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Nontrivial Solutions for a General p(x)-Laplacian Robin Problem

Fouad Kissi and Abdelrachid El Amrouss

abstract: We establish the existence of multiple nontrivial solutions for a class of p(x)-Laplacian Robin
problem. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, com-
bined with adequate variational methods and a variant of the Mountain Pass lemma.
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1. Introduction

The purpose of the present paper is to study the following Robin problem involving the p(x)-Laplacian

(P)

{

−∆p(x)u = f(x, u) + g(x, u) in Ω,

|∇u|p(x)−2 ∂u
∂v

+ β(x)|u|p(x)−2u = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 2) is a bounded smooth domain, ∂u

∂v
is the outer unit normal derivative on ∂Ω, p is

Lipschitz continuous on Ω̄, with

1 < p− = inf
Ω̄

p(x) ≤ p(x) ≤ sup
Ω̄

p(x) = p+ < N,

β ∈ L∞(∂Ω) with β− = infx∈∂Ω > 0, and f , g are continuous functions on Ω̄ × R
N .

The study of differential equations and variational problems with p(x)-growth conditions was an
interesting topic, which arises from nonlinear electrorheological fluids and elastic mechanics. For axample,
see [5,14,16] and references therein.

The operator −∆p(x)u = div(| ∇u |p(x)−2 ∇u) with p(x) > 1 is called the p(x)-Laplacian which is
natural generalization of the p-Laplacian ( where p > 1 is a constant ). When p(x) 6= constant, the
p(x)-Laplacian possesses more complicated nonlinearity than the p-Laplacian, say, it is nonhomogeneous.

The p(x)-Laplacian Dirichlet, Neumann, Steklov, and Robin problems on a bounded domain have been
investigated and some interesting results have been obtained (see [1,2,4,6,7,8,9,11,13,15] and references
therein).

In a recent paper [2], the authors considered the above problem and using variational methods, by the
assumptions on the function f , they established the existence of at least three solutions of the problem.

Inspired by the above references and the work of Allaoui, El amrouss and Ourraoui [3], we prove that
there exist two nontrivial solutions for (P).

In order to obtain this result, we suppose the following conditions :
(F1) |f(x, t)| ≤ b(x)|t|γ(x)−1, such that

p+ < γ− = inf
x∈Ω̄

γ(x) ≤ γ+ = sup
x∈Ω̄

γ(x) ≪ p∗(x), ∀x ∈ Ω̄
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with
b ∈ L∞(Ω̄) ∩ Lr(x)(Ω̄),

p∗(x) = Np(x)
N−p(x) ,

and
r(x) > Np(x)

Np(x)+p(x)γ(x)−Nγ(x) ,

for a.e.x in Ω̄, r ∈ C(Ω̄), which implies that
p(x) < γ(x)r(x) < p∗(x).

We denote by d(x) ≪ j(x) that infx∈Ω(j(x) − d(x)) > 0.
(F2) There exists θ > p+ such that

0 < θF (x, t) ≤ tf(x, t), for a.e. x ∈ R
N , t ∈ R

N ,

where F (x, t) =
∫ t

0 f(x, s) ds.

(F3) |g(x, t)| ≤ a(x)|t|δ(x)−1, such that
1 < δ− = inf

x∈Ω̄
δ(x) ≤ δ+ = sup

x∈Ω̄

δ(x) < p−, a ∈ L∞(Ω̄) ∩ Lq(x)(Ω̄),

1
q(x) + δ(x)

s(x) = 1, q ∈ C(Ω̄) and p(x) ≤ s(x) ≤ p∗(x).

(F4) G(x, t) ≥ b0(x)tδ0 as t → 0+, 0 < δ0 < p−, b0(x) ≥ 0,

where G(x, t) =
∫ t

0
g(x, s) ds.

The main result reads as follows.

Theorem 1.1. Under the assumptions (F1)-(F4), the problem (P) has at least two nontrivial solutions.

This paper is organized as follows. In Section 2, we give the necessary notations and preliminaries, we
also include some useful results involving the variable exponenet Lebesgue and Sobolev spaces in order
to facilitate the reading of the paper. Finally, in Section 3, we will give the proof of our main result.

2. Preliminary

For completeness, we first recall some facts on the variable exponent spaces Lp(x)(Ω) and W 1,p(x)(Ω).
For more details, see [10,12]. Suppose that Ω is a bounded open domain of RN with smooth boundary
∂Ω and p(x) ∈ C+(Ω̄) where

C+(Ω̄) = {p; p ∈ C(Ω̄), p(x) > 1 for all x ∈ Ω̄}.

