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Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The
p(x)-Laplacian-like Operator
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abstract: Using the variational method, we prove the existence and multiplicity of solutions for a Steklov
problem involving the p(x)-Laplacian-like operator, originated from a capillary phenomena. Especially, an
existence criterion for infinite many pairs of solutions for the problem is obtained.
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1. Introduction

This paper is devoted to the study of the existence and multiplicity of solutions for the following
nonlinear eigenvalue problem for p(x)-Laplacian-like operator:











−div

(

(

1 + |∇u|p(x)√
1+|∇u|2p(x)

)

|∇u|p(x)−2∇u

)

+ |u|p(x)−2u = 0 in Ω,

((

1 + |∇u|p(x)√
1+|∇u|2p(x)

)

|∇u|p(x)−2∇u
)

∂u
∂ν

= λf(x, u) on ∂Ω,
(1.1)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, λ > 0 is a real number, p ∈ C(Ω),

ν is the unit outward normal to ∂Ω and f is a Carathéodory function.
In recent years, differential and partial differential equations with variable exponent growth conditions

have become increasingly popular. This is partly due to their frequent appearance in applications such as
the modeling of electrorheological fluids, image restoration, elastic mechanics and continuum mechanics.

Capillarity can be briefly explained by considering the effects of two opposing forces: adhesion, i.e.,
the attractive (or repulsive) force between the molecules of the liquid and those of the container; and
cohesion, i.e., the attractive force between the molecules of the liquid. The study of capillary phenomenon
has gained some attention recently. This increasing interest is motivated not only by fascination in
naturally occurring phenomena such as motion of drops, bubbles, and waves but also its importance in
applied fields ranging from industrial and biomedical and pharmaceutical to microfluidic systems.

W. Ni and J. Serrin [16,15] initiated the study of ground states for equations of the form

−div

( ∇u
√

1 + |∇u|2

)

= f(u) in R
N , (1.2)

with very general right hand side f . Radial solutions of the problem (1.2) has been studied in the
context of the analysis of capillary surfaces for a function f of the form f(u) = ku, for k > 0. In [3],
Clément, Manasevich and Mitidieri studied the existence of positive radial solutions of problem (1.2)
with f(u) = |u|q−1u.
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Obersnel and Omari in [17] based on variational and combines critical point theory, the lower and
upper solutions method and elliptic regularization, established the existence and multiplicity of positive
solutions of the prescribed mean curvature problem







−div

(

∇u√
1+|∇u|2

)

= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

where λ > 0 is a parameter and f : R → R is a Carathéodory function whose potential satisfies a suitable
oscillating behavior at zero.

For f dependent of ∇u and λ ∈ R with Neumann boundary condition, ME. Ouaarabi and al. estab-
lished in [18], established some new sufficient conditions under which the problem (1.1) possesses a weak
solutions, using a topological degree for a class of demicontinuous operators of generalized (S+) type.
Under Dirichlet boundary condition, M. Rodrigues [19], by using Mountain Pass lemma and Fountain
theorem, studied the existence of non-trivial solutions for (1.1). Under Seklov boundary condition we
cite [11,1].

Problems like (1.1), (1.2) and (1.3) play, as is well known, a role in differential geometry and in the
theory of relativity.

Our purpose of this work is to extend some of the known results with p-Laplacian-like or with Dirichlet
boundary conditions on bounded domain.

The remainder of the article is organized as follows. In section 2, we review some fundamental prelim-
inaries about the functional framework where we will treat our problem. In Section 3, we establish the
existence result (see, Theorem 3.2 and Theorem 3.3). Finally, in Section 4, we prove the full multiplicity
Theorem 4.1.

2. Preliminaries

We start with some preliminary basic results on the theory of Lebesgue, Sobolev spaces with a variable
exponent. For more details, we refer the reader to the book by Musielak [13] and the papers by Edmunds
et al. [5,4], Kovácik, O., Rákosnk, [12], and Fan et al. [8,7].

Let p ∈ C(Ω) be a variable exponent. Throughout this paper, we denote

p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x)

p∂(x) =

{

(N−1)p(x)
N−p(x) , if p(x) < N ;

+∞, if p(x) ≥ N,

and

C+(Ω) = {p ∈ C(Ω) : 1 < p− < p+ < ∞}.

For p, α ∈ C+(Ω) we define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) = {u : Ω → R is a measurable and

∫

Ω

|u(x)|p(x)dx < +∞},

with the norm

|u|p(x) = inf{τ > 0;

∫

Ω

∣

∣

u(x)

τ

∣

∣

p(x)
dx ≤ 1}.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm

‖u‖ = |∇u|p(x) + |u|p(x).
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The properties of W 1,p(x)(Ω) and the properties concerning the embedding results are given in the
following propositions.

