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Geometric properties of an integral operator associated with Mittag-Leffler functions

Saurabh Porwal and Nanjundan Magesh

ABSTRACT: The main object of this paper is to introduce a new integral operator associated with Mittag-

Leffler function. Further, we obtain some sufficient condition for this integral operator belonging to certain

classes of starlike functions.
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1. Introduction

Let A represent the class of functions f of the form
f) =2+ anz", (1.1)
n=2

which are analytic in the open unit disk A = {z: z € C and |z| < 1}. Further, we denote by 8 the
subclass of A consisting of functions f of the form (1.1) which are also univalent in A.
A function f(z) € A is said to be starlike of order § if it satisfies the following analytic criteria

%{zjf(’z()z)} >0, ze€A, forsome §(0<d<1).

Also, a function f(z) € A is said to be convex of order § if it satisfies the following analytic criteria

"
%{l—i-zjj (z)}><5, z € A,where 0<0<1.
f'(2)

The classes of all starlike functions and convex functions of order § are denoted by 8*(§) and C()

respectively, studied by Robertson [13] and Silverman [14].
The Mittag-Leffler function E,(z) was introduced by Mittag-Leffler [8] and defined as

o0 n

EQ(Z):Zm, (ZE(C, %(a)>0)

n=0

In 1905, Wiman ([17], [18]) generalized the Mittag-Leffler function in E , g(z) by the relation

E“’B('z):nz_%r(#iﬁ)’ (1.2)
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where z,a, 5 € C, R(a) > 0. It should be easy to see that the function E ., g(z) defined by (1.2) is not
in class A.
Thus, first we normalize the Mittag-Leffler function as follows

Ea p(2) =T(B)z Ea,p(2)

Ea7ﬂ(2)22+;m2, (13)

where z,a,6 € C, B #0,—1,-2,--- ,R(a) > 0.
In the present paper we shall restrict our attention to the case for real-valued «, 5 and z € A. For specific
values of v and f3, the function E ,, g(z) reduces to many well-known functions

E 1(z) = zcoshv/z
E 5 2(2) = Vzsinh/z
E 5 3(2) = 2[coshy/z — 1] and
6[sinh -z
Eo 4(z) = M
N
In 2016, Bansal and Prajapati [3] studied geometric properties such as starlikeness, convexity and
close-to-convexity for the Mittag-LefHler function E , g(z). The integral operator associated with Bessel

function of the first kind have been introduced by several researchers and studied various interesting
analytic and geometric properties. Note worthy contribution in this direction may be found in ([1], [2],

[4)-[7], [9)-[12]).

Motivated with the above mentioned work, it is natural to think for introducing these integral opera-
tors involving other special functions. Recently, Srivastava et al. [16] investigated a new integral operator
associated with Mittag-Leffler functions.

In the present work we introduce a new integral operator involving Mittag-Leffler function in the

following way
(17 (Ear )"
= [TT(2220) »
o i=1

where the functions E,,, s (2) is normalized Mittag-Leffler functions defined by (1.3) and parameters ~,
are positive real numbers such that the integral in (1.4) exists. Some sufficient conditions for the integral
operator defined by (1.4) is in the class 8* are obtained.

2. Preliminary Results
To prove our main results we shall require the following lemmas.
Lemma 2.1. ([16]) Let a« > 1,8 > 1. Then
leawﬂz)__1‘< 26+1
Ea,5(2) BCAE R
Lemma 2.2. ([15]) If f € A satisfies

z € A.

z f"(2) S+1
%{1"’ 7(2) }<2(5_1), z €A, for some 2<§ <3,

z ["(z) 50 — 1 .
0 <2(5+1), z €A, for some 1<0<2 then fe8".

Lemma 2.3. ([15]) If f € A satisfies

or %{l—i—

() o+1
w{ie S5e ) > gy TeA forame 551

z ["(z) 3041
) }> 2500 + 1)

1
or %{l—i— , 2z €A, for some 0 >1, then feS*(CH— )

26
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3. Main Results

1
Theorem 3.1. Let ay, az, -+, an > 1, By, By -+, B, = 5(1 + v/5) and suppose that

B = min{B,, By, -+, B} and vy, Vo, + -+ Y, are positive real numbers. Moreover, suppose that these
numbers satisfy the following inequality

2B+1 - 3-96
F DLy
is satisfied. Then the function Fy, g. -, defined by (1.4) is in the class 8* for some 2 < 6 < 3.

