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abstract: In this paper we investigate 3-prime near-rings with left generalized semiderivations satisfying
certain differential identities. Consequently, some well-known results existing in literature have been general-
ized. We also show how the constraints placed on the hypothesis of various results are really not redundant.
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1. Introduction

Throughout this paper, N will be a zero-symmetric left near-ring with multiplicative center Z(N),
and usually N will be 3-prime, that is, if for x, y ∈ N will have the property that, xNy = {0} implies
x = 0 or y = 0. Note that N is a zero-symmetric if 0x = 0 for all x ∈ N, (recall that left distributive
yields x0 = 0). Recalling that N is called 2-torsion free if 2x = 0 implies x = 0 for all x ∈ N. A nonempty
subset U of N is called semigroup left ideal (resp. semigroup right ideal) if NU ⊆ U (resp. UN ⊆ U)
and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal.
Let α and β be maps from N to N. Granted x, y ∈ N, we write [x, y](α,β) = β(x)α(y) − α(y)β(x) and
(x ◦ y)(α,β) = β(x)α(y) + α(y)β(x), in particular [x, y](IN ,IN) = [x, y] and (x ◦ y)(IN,IN) = x ◦ y in the
usual sense, where IN is the identity map of N. An additive mapping H : N → N is said to be a right
(resp. left) multiplier if H(xy) = xH(y) (resp. H(xy) = H(x)y) holds for all x, y ∈ N. H is said to be a
multiplier if it is both left as well as right multiplier.

In (2013), A. Boua and al. [4] have introduced the notion of semiderivation of a near-ring N in the
following way :

Definition 1.1. An additive mapping d : N → N is called semiderivation if there exists an additive map
g : N → N such that d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and d(g(x)) = g(d(x)) for all x, y ∈ N.

The notions of left generalized semiderivation and right generalized semiderivation are introduced as
follows:

Definition 1.2. Let N be a near-ring and d be a semiderivation associated with an additive mapping g

of N. An additive mapping F : N −→ N is called a left generalized semiderivation associated with d if it
satisfies F (xy) = d(x)g(y) + xF (y) = d(x)y + g(x)F (y) and F (g(x)) = g(F (x)) for all x, y ∈ N.

Definition 1.3. Let N be a near-ring and d be a semiderivation associated of N with an additive mapping
g. An additive mapping F : N −→ N is called a right generalized semiderivation associated with d if it
satisfies F (xy) = F (x)g(y) + xd(y) = F (x)y + g(x)d(y) and F (g(x)) = g(F (x)) for all x, y ∈ N.
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Definition 1.4. Let N be a near-ring and d be a semiderivation of N associated with an additive mapping
g. An additive mapping F : N −→ N is called a generalized semiderivation associated with d if it is both
a left as well as a right generalized semiderivation associated with d.

Example 1.5. Let S be a left zero-symmetric near-ring, and

N =











0 a b

0 0 c

0 0 0



 | a, b, c, 0 ∈ S







.

We define the maps d, g, F : N −→ N as follow:

d





0 a b

0 0 c

0 0 0



 =





0 a b

0 0 0
0 0 0



 , g





0 a b

0 0 c

0 0 0



 =





0 0 0
0 0 c

0 0 0





and

F





0 a b

0 0 c

0 0 0



 =





0 0 b

0 0 0
0 0 0



 .

It is straightforward to check that N is a zero-symmetric left near-ring, d is a semiderivation of N

associated with g, and F is a left generalized semiderivation associated with d, but F is not a right
generalized semiderivation associated with d on N.

Example 1.6. Let S be a left zero-symmetric near-ring, and

N =











0 0 0
a 0 b

c 0 0



 | a, b, c, 0 ∈ S







.

Let us consider the maps d, g, F : N −→ N given by:

d





0 0 0
a 0 b

c 0 0



 =





0 0 0
a 0 b

0 0 0



 , g





0 0 0
a 0 b

c 0 0



 =





0 0 0
0 0 0
c 0 0





and

F





0 0 0
a 0 b

c 0 0



 =





0 0 0
0 0 b

c 0 0



 .