Proposition 2.1. [6,7,8]

(1) Both (Lp(x)(Ω), | · |p(x)) and (W 1,p(x)(Ω), ‖ · ‖) are separable, reflexive Banach spaces;

(2) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω,then the embedding from W 1,p(x)(Ω) to Lq(x)(Ω)is
compact and continuous;

(3) Assume that the boundary of Ω possesses the cone property and s ∈ C+(Ω) and s(x) < p∂(x) for
x ∈ Ω, then there is a compact and continuous embedding W 1,p(x)(Ω) →֒ Ls(x)(∂Ω).

The mapping

ρ(u) :=

∫

Ω

|∇u|p(x)dx +

∫

Ω

|u|p(x)dx, ∀u ∈ W 1,p(x)(Ω),

plays an important role in manipulating the generalized Lebesgue-Sobolev spaces.

Proposition 2.2. For u, uk ∈ W 1,p(x)(Ω), k = 1, 2, 3, ... we have

. ‖u‖ ≤ 1 ⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p−

;

. ‖u‖ ≥ 1 ⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+

;

. ‖uk‖ → 0 if and only if ρ(uk) → 0;

. ‖uk‖ → ∞ if and only if ρ(uk) → ∞.

Next, we recall the following version of the Mountain Pass Theorem [10], that will be used in the
proof of Theorem 3.3.

Theorem 2.3. [10] Let X endowed with the norm ‖.‖X, be a Banach space.
Assume that φ ∈ C1(X ;R) satisfies the Palais-Smale (PS) condition. Also, assume that φ has a mountain
pass geometry, that is,

(i) there exists two constants η > 0 and ρ ∈ R such that φ(u) ≥ ρ if ‖u‖X = η;

(ii) φ(0) < ρ and there exists e ∈ X such that ‖e‖X > η and φ(e) < ρ.

Then φ has a critical point u0 ∈ X such that u0 6= 0 and u0 6= e with critical value

φ(u0) = inf
γ∈P

sup
u∈γ

φ(u) ≥ ρ > 0,

where P denotes the class of the paths γ ∈ C([0, 1]; X) joining 0 to e.

Finally, we remind the Weierstrass type theorem that will be used in the proof of Theorem 3.2.

Theorem 2.4. [2] Assume that X is a reflexive Banach space and the function Φ : X → R is coercive
and (sequentially) weakly lower semicontinuous on X. Then, Φ is bounded from below on X and attains
its infimum on X.

Let f : ∂Ω × R → R be a Carathéodory function such that f(x, 0) = 0 for all x ∈ ∂Ω and let

F (x, t) :=

∫ t

0

f(x, s)ds, (x, t) ∈ ∂Ω × R, (2.1)

and the family of functions

F = {Gα : Gα(x, t) = f(x, t)t − αF (x, t), α ∈ [p−, p+]}.
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Noticing that when p(x) = p is a constant, F = {f(x, t)t − pF (x, t), } consists of only one element.
We limit ourselves to the subcritical case, i.e. we assume that

H1(f) There exists c1 > 0 and p(x) < α(x) < p∂(x) where α ∈ C+(∂Ω) satisfying

|f(x, t)| ≤ c1(1 + |t|α(x)−1) for all (x, t) ∈ ∂Ω × R.

H2(f) f(x, t)t ≥ 0, and f(x, t) is superlinear at infinity, that is

lim
|t|→∞

f(x, t)t

|t|p+ = +∞, uniformly with respect to a.e. x ∈ ∂Ω.

H3(f) f(x, t) = o(|t|p+−1), t → 0 for x ∈ ∂Ω uniformly.
H4(f) The function is odd with respect to its second variable, that is

f(x, −t) = −f(x, t), for a.e. x ∈ ∂Ω, t ∈ R.

H5(f) ∃M > 0, θ > p+ such that f satisfies the Ambrosetti-Rabinowitz condition

0 < θF (x, t) ≤ tf(x, t), for all |t| ≥ M, and a.e. x ∈ ∂Ω.

The condition H1(f) implies that the functional Φ : W 1,p(x)(Ω) → R,

Φ(u) :=

∫

Ω

( |∇u|p(x)

p(x)
+

1

p(x)

(

√

1 + |∇u|2p(x)

)

+
|u|p(x)

p(x)

)

dx − λ

∫

∂Ω

F (x, u)dσ

is well defined and of class C1. It is well known that the critical points of Φ are weak solutions of (1.1).
The condition H2(f) characterizes the problem (1.1) as superlinear at infinity.

