ℓ2) c1)) ‖k1 − k2‖

+qc1wα2 ‖E1 − E2‖] .

This completes the proof. �
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4. Examples

In this section, we give two examples to demonstrate the findings obtained in the previous section.

Example 4.1. Consider the following recruitment model:

y′ (t) +

(

0.022 + 0.02 cos2

(

2π

35
t

))

y (t)

= (0.018) y[2] (t) − (0.0012)
(

y[2] (t)
)2

− (0.003) y[2] (t)

(

(0.0025) cos2

(

2π

35
t

)

+
1

27
cos2

(

2π

35
t

)

y (t) +
1

29
cos2

(

2π

35
t

)

y (t − τ (t))

)

. (4.1)

Here

k (t) = 0.022 + 0.02 cos2

(

2π

35
t

)

, a = 0.018, b = 0.0012,

E (t, y (t) , y (t − τ (t))) = (0.0025)cos2

(

2π

35
t

)

+
1

27
cos2

(

2π

35
t

)

y (t)

+
1

29
cos2

(

2π

35
t

)

y (t − τ (t)) , ℓ1 =
1

27
, ℓ2 =

1

29
, E0 = max

t∈[0,w]
E (t, 0, 0) = (0.0025) .

We choose

Kw(c1, c2) = {y ∈ Pw, 0 < c0 ≤ y (t) ≤ c1, |y(t2) − y(t1)| ≤ c2 |t2 − t1| , ∀t1, t2 ∈ R} ,

where w = 35, c0 = 1.5, c1 = 2.5 and c2 = 0.5.

So, we have

awα2 = 0.93511 ≤ 1,

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s))) = 0.01814 > 0,

α2c1 (kw + 2) (qE0 + a + bc1 + qℓ1c1 + qℓ2c1) = 0.27741 ≤ c2 = 0.5,

and
λ = α2w ((c2 + 1) (a + 2bc1) + q (E0 (c2 + 1) + c1 (c2 + 2) (ℓ1 + ℓ2))) ≃ 1.9405 > 1.

Condition λ < 1 is not satisfied but all requirements of Theorem 3.6 are fulfilled. Hence, equation (4.1)
has at least one positive periodic and bounded solution in Kw(2.5, 0.5) which is not necessarily unique.

Remark 4.2. With the choice a = ρβ and b = ρ2δ, equation (4.1) models the population dynamics of the
housefly Musca domestica, where k (t) is the death rate of fly adults, ρ denotes the number of eggs laid per
adult, β > 0 is the maximum egg-adult survival rate, δ stands for the reduction in survival produced by
each additional egg and y[2] (s) results from a time and state dependent delay representing the life cycle
of this fly.

Example 4.3. We consider the same previous recruitment model (4.1) with c0 = 2 and a = 0.005.

In this case we have

awα2 = 0.25975 ≤ 1,

ay[2] (s) − b
(

y[2] (s)
)2

− qy[2] (s) E (s, y (s) , y (s − τ (s))) ≃ 1.1403 × 10−3 > 0,

α2c1 (kw + 2) (qE0 + a + bc1 + qℓ1c1 + qℓ2c1) = 0.11001 ≤ c2 = 0.5.

Moreover, we get

λ = α2w ((c2 + 1) (a + 2bc1) + q (E0 (c2 + 1) + c1 (c2 + 2) (ℓ1 + ℓ2))) = 0.92743 < 1.

We infer that all hypotheses of Theorem 3.7 hold. So, equation (4.1) with c0 = 2 and a = 0.005 has a
unique positive periodic and bounded solution in Kw(2.5, 0.5) that depends continuously on the death rate
k and the harvesting effort E.
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5. Conclusion

In the present work, we were interested in providing new existence, uniqueness and stability results for
a first order differential equation with iterative recruitment and harvesting terms and a delayed harvesting
effort.

Our first task we have set ourselves was to choose a suitable Banach space and a subset of it. Indeed
this choice were the cornerstone of our technique as, on one hand, they facilitated the study of our
equation including the application of the chosen fixed point theorems and the control of the iterative
terms and, on the other hand, they ensured some basic biological facts such as the periodicity, positivity
and boundedness of the sought solutions. The proofs have hinged on an efficient approach based on
the fixed point theory with the help of some properties of a Green’s kernel where the existence of the
solutions of equation (1.1) was equivalent to the existence of fixed points of an integral operator obtained
after reformulation of our equation as an equivalent integral one. The existence of positive bounded and
periodic solutions was established by virtue of the Schauder’s fixed point theorem and under an additional
hypothesis, Banach contraction principle has guaranteed the existence and continuous dependence on
parameters of the unique solution. Moreover, we have also applied the obtained outcomes to two models.
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