It is easy to see that N is a zero-symmetric left near-ring, d is a semiderivation associated with g of N, and
F is a right generalized semiderivation associated with d, but F is not a left generalized semiderivation
associated with d on N.

Example 1.7. Let N =











0 0 a

0 0 b

0 0 0



 | a, b, 0 ∈ S







, where S is a left zero-symmetric near-ring.

Define the maps d, g, F : N −→ N by:

d





0 0 a

0 0 b

0 0 0



 =





0 0 b

0 0 a

0 0 0



 , g





0 0 a

0 0 b

0 0 0



 =





0 0 b

0 0 a

0 0 0




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and

F





0 0 a

0 0 b

0 0 0



 =





0 0 0
0 0 b

0 0 0



 .

Clearly, N is zero-symmetric left near-ring, d is a semiderivation of N associated with g, and F is a
generalized semiderivation associated with d on N.

The presence of certain various types of derivations and the link between rings and near-rings com-
mutativity has piqued the interest of researchers. Many authors, including [4], [6], [8] and others, have
recently obtained the commutativity of prime rings and near-rings using generalized semiderivations
satisfying specified polynomial and differential constants.

In 2015, M. Ashraf and M. A. Siddeeque [2] proved that a 3-prime near-ring must be commutative
ring if it admits a left generalized derivation F associated with a nonzero derivation, satisfies one of
the following properties: (i)F ([x, y]) = 0, (ii)F ([x, y]) = ±[x, y], (iii)F (x ◦ y) = 0, (iv)F (x ◦ y) =
±(x ◦ y), (v)F ([x, y]) = ±(x ◦ y), (vi)F (x ◦ y) = ±[x, y] for all x, y in a nonzero semigroup ideal U . In
this paper, we generalize the above-mentioned results. More precisely, we study the following theorem on
commutativity of 3-prime near-rings involving left generalized semiderivations F , right multipliers H, β

and an automorphism α, that satisfies the following conditions:

(i) F ([x, y](α,β)) = 0, (ii) F ((x ◦ y)(α,β)) = 0

(iii) F ([x, y](α,β)) = H([x, y](α,β)), (iv) F ((x ◦ y)(α,β)) = H((x ◦ y)(α,β)),

(v) F ([x, y](α,β)) = H((x ◦ y)(α,β)), (vi) F ((x ◦ y)(α,β)) = H([x, y](α,β)),

for all x, y ∈ U.

2. Some preliminaries

Lemma 2.1. [3, Lemma 1.2 (i), Lemma 1.2 (iii), Lemma 1.3 (iii)] Let N be a 3-prime near-ring.

(i) If z ∈ Z(N) r {0}, then z is not a zero divisor.

(ii) If z ∈ Z(N) r {0} and zx ∈ Z(N), then x ∈ Z(N).

(iii) If z centralizes a nonzero semigroup right ideal, then z ∈ Z(N).

Lemma 2.2. [3, Lemma 1.3 (i)] Let N be a 3-prime near-ring. If U is a nonzero semigroup right ideal
(resp. semigroup left ideal) and x is an element of N such that Ux = {0} (resp. xU = {0} ), then x = 0.

Lemma 2.3. [3, Lemma 1.4 (i)] Let N be a 3-prime near-ring, and U a nonzero semigroup ideal of N.
If x, y ∈ N, and xUy = {0}, then x = 0 or y = 0.

Lemma 2.4. [3, Lemma 1.5] Let N be a 3-prime near-ring. If Z(N) contains a nonzero semigroup left
ideal or a nonzero semigroup right ideal of N, then N is a commutative ring.

Lemma 2.5. [1, Lemma 2.4] Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N. If
N admits a nonzero semiderivation d associated with a map g, then d(U) 6= {0}.

Lemma 2.6. [6, Theorems 1] Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and d

be a nonzero semiderivation associated with an automorphism g of N. Then the following conditions are
equivalent:

(i) d(U) ⊆ Z(N)

(ii) N is a commutative ring.

Lemma 2.7. Let N be a near-ring and d be a nonzero semiderivation associated with an additive map g

of N. If N admits an additive mapping F , then the following statements are equivalent:
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(i) F (xy) = d(x)g(y) + xF (y) = d(x)y + g(x)F (y) for all x, y ∈ N.