Consider the following functional

ϕ(u) :=

∫

Ω

( |∇u|p(x) + |u|p(x)

p(x)
+

1

p(x)

(

√

1 + |∇u|2p(x)

))

dx, u ∈ X := W 1,p(x)(Ω).

Let ϕ ∈ C1(X,R) and the derivative operator of ϕ in weak sense ϕ : X → X∗ is such that

(ϕ′(u), v) =

∫

Ω

(

|∇u|p(x)−2∇u∇v + |u|p(x)−2uv +
|∇u|2p(x)−2∇u∇v
√

1 + |∇u|2p(x)

)

dx, ∀u, v ∈ X. (2.2)

Proposition 2.5. [19] The functional ϕ : X → R is convex. The mapping ϕ′ : X → X∗ is a strictly
monotone, bounded homeomorphism, and is of type (S+), namely, un ⇀ u in X and
lim supn→∞ a(ϕ′(un) − ϕ′(u), un − u)) ≤ 0 implies un → u ∈ X.

3. Existence results

In this section, we establish the existence of solution to problem (1.1).

Definition 3.1. We recall that u ∈ W 1,p(x)(Ω) is a weak solution of the problem (1.1), if

∫

Ω

(

|∇u|p(x)−2∇u +
|∇u|2p(x)−2∇u
√

1 + |∇u|2p(x)

)

· ∇vdx +

∫

Ω

|u|p(x)−2uvdx = λ

∫

∂Ω

f(x, u)vdσ

for all v ∈ W 1,p(x)(Ω).

Our main results of this section are the following

Theorem 3.2. If λ > 0, and f satisfies the condition

|f(x, t)| ≤ c1(1 + |t|β−1), where 1 ≤ β < p−, (3.1)

then the problem (1.1) has a weak solution.
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Theorem 3.3. Assume that f satisfies H1(f)-H5(f), and let p, α ∈ C+(Ω) such that p+ < α− < α+ <
p∂(x), for x ∈ ∂Ω. Then for any λ > 0 the problem (1.1) has a nontrivial solution.

Proof of Theorem 3.2. From (3.1) we have |F (x, t)| ≤ C(1 + |t|β) and

Φ(u) =

∫

Ω

( |∇u|p(x)

p(x)
+

1

p(x)

(

√

1 + |∇u|2p(x)

)

+
|u|p(x)

p(x)

)

dx − λ

∫

∂Ω

F (x, u)dσ

≥ ‖u‖p−

+
√

1 + ‖u‖2p−

p+
− λC

∫

∂Ω

|u|βdσ − λC1

≥ 2‖u‖p−

p+
− λC2‖u‖β − λC1 → ∞, as ‖u‖ → ∞.

As Φ is weakly lower semicontinuous, Φ has a minimum point u ∈ W 1,p(x)(Ω) and u is a weak solution
of the problem (1.1) which completes the proof. �

Definition 3.4. We say Φ satisfies the Palais-Smale condition in X, if any sequence {un} ⊂ X such
that {Φ(un)} is bounded and ‖Φ′(un)‖ → 0 as n → ∞, has a convergent subsequence.

Lemma 3.5. If f satisfies the Ambrosetti-Rabinowitz condition H5(f), then Φ satisfies the Palais-Smale
condition.

Proof. Let c > 0 and {un} ⊂ X , {Φ(un)} is bounded and ‖Φ′(un)‖ → 0. We first show that {un} is
bounded. To do so, we argue by contradiction and we assume that, up to a subsequence, ‖un‖ → ∞.
Then, using H5(f), for sufficiently large n we have

c + 1 + ‖un‖ ≥ Φ(un) − 1

θ
〈Φ′(un), un〉

=

∫

Ω

(

1

p(x)
− 1

θ

)(

|∇un|p(x) + |un|p(x)

)

dx +

∫

Ω

1
√

1 + |∇u|2p(x)
dx

− λ

∫

∂Ω

(

F (x, un) − 1

θ
f(x, un)

)

dσ

≥
(

1

p+
− 1

θ

)

‖un‖p− − λ

∫

{x∈∂Ω;|un|≥M}

(

F (x, un) − 1

θ
f(x, un)

)

dσ

− λ|∂Ω| sup{F (x, t) − f(x, t)t; x ∈ ∂Ω, |t| < M}.

Using Proposition 2.1 and H5(f), we deduce that, for sufficiently large n,

c + 1 + ‖un‖ ≥
(

1

p+
− 1

θ

)

‖un‖p− − λ|∂Ω| sup{F (x, t) − f(x, t)t; x ∈ ∂Ω, |t| < M}.