Denote by
p+ = sup

x∈Ω̄

p(x) and p− = inf
x∈Ω̄

p(x).

Define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : Ω → R mesurable and

∫

Ω

| u(x) |p(x) dx < ∞},

with the norm

| u |p(x)= inf{µ > 0;

∫

Ω

|
u(x)

µ
|p(x) dx ≤ 1}.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : | ∇u |∈ Lp(x)(Ω)},

with the norm

‖ u ‖= inf{µ > 0;

∫

Ω

(|
∇u(x)

µ
|p(x) + |

u(x)

µ
|p(x)) dx ≤ 1},

‖ u ‖=| ∇u |p(x) + | u |p(x) .

We refer the reader to [10,12] for the basic properties of the variable exponent Lebesgue and Sobolev
spaces.
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Lemma 2.1. Both (Lp(x)(Ω), | . |p(x)) and (W 1,p(x)(Ω), ‖ . ‖) are separable and uniformly convex Banach
spaces.

Lemma 2.2. Hölder inequality holds, namely

|

∫

Ω

uv dx |≤ 2 | u |p(x)| v |p′(x) ∀u ∈ Lp(x)(Ω), ∀v ∈ Lp′(x)(Ω),

where 1
p(x) + 1

p′(x) = 1.

Lemma 2.3. Assume that the boundary of Ω possesses the cone property and p ∈ C(Ω̄) and 1 ≤ q(x) <
p∗(x) for x ∈ Ω̄, then there is a compact embedding W 1,p(x)(Ω) →֒ Lq(x)(Ω), where

p∗(x) =

{

Np(x)
N−p(x) , if p(x) < N,

∞, if p(x) ≥ N.

Now, we introduce a norm, which will be used later.
Let β ∈ L∞(∂Ω) with β− = inf

x∈∂Ω
β(x) > 0 and for u ∈ W 1,p(x)(Ω), define

‖ u ‖β= inf{µ > 0;

∫

Ω

|
∇u(x)

µ
|p(x) dx +

∫

∂Ω

β(x) |
u(x)

µ
|p(x) dσ ≤ 1}.

Then, by Theorem 2.1 in [8], ‖ . ‖β is also a norm on W 1,p(x)(Ω) which is equivalent to ‖ . ‖.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the the
mapping defined by the following.

Lemma 2.4. Let I(u) =
∫

Ω | ∇u(x) |p(x) dx +
∫

∂Ω β(x) | u(x) |p(x) dσ with β− > 0. For u ∈ W 1,p(x)(Ω)
we have

‖ u ‖β≥ 1 ⇒‖ u ‖p−

β ≤ I(u) ≤‖ u ‖p+

β ,

‖ u ‖β≤ 1 ⇒‖ u ‖p+

β ≤ I(u) ≤‖ u ‖p−

β ,

‖ u ‖β< 1(resp. = 1; > 1) ⇔ I(u) < 1(resp. = 1; > 1).

Let X = W 1,p(x)(Ω). The Euler-Lagrange functional associated with (P) is defined as Φ : X → R,

Φ(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx +

∫

∂Ω

β(x)

p(x)
|u|p(x) dσ −

∫

Ω

F (x, u) dx −

∫

Ω

G(x, u) dx.

We say that u ∈ X is a weak solution of (P) if

∫

Ω

|∇u|p(x)−2∇u∇v dx +

∫

∂Ω

β(x)|u|p(x)−2uv dσ =

∫

Ω

f(x, u)v dx +

∫

Ω

g(x, u)v dx,

for all v ∈ X .

Standard arguments imply that Φ ∈ C1(X,R) and

〈Φ′(u), v〉 =

∫

Ω

|∇u|p(x)−2∇u∇v dx +

∫

∂Ω

β(x)|u|p(x)−2uv dσ −

∫

Ω

f(x, u)v dx −

∫

Ω

g(x, u)v dx,

for all u, v ∈ X . Thus the weak solution of (P) coincide with the critical points of Φ.
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3. Proof of main result

For the proof of our theorem, we will use Mountain Pass Lemma. We need to establish some lemmas.

Lemma 3.1. Under the conditions of Theorem 1.1, the functional Φ satisfies the (PS) condition.