(ii) F (xy) = xF (y) + d(x)g(y) = g(x)F (y) + d(x)y for all x, y ∈ N.

Proof. (i) ⇒ (ii) Assume that F (xy) = d(x)g(y) + xF (y) for all x, y ∈ N. Thus F (x(y + y)) = d(x)g(y +
y) + xF (y + y) for all x, y ∈ N. So F (x(y + y)) = d(x)g(y) + d(x)g(y) + xF (y) + xF (y) for all x, y ∈ N.

On the other hand, we have F (x(y + y)) = F (xy) + F (xy) = d(x)g(y) + xF (y) + d(x)g(y) + xF (y) for all
x, y ∈ N.

Comparing the two equations, we find that d(x)g(y) + xF (y) = xF (y) + d(x)g(y) for all x, y ∈ N.

Similarly, we can prove that d(x)y + g(x)F (y) = g(x)F (y) + d(x)y for all x, y ∈ N. Hence F (xy) =
xF (y) + d(x)g(y) = g(x)F (y) + d(x)y for all x, y ∈ N.

(ii) ⇒ (i) We obtain the proof by employing the identical techniques as those given in (i) ⇒ (ii). �

We can show the following result in a similar way:

Lemma 2.8. Let N be a near-ring and d be a nonzero semiderivation associated with an additive map g

of N. If N admits an additive mapping F , then the following statements are equivalent:

(i) F (xy) = F (x)g(y) + xd(y) = F (x)y + g(x)d(y) for all x, y ∈ N.

(ii) F (xy) = xd(y) + F (x)g(y) = g(x)d(y) + F (x)y for all x, y ∈ N.

Lemma 2.9. Let N be a near-ring and d be a nonzero semiderivation associated with an additive map
g of N. If F is a left generalized semiderivation associated with a semiderivation d, then N satisfies the
following partial distributive laws:

(i) (d(x)g(y) + xF (y))z = d(x)g(y)z + xF (y)z for all x, y, z ∈ N.

(ii) (d(x)y + g(x)F (y))z = d(x)yz + g(x)F (y)z for all x, y, z ∈ N.

Proof. From the computation of F (x(yz)) and F ((xy)z), we obtain the required results. �

Similary we can prove the next result:

Lemma 2.10. Let N be a near-ring and d be a nonzero semiderivation associated with an additive map
g of N. If F is a right generalized semiderivation associated with a semiderivation d, then N satisfies the
following partial distributive laws:

(i) (F (x)g(y) + xd(y))z = F (x)g(y)z + xd(y)z for all x, y, z ∈ N.

(ii) (F (x)y + g(x)d(y))z = F (x)yz + g(x)d(y)z for all x, y, z ∈ N.

Lemma 2.11. Let N be a near-ring. If d is a semiderivation associated with epimorphism g of N, then
d(Z(N)) ⊆ Z(N).

Proof. Let z ∈ Z(N), we have d(zx) = d(xz), for all x ∈ N. Using Lemma 2.7 and the definition of d, we
get d(zx) = d(z)g(x) + zd(x) = d(xz) = g(x)d(z) + d(x)z for all x ∈ N. Thus d(z)g(x) = g(x)d(z) for all
x ∈ N. Since g is an epimorphism of N, it follows that xd(z) = d(z)x for all x ∈ N. So, d(z) ∈ Z(N) for
all z ∈ Z(N). Hence d(Z(N)) ⊆ Z(N). �

3. Some results for right multipliers and semigroup ideals

In this section, it is assumed that α is an automorphism of the near-ring N.