Dividing by ‖un‖p−

and Letting n go to infinity in the above inequality, then we obtain a contradiction.
Therefore, {un} is bounded in W 1,p(x)(Ω). For a subsequence of {un}, un ⇀ u weakly in W 1,p(x)(Ω),
strongly in Lp(x)(Ω). Therefore 〈Φ′(un), (un − u)〉 → 0,

∫

Ω
|un|p(x)−2(un)(un − u)dx → 0 and by H1(f)

we have
∫

∂Ω f(x, un)(un − u)dσ → 0. Consequently by Proposition 2.5, un → u strongly in W 1,p(x)(Ω),
and so Φ satisfies the Palais-Smale (PS) condition. �

Proof of Theorem 3.3. By Lemma 3.5, Φ satisfies Palais-Smale (PS) condition in W 1,p(x)(Ω). To apply
Theorem 2.3, we will show that Φ possesses the mountain pass geometry.

Since p+ < α− ≤ α(x) < p∂(x), for all x ∈ ∂Ω, we have from Proposition 2.1 that W 1,p(x)(Ω) →֒
Lp+

(∂Ω) and W 1,p(x)(Ω) →֒ Lα(x)(∂Ω) with a continuous and compact embeddings. So, there exist
ci > 0, i = 1, 2 such that

|u|p+,∂Ω ≤ c1‖u‖ and |u|α(x),∂Ω ≤ c2‖u‖ ∀u ∈ W 1,p(x)(Ω). (3.2)
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Let ε be small enough such ελcp+

1 ≤ 1
2p+ . By the assumptions H1(f) and H3(f), we have

F (x, t) ≤ ε|t|p+

+ C(ε)|t|α(x) ∀(x, t) ∈ ∂Ω × R.

Therefore, in view of (3.2), for ‖u‖ sufficiently small we get

Φ(u) ≥
∫

Ω

( 2

p+
|∇u|p+

+
1

p+
|u|p+)

dx − λε

∫

∂Ω

|u|p+

dσ − λC(ε)

∫

∂Ω

|u|α(x)dσ

≥ 1

p+
‖u‖p+ − λεcp+

1 ‖u‖p+ − λC(ε)cα−

2 ‖u‖α−

≥ ‖u‖p+

(

1

2p+
− C(ε)cα−

2 ‖u‖α−−p+

)

.

As α− > p+, by the standard argument, there exists r > 0 such that Φ(u) ≥ ρ > 0 for every u ∈
W 1,p(x)(Ω) and ‖u‖ = r.

From H2(f) it follows that

F (x, t) ≥ C|t|θ x ∈ ∂Ω, |t| ≥ M, θ > p+.

For w ∈ W 1,p(x)(Ω)\{0} and t > 1, we have

Φ(tw) =

∫

Ω

1

p(x)
|∇tw|p(x)dx +

∫

Ω

√

1 + |∇tw|2p(x) +

∫

Ω

1

p(x)
|tw|p(x)dx

− λ

∫

∂Ω

F (x, tw)dσ

≤ tp+

∫

Ω

1

p(x)

(

|∇w|p(x) + |w|p(x) +
√

1 + |∇w|2p(x)

)

− λCtθ

∫

∂Ω

|w|θdσ − λC1,

which implies Φ(tw) → −∞(t → +∞). Since Φ(0) = 0, Φ satisfies the condition of Mountain Pass
Theorem 2.3. So Φ has at least one nontrivial critical point, i.e., the problem (1.1) has a nontrivial weak
solution. �

4. Infinitely many solutions

In this section, we prove under some condition on the function f that the problem (1.1) possesses
infinitely many nontrivial weak solutions. The proof is based on Bartsch’s fountain theorem.

The main result of this section is the following.

Theorem 4.1. Assume that f satisfies H1(f), H2(f) and H4(f). If 0 < λ < p+α+ and α− > p+, then
Φ has a sequence of critical points {un} such that Φ(un) → +∞ and the problem (1.1) has infinite many
(pairs) of solutions.

Since W 1,p(x)(Ω) is reflexive and separable (and its dual), then X and X∗ are too. Let {ej} ⊂ X and
{e∗

j} ⊂ X∗ such that

X = span{ej|j = 1, 2, 3...}, X∗ = span{e∗
j |j = 1, 2, 3...},

and

〈ej , e∗
j 〉 =

{

1, i = j
0, i 6= j,

where 〈., .〉 denotes the duality product betweenX and X∗. For convenience, we write

Xj = span{ej}, Yk = ⊕k
j=1Xj , Zk = ⊕∞

j=kXj.