Proof. Let (un)n be a (PS) sequence for the functional Φ: Φ(un) ≤ C and Φ′(un) → 0. We have, for
‖ un ‖β> 1

Φ(un) =

∫

Ω

1

p(x)
|∇un|p(x) dx +

∫

∂Ω

β(x)

p(x)
|un|p(x) dσ −

∫

Ω

F (x, un) dx −

∫

Ω

G(x, un) dx

≥ (
1

p+
−

1

θ
) ‖ un ‖p−

β +
1

θ
Φ′(un)un +

∫

Ω

(
1

θ
f(x, un)un − F (x, un)) dx

+

∫

Ω

(
1

θ
g(x, un)un − G(x, un)) dx

≥ (
1

p+
−

1

θ
) ‖ un ‖p−

β +
1

θ
Φ′(un)un − C(1 +

1

θ
) | a |∞‖ un ‖δ+

β , (3.1)

which is a contradiction. So (un)n is bounded and the Palais-Smale conditions are satified. �

Now it remains to check the geometric condition of Mountain Pass Theorem.

Lemma 3.2. There exist ρ > 0 and α > 0 such that Φ(u) ≥ α, for all u ∈ X with ‖ u ‖β= ρ.

Proof. For ‖ u ‖β small enough, we have

Φ(u)|‖u‖β =ρ ≥ (
1

p+
‖ u ‖p+

β −
| b |∞

γ−

∫

Ω

| u |γ(x) dx −
| a |∞

δ−

∫

Ω

| u |δ(x) dx)|‖u‖β =ρ

≥
1

p+
‖ u ‖p+

β −C1 ‖ u ‖γ+

β −C2 ‖ u ‖δ+

β

= ‖ u ‖p+

β [
1

p+
− C1 ‖ u ‖γ+−p+

β −C2 ‖ u ‖δ+−p+

β ]

= ρp+

H(ρ). (3.2)

It easy to see that H(ρ) has an absolute maximum ρ0 = (C2

C1
)

1

γ+
−δ+ . Afterwards, there exists α > 0 such

that Φ(u)|‖u‖β =ρ ≥ α. �

Proof of theorem 1.1. In order to apply the Mountain Pass Theorem, we must prove that

Φ(tu) → −∞ as t → +∞,

for a certain u ∈ X . From the condition (F2), there exists M > 0 such that

F (x, t) ≥ M | t |θ, for all (x, t) ∈ Ω̄ × R.

Let u ∈ X and t > 1 we have,

Φ(tu) =

∫

Ω

tp(x)

p(x)
|∇u|p(x) dx +

∫

∂Ω

tp(x) β(x)

p(x)
|u|p(x) dσ −

∫

Ω

F (x, tu) dx −

∫

Ω

G(x, tu) dx

≤ tp+

[

∫

Ω

1

p(x)
|∇u|p(x) dx +

∫

∂Ω

β(x)

p(x)
|u|p(x) dσ] − M | t |θ

∫

Ω

| u |θ dx

− | t |δ0

∫

Ω

b0(x) | u |δ0 dx.

Hence, we infer that Φ(tu) → −∞ as t → +∞, provided θ > p+ > δ0. Then, by Mountain Pass Theorem
and the lemmas 3.1 and 3.2, we obtain the existence of a nontrivial solution u1 to problem (P).
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On the other hand, we can see that Φ(u)|‖u‖β=ρ0
> 0 and Φ(u) is bounded below for ‖ u ‖β< ρ0, then

inf
B̄ρ0

(0)
Φ > −∞.

Furthermore, Φ is weakly lower semi continuous, thus for un is a minimizing sequence in Bρ0
(0), we may

extract a weakly convergent subsequence what we call also (un)n, then we have
un ⇀ u and Φ(un) → inf

B̄ρ0
(0)

Φ,

we observe that
Φ(u) ≤ lim inf Φ(un) = Φ(u),

hence, Φ attains a local minimum at u2 ∈ Bρ0
(0). We note that u2 must be nontrivial since we have for

some v ∈ C∞
0 (Ω),

Φ(sv) ≤ sp−

[

∫

Ω

1

p(x)
|∇v|p(x) dx +

∫

∂Ω

β(x)

p(x)
|v|p(x) dσ] +

sγ−

γ−
| b |∞

∫

Ω

| v |γ(x) dx

−sδ0

∫

Ω

b0(x) | v |δ0 dx < 0,

with s > 0 small enough. It follows that Φ attains its local minimum at u2 ∈ B(0, ρ0) which yields
Φ′(u2) = 0. We point out that u2 /∈ ∂Bρ0

since Φ(u2) < 0 and Φ(u)|‖u‖β =ρ0
< 0. The proof of theorem

1.1 is now complete
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