Lemma 3.1. Let N be a 3-prime near-ring and U be a nonzero right semigroup ideal of N. If H is a
nonzero right multiplier of N, then H(U) 6= {0}. Moreover, if H(U) ⊆ Z(N), then N is a commutative
ring.
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Proof. Assume that H(x) = 0 for all x ∈ U . Taking xt instead of x, where t ∈ N, in the last expression,
we get UH(t) = {0} for all t ∈ N. By Lemma 2.2 we get H = 0; a contradiction.
Now, suppose that H(x) ∈ Z(N) for all x ∈ U . Substituting ux for x in the last expression, we get
uH(x) ∈ Z(N) for all x, u ∈ U . By Lemma 2.1 (ii), we obtain U ⊆ Z(N) or H(U) = {0}. Since
H(U) 6= {0}, we have U ⊆ Z(N), so by using Lemma 2.4, we conclude that N is a commutative ring. �

Theorem 3.2. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N. If N admits a
nonzero right multiplier β, then the following assertions are equivalent:

(i) [x, y](α,β) ∈ Z(N) for all x, y ∈ U.

(ii) N is a commutative ring.

Proof. The implication (ii) ⇒ (i) is obvious.
(i) ⇒ (ii) Assume that [x, y](α,β) ∈ Z(N) for all x, y ∈ U. Substituting α(y)x for x in the last expression we
get α(y)[x, y](α,β) ∈ Z(N) for all x, y ∈ U. Using Lemma 2.1 (ii), we obtain [x, y](α,β) = [β(x), α(y)] = 0
or α(y) ∈ Z(N) for all x, y ∈ U . Thus, [x, y](α,β) = 0 for all x, y ∈ U. Which can be rewritten as
[β(x), α(y)] = 0 for all x, y ∈ U . By Lemma 2.1 (iii), we get β(U) ⊆ Z(N). Applying Lemma 3.1, we
conclude that N is a commutative ring. �

Theorem 3.3. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N. If N admits a
nonzero right multiplier β, then the following assertions are equivalent:

(i) (x ◦ y)(α,β) = 0 for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Proof. Clearly (ii) ⇒ (i).
(i) ⇒ (ii) Assume that

(x ◦ y)(α,β) = 0 for all x, y ∈ U. (3.1)

That is β(x)α(y) = −α(y)β(x) for all x, y ∈ U. Substituting α−1(t)y for y in the last relation, we obtain
β(x)tα(y) = −tα(y)β(x) = tα(y)β(−x) = t(β(−x))α(y) for all t, x, y ∈ U, which implies [β(−x), t]α(U) =
{0} for all t, x ∈ U . So by Lemma 2.3 and Lemma 2.1 (iii), it follows that β(−U) ⊆ Z(N). By using the
fact that −U is a nonzero semigroup right ideal and Lemma 3.1, we have N is a commutative ring.
So, (3.1) becomes β(x)α(y + y) = 0 for all x, y ∈ U. Replacing y by yα−1(t) in the last equation, where
t ∈ N, we get β(x)α(y)(t + t) = 0 for all x, y ∈ U, t ∈ N. Which gives β(x)α(U)(t + t) = {0} for all
x ∈ U, t ∈ N. Since β(U) 6= {0}, by using Lemma 2.3, we conclude that 2N = {0}. �

Corollary 3.4. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N, then the following
assertions are equivalent:

(i) x ◦ y = 0 for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of N. If
N admits a nonzero right multiplier β, then the following assertions are equivalent:

(i) (x ◦ y)(α,β) ∈ Z(N) for all x, y ∈ U.

(ii) N is a commutative ring.

Proof. It is easy to check that (ii) ⇒ (i).
(i) ⇒ (ii) Assume that (x◦ y)(α,β) ∈ Z(N) for all x, y ∈ U. Substituting α(y)x for x in the last expression
we get α(y)(x ◦ y)(α,β) ∈ Z(N) for all x, y ∈ U. So, by Lemma 2.1 (ii), we obtain

(x ◦ y)(α,β) = 0 or α(y) ∈ Z(N) for all x, y ∈ U. (3.2)
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Suppose that Z(N) ∩ U = {0}, then (3.2) becomes (x ◦ y)(α,β) = 0 for all x, y ∈ U. Thus by Theorem 3.3,
we get N is a commutative ring with 2N = {0}; a contradiction.
Hence Z(N) ∩ U 6= {0}. Let z ∈ Z(N) ∩ U r {0}. From (t ◦ z)(α,β) ∈ Z(N) for all t ∈ U , it follows that
β(t + t)α(z) ∈ Z(N) for all t ∈ U . By Lemma 2.1 (ii), we obtain

β(t + t) ∈ Z(N) for all t ∈ U. (3.3)

Replacing t by ut in (3.3), we arrive at

uβ(t + t) ∈ Z(N) for all t, u ∈ U.