Let us recall the version of the Fountain theorem 4.2 which will be used in the sequel.
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Theorem 4.2. (Fountain theorem, [20]). Under assumption
(A1), let ϕ ∈ C1(X,R) be an invariant functional. If, for every k ∈ N, there exists ρk > γk > 0 such that
(A2) ak := maxu∈Yk,‖u‖=ρk

ϕ(u) ≤ 0;
(A3) bk := infu∈Yk,‖u‖=γk

ϕ(u) → ∞, k → ∞;
(A4) ϕ satisfies the Palais-Smale (PS)c condition for every c > 0,
then ϕ has an unbounded sequence of critical values.

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.3. If α ∈ C+(Ω), α(x) < p∂(x) for any x ∈ Ω, denote

βk = sup{|u|α(x),∂Ω | ‖u‖ = 1, u ∈ Zk},

then limk→∞ βk = 0.

Proof. Obviously, 0 < βk+1 ≤ βk, so βk → β ≥ 0. Let uk ∈ Zk satisfy

‖u‖ = 1, 0 ≤ βk − |uk|α(x),∂Ω <
1

k
.

Then there exists a subsequence of {uk} (which we still denote by uk) such that uk ⇀ u, and

〈e∗
j , u〉 = lim

k→∞
〈e∗

j , uk〉 = 0, j = 1, 2, ...

which implies that u = 0, and so uk ⇀ 0. Since the imbedding from W 1,p(x)(Ω) to Lα(x)(∂Ω) is compact,
then uk → 0 in Lα(x)(∂Ω). Hence we get βk → 0. �

Proof of Theorem 4.1. According to H(f0), H(f4), Φ is an even functional and satisfies (PS) condition.
We will prove that if k is large enough, then there exist ρk > γk > 0 such that

(A1) ak := max{Φ(u)|u ∈ Yk, ‖u‖ = ρk} ≤ 0

(A2) bk := inf{Φ(u)|u ∈ Zk, ‖u‖ = γk} → ∞, k → ∞.

In what follows, we will use the mean value theorem in the following form: for every α ∈ C+(∂Ω) and
u ∈ Lα(x)(∂Ω), there is ζ ∈ ∂Ω such that

∫

∂Ω

|u|α(x)dσ = |u|α(ζ)
α,∂Ω. (4.1)

Indeed, it is well known that there is ζ ∈ ∂Ω such that

1 =

∫

∂Ω

(

|u|/|u|α,∂Ω

)α(x)
dσ =

∫

∂Ω

|u|α(x)dx/|u|α(ζ)
α,∂Ω.

Then, (4.1) holds. The assertion of this theorem can be obtained from Fountain Theorem 4.2.
(A2) For any u ∈ Zk, ‖u‖ = γk ≥ 1 (γk will be specified below). Using H5(f) and (4.1) we deduce

Φ(u) =

∫

Ω

1

p(x)

(

|∇u|p(x) +
√

1 + |∇u|2p(x)

)

+

∫

Ω

1

p(x)
|u|p(x)dx − λ

∫

∂Ω

F (x, u)dσ

≥
∫

Ω

1

p+

(

2|∇u|p(x) + |u|p(x)

)

dx − λc

∫

∂Ω

|u|α(x)dσ − λc1

≥ 1

p+
‖u‖p− − λc|u|α(ζ)

α,∂Ω − λc1, where ζ ∈ ∂Ω,

≥
{

1
p+ ‖u‖p− − λc − λc2 |u|(α,∂Ω) ≤ 1;

1
p+ ‖u‖p− − λcβk‖u‖α+ − λc2 |u|(α,∂Ω) > 1

≥ 1

p+
‖u‖p− − λcβα+

k ‖u‖α+ − λc3

= γp−

k

(

1

p+
− λcβα+

k γα+−p−

k

)

− λc3.
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We fix γk as follows

γk :=

(

cα+βα+

k

)
1

p−
−α+

,

then

Φ(u) ≥ γp−

k

(

1

p+
− λ

α+

)

.

Because p+ < α+, βk → 0 (Lemma 4.3) and 0 < λ < p+α+, it follows γk → +∞, as k → +∞.
Consequently Φ(u) → +∞ as ‖u‖ → +∞ with u ∈ Zk. The assertion (A2) is valid.
(A1) From H2(f), we have

F (x, t) ≥ c1|t|θ − c2.

By θ > p+ and dimYk = k, it is easy to see that
∫

∂Ω

F (x, u)dσ → −∞, as ‖u‖ → ∞,

for u ∈ Yk. The assertion (A1) holds. Applying the fountain theorem, we achieve the proof of Theorem
4.1. �
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