Using Lemma 2.1 (iii), we have 2β(t) = 0 for all t ∈ U or U ⊆ Z(N). If 2β(t) = 0 for all t ∈ U , then
by using the 2-torsion freeness of N, we obtain β(U) = {0}; a contradiction. Hence U ⊆ Z(N), so, we
conclude that N is a commutative ring according to Lemma 2.4. �

4. Some results for left generalized semiderivations

In this section, it is assumed that α is an automorphism and that d is a semiderivation associated
with an automorphism g of the near-ring N.

Lemma 4.1. Let N be a 3-prime near-ring, U a nonzero semigroup right ideal of N, and β be a right
multiplier of N. If N admits a left generalized semiderivation F associated with a nonzero semiderivation
d of N, such that F (β(U)) = {0}, then d = 0 or β = 0.

Proof. Assume that F (β(x)) = 0 for all x ∈ U . Taking xy in place of x in the last expression and using
the definition of F , we get d(x)β(y) = 0 for all x, y ∈ U . Replacing y by ty in the above equation, we
find d(x)tβ(y) = 0 for all x, y, t ∈ U , which gives d(x)Uβ(y) = {0} for all x, y ∈ U . By Lemma 2.3, it
follows that β(U) = {0} or d(U) = {0}. Hence, according to Lemma 2.5 and Lemma 3.1, we have β = 0
or d = 0. �

Theorem 4.2. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and β be a nonzero right
multiplier of N. If N admits a left generalized semiderivation F associated with a nonzero semiderivation
d of N, then the following assertions are equivalent:

(i) F ([x, y](α,β)) = 0 for all x, y ∈ U.

(ii) N is a commutative ring.

Proof. It is easy to see that (ii) ⇒ (i).
(i) ⇒ (ii) Assume that

F ([x, y](α,β)) = 0 for all x, y ∈ U. (4.1)

Replacing y by α−1(β(x))y in (4.1), we get F (β(x)[x, y](α,β)) = 0 for all x, y ∈ U. Previous equation
implies that

d(β(x))g([x, y](α,β)) = 0 for all x, y ∈ U. (4.2)

That is,
d(β(x))g(β(x))g(α(y)) = d(β(x))g(α(y))g(β(x)) for all x, y ∈ U. (4.3)

Putting ty in place of y in (4.3), and using it, we get

d(β(x))g(β(x))g(α(t))g(α(y)) = d(β(x))g(α(t))g(α(y))g(β(x))

= d(β(x))g(α(t))g(β(x))g(α(y)) for all x, y, t ∈ U.

Which means that d(β(x))g ◦ α(U)g([α(y), β(x)]) = {0} for all x, y ∈ U. As a result of Lemma 2.1 (ii)
and Lemma 2.1 (iii), we obtain

d(β(x)) = 0 or β(x) ∈ Z(N) for all x ∈ U. (4.4)
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Consider the case where d(Z(N)) = {0}. Thus, d(β(U)) = {0} is implied by (4.4). By Lemma 4.1, we
get d = 0 or β = 0, which is a contradiction.
Therefore d(Z(N)) 6= {0}. Let z ∈ Z(N) r {0} such that d(α(z)) 6= 0. Taking zy instead of y in (4.1),
we arrive at F (α(z)[x, y](α,β)) = 0 for all x, y ∈ U, implying d(α(z))g([x, y](α,β)) = 0 for all x, y ∈ U. By
Lemma 2.11, we have d(α(z)) ∈ Z(N)r {0}, which implies that [x, y](α,β) = 0 for all x, y ∈ U . According
to Theorem 3.2, we conclude that N is a commutative ring. �

Theorem 4.3. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and H, β are nonzero
right multipliers of N. If N admits a left generalized semiderivation F associated with a nonzero semi-
derivation d of N, then the following assertions are equivalent:

(i) F ([x, y](α,β)) = H([x, y](α,β)) for all x, y ∈ U.

(ii) N is a commutative ring.

Proof. The implication (ii) ⇒ (i) is obvious.
(i) ⇒ (ii) Assume that

F ([x, y](α,β)) = H([x, y](α,β)) for all x, y ∈ U. (4.5)

Taking α−1(β(x))y instead of y in (4.5), we get

F (β(x)[x, y](α,β)) = H(β(x)[x, y](α,β)) for all x, y ∈ U.

That gives

d(β(x))g([x, y](α,β)) = 0 for all x, y ∈ U, (4.6)

which is identical with the equation (4.2) of Theorem 4.2. We may now conclude that N is a commutative
ring by arguing in the same way as in Theorem 4.2. �

Corollary 4.4. [2, Theorem 1] Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N.
If N admits a left generalized derivation (F, d) satisfying either of the following identities (i)F ([x, y]) = 0,
for all x, y ∈ U or (ii)F ([x, y]) = ±[x, y] for all x, y ∈ U , then N is a commutative ring.

Theorem 4.5. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and β be a nonzero right
multiplier of N. If N admits a left generalized semiderivation F associated with a nonzero semiderivation
d of N, then the following assertions are equivalent:

(i) F ((x ◦ y)(α,β)) = 0 for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Proof. Clearly (ii) ⇒ (i).
(i) ⇒ (ii) Assume that

F ((x ◦ y)(α,β)) = 0 for all x, y ∈ U. (4.7)

Putting α−1(β(x))y instead of y in (4.7), we arrive at F (β(x)(x◦y)(α,β)) = 0 for all x, y ∈ U, which gives,

d(β(x))g((x ◦ y)(α,β)) = 0 for all x, y ∈ U. (4.8)

Equivalently,

d(β(x))g(β(x))g(α(y)) = −d(β(x))g(α(y))g(β(x)) for all x, y ∈ U. (4.9)

Taking yt in place of y in (4.9), and using it, we get

−d(β(x))g(α(y))g(α(t))g(β(x)) = d(β(x))g(β(x))g(α(y))g(α(t))

= d(β(x))g(α(y))g(β(−x))g(α(t)) for all t, x, y ∈ U.
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Which means that d(β(x))g ◦ α(U)g([β(−x), α(t)]) = {0} for all x, t ∈ U. Consequently, by Lemma 2.3
and Lemma 2.1 (iii), we find

d(β(x)) = 0 or β(−x) ∈ Z(N) for all x ∈ U. (4.10)

Suppose that d(Z(N)) = {0}. Then (4.10) gives d(β(−U)) = {0}. In light of Lemma 4.1 we obtain d = 0
or β = 0; a contradiction. Therefore d(Z(N)) 6= {0}.
Let z ∈ Z(N) r {0} such that d(α(z)) 6= 0. Replacing y by zy in (4.7), we get F (α(z)(x ◦ y)(α,β)) = 0
for all x, y ∈ U, which implies that d(α(z))g((x ◦ y)(α,β)) = 0 for all x, y ∈ U. Using Lemma 2.11, we have
d(α(z)) ∈ Z(N) r {0}, which gives (x ◦ y)(α,β) = 0 for all x, y ∈ U. Hence, N is a commutative ring with
2N = {0}, by Theorem 3.3. �

Theorem 4.6. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and H, β are nonzero
right multipliers of N. If N admits a left generalized semiderivation F associated with a semiderivation
d of N, then the following assertions are equivalent:

(i) F ((x ◦ y)(α,β)) = H((x ◦ y)(α,β)) for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Proof. It is easy to check that (ii) ⇒ (i).
(i) ⇒ (ii) Suppose that

F ((x ◦ y)(α,β)) = H((x ◦ y)(α,β)) for all x, y ∈ U. (4.11)

Replacing y by α−1(β(x))y in (4.11), we arrive at

F (β(x)(x ◦ y)(α,β)) = H(β(x)(x ◦ y)(α,β)) for all x, y ∈ U.

Which yields
d(β(x))g((x ◦ y)(α,β)) = 0 for all x, y ∈ U.

Since this equation is identical with (4.8) of Theorem 4.5, by arguing in the same way as in Theorem 4.5,
we may conclude that N is a commutative ring with 2N = {0}. �

Corollary 4.7. [2, Theorem 2] Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N.
If N admits a left generalized derivation (F, d) satisfying either of the following identities (i)F (x◦ y) = 0,
for all x, y ∈ U or (ii)F (x ◦ y) = ±(x ◦ y) for all x, y ∈ U , then N is a commutative ring.

Theorem 4.8. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and H, β are nonzero
right multipliers of N. If N admits a left generalized semiderivation F associated with semiderivation d

of N, then the following assertions are equivalent:

(i) F ([x, y](α,β)) = H((x ◦ y)(α,β)) for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Proof. It is easy to see that (ii) ⇒ (i).
(i) ⇒ (ii) Assume that

F ([x, y](α,β)) = H((x ◦ y)(α,β)) for all x, y ∈ U. (4.12)

Substituting α−1(β(x))y for y in (4.12), we obtain F (β(x)[x, y](α,β)) = H(β(x)(x◦y)(α,β)) for all x, y ∈ U,

from which it follows easily that

d(β(x))g([x, y](α,β)) = 0 for all x, y ∈ U.

This is the same as the equation (4.2) of Theorem 4.2. By arguing similarly to Theorem 4.2, we obtain
that N is a commutative ring.
Consequently, (4.12) becomes H(α(y) + α(y))β(x) = 0 for all x, y ∈ U . Putting tuy in place of y and vx

in place of x in last equation, we get α(t + t)α(u)H(α(y))vβ(x) = 0 for all u, v, x, y ∈ U, t ∈ N. Which
means that α(t + t)α(U)H(α(y))Uβ(x) = {0} for all x, y ∈ U, t ∈ N. According to Lemma 2.3 and
Lemma 3.1, we conclude that 2N = {0}. �
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Corollary 4.9. [2, Theorem 3] Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N.
If N admits a left generalized derivation (F, d) satisfying F ([x, y]) = ±(x ◦ y) for all x, y ∈ U , then N is
a commutative ring.

Theorem 4.10. Let N be a 3-prime near-ring, U a nonzero semigroup ideal, and H, β are nonzero right
multipliers of N. If N admits a left generalized semiderivation F associated with a nonzero semiderivation
d of N, then the following assertions are equivalent:

(i) F ((x ◦ y)(α,β)) = H([x, y](α,β)) for all x, y ∈ U.

(ii) N is a commutative ring with 2N = {0}.

Proof. The implication (ii) ⇒ (i) is obvious.
(i) ⇒ (ii) Assume that

F ((x ◦ y)(α,β)) = H([x, y](α,β)) for all x, y ∈ U. (4.13)

Putting α−1(β(x))y in place of y in (4.13), we find F (β(x)(x◦y)(α,β)) = H(β(x)[x, y](α,β)) for all x, y ∈ U.

This implies
d(β(x))g((x ◦ y)(α,β)) = 0 for all x, y ∈ U.

This is the same as equation (4.8) of Theorem 4.5. By arguing in the same way as in Theorem 4.5, we
can prove that N is a commutative ring with 2N = {0}. �

Corollary 4.11. [2, Theorem 4] Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N. If
N admits a left generalized derivation (F, d) satisfying F (x ◦ y) = ±[x, y] for all x, y ∈ U , then N is a
commutative ring.

The following example shows that the condition of 3-primeness of N imposed on the assumptions of
the above theorems is not redundant.

Example 4.12. Let S be a left zero-symmetric near-ring and

N =











0 0 a

0 0 b

0 0 0



 | a, b, 0 ∈ S







.

If we set

U =











0 0 u

0 0 0
0 0 0



 | u, 0 ∈ S







,

then it is easy to check that N is a left zero-symmetric near-ring and U is a nonzero semigroup ideal of
N. Define the maps α = g, d, F, β, H : N −→ N by:

g





0 0 a

0 0 b

0 0 0



 =





0 0 b

0 0 a

0 0 0



 , d





0 0 a

0 0 b

0 0 0



 =





0 0 b

0 0 a

0 0 0



 ,

F





0 0 a

0 0 b

0 0 0



 =





0 0 a

0 0 b

0 0 0



 , β





0 0 a

0 0 b

0 0 0



 =





0 0 a

0 0 0
0 0 0





and

H





0 0 a

0 0 b

0 0 0



 =





0 0 0
0 0 a

0 0 0



 .

Clearly d is a semiderivation associated with g, F is a left generalized semiderivation associated with d,
H and β are nonzero right multipliers satisfying the conditions:



10 A. Boua and S. Mouhssine

(i) F ([x, y](α,β)) = 0, (ii) F ((x ◦ y)(α,β)) = 0

(iii) F ([x, y](α,β)) = H([x, y](α,β)), (iv) F ((x ◦ y)(α,β)) = H((x ◦ y)(α,β)),

(v) F ([x, y](α,β)) = H((x ◦ y)(α,β)), (vi) F ((x ◦ y)(α,β)) = H([x, y](α,β)),

for all x, y ∈ U, but N is not a commutative ring.

Theorem 4.13. Let N be a 3-prime near-ring, U a nonzero semigroup ideal of N, and β be a nonzero right
multiplier of N. If N admits a left generalized semiderivation F associated with a nonzero semiderivation
d of N, such that d(Z(N)) 6= {0}, then the following assertions are equivalent:

(i) F ([x, y](α,β)) ∈ Z(N) for all x, y ∈ U.

(ii) N is a commutative ring.

Proof. Clearly (ii) ⇒ (i).
(i) ⇒ (ii) Assume that

F ([x, y](α,β)) ∈ Z(N) for all x, y ∈ U. (4.14)

If Z(N) = {0}, it follows that F ([x, y](α,β)) = 0 for all x, y ∈ U. In view of Theorem 4.6, we obtain N is
a commutative ring. So N = Z(N) = {0}; a contradiction.
Thus Z(N) 6= {0}. Let z ∈ Z(N) r {0} such that d(α(z)) 6= 0. Replacing y by zy in (4.14), we get

d(α(z))g([x, y](α,β)) + zF ([x, y](α,β)) ∈ Z(N) for all x, y ∈ U, (4.15)

which together with (4.14) gives

d(α(z))g([x, y](α,β)) ∈ Z(N) for all x, y ∈ U. (4.16)

Due to d(α(z)) ∈ Z(N), by using Lemma 2.1 (ii), we find

[x, y](α,β) ∈ Z(N) for all x, y ∈ U. (4.17)

Hence, by Theorem 3.2, N is a commutative ring. �

Corollary 4.14. [2, Theorem 6] Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of
N. Let (F, d) be a left generalized derivation of N such that d(Z(N)) 6= {0} and F ([x, y]) ∈ Z(N) for all
x, y ∈ U , then N is a commutative ring.

The restriction of d(Z(N)) 6= {0} imposed on the hypothesis of the Theorem 4.13 is not redundant in
the situation of arbitrary near-rings, as shown in the following example:

Example 4.15. Let

R =

{(

a b

0 c

)

| a, b, c, 0 ∈ Z

}

It is easy to see that R is prime ring with the center Z =

{(

x 0
0 x

)

| 0, x ∈ Z

}

. Also it can be verified

that U =

{(

p n

0 t

)

| p, n, t, 0 ∈ 2Z

}

is a nonzero semigroup ideal of R, where 2Z denotes the set of

even integers. Define α = g, β, d, F : R → R as following,

g

(

a b

0 c

)

=

(

a a + b − c

0 c

)

, β

(

a b

0 c

)

=

(

a 0
0 0

)

,

d

(

a b

0 c

)

=

(

0 c − a

0 0

)

and F

(

a b

0 c

)

=

(

0 c + a

0 0

)

.

It can be easily proved that d is a semiderivation associated with g, F is a left generalized semiderivation
associated with d of R, and β is a nonzero right miltiplier satisfying the conditions, d(Z(N)) = {0} and
F ([x, y](α,β)) ∈ Z(N) for all x, y ∈ U. However R is not a commutative ring.
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