Proof. We observe that Eq,, 5, € A Le., Eq,, 5,(0) =0=E] ;(0)—1forallie{1,2,---,n}.
Differentiating equation (1.4) we have

£ = I (B0

i=1

Taking logarithmic differentiation, we have

Féf/uﬂm'% i O‘u 7(2) _1
F — z

auBm'Y,( Qg 67(2)
or equlvalently
z F" n z E! z
1+ /(17757777 Z 04175«;( ) — 1) +1. (31)
Foﬁ 6 71 =1 au B1 (Z)

Taking the real part of both side of (3.1) we have

z Fy (2) =
%{14’%} 271 { dX }-f—l—Z’}/i

(=34 6 ’yz ) =1
E.. 5,(2)
<1+, |2l g (3.2)
Z an 61 (Z)
28; + 1
<1+ <7> (3:3)
E: Bl - B
1
For all z € A and (84, By, -+, B,) > 5(1 +/5). Since the function ¢ : (5(1 + \/5),00) — R, defined
2 1
by ¢(x) = x?fi—xk—l is decreasing. Therefore, for all ¢ € {1, 2, -+, n}, we obtain

28, + 1 28 +1
2 S 3 :
Bi—Bi—1 [ —-p-1

Using this result, inequality (3.4) can be written as

2 Fy, (2) 2B+1 u
aw,Bi,: Vi
%{L+7;———@T} 1+ — E Vi

gy By Vs

Since

26041 < §+1
Fr DR sy

2,6’+1 Z% 0+1

1+
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Therefore, from Lemma 2.2, Fy,, 5. 4, (2) € 8 for some 2 < § < 3.

Thus, the proof of Theorem 3.1 is complete. O
Theorem 3.2. Let oy, ag, ~++, ap > 1, By, Bo, +, B, = (1 +/5), B = max{B;,Bs, - ,3,} and
Y15 Vo, Y are positive real numbers. Moreover, suppose that these numbers satisfy the following
inequality

2041 « 207 — 0 +1
_ L — 3.4
-1 ;%* 25(0 — 1) (34)
. . . 0+1
is satisfied, then Fu, g, ~.(2) defined by (1.4) is in the class §* o5 for some § < —1.
Proof. It is easy to see that for all i € {1, 2, ---, n}, we have E,, g, (2) € A. Differentiating equation
n (Eq, g\
(1.4) we have F!, ,  (2) =] (+U> .
i=1
Taking logarthmic differentiation, we have
z FY n 2 E 4 (2)
i, By i, B,
R 1+é SV 1 QUELECTRRC AN | QTS (3.5)
R I B Eys
Using the result of Lemma 2.1, we have
zEL 5 (2 28. +1
"’B'i()—lg 251-1- .
Ea,, 8,(2) B —B;—1
Using the identity R{z} < |z
A WAC) 28, +1
Eoi5,(2) | 7 57 =B 1
P z]E;“ﬁi(z) -1 28, +1
]Eomﬁi(z) N ﬁ?_ﬁi_]-
Using this inequality in (3.5)
2 F! (2) n 28, + 1 n
i, Bis Vi 1
RVt <2 %‘(1—7)4-1— Vi
{ Fi 6, (2) ; B - B -1 ;
28, +1
= D v+l
ﬁl - ﬁl -1 i=1
0+1
- 266 —1)
. - 0+1 .
Hence from Lemma 2.3 and condition (3.4), we have Fy, g, 4, (2) € 8* 55 for some 6 < —1. This
completes the proof of Theorem 3.2. O
Theorem 3.3. Let oy, ag, -+, ay > 1, By, By, -+, B, = (1 +/5), B =min{B, By, -+, B,} and
Y15 Vo, s Vn are positive real numbers. Moreover, suppose that these numbers satisfy the following

inequality
n

2/3+1 3(6-1)
Z%— 26 +1)

is satisfied. Then Fy, g ~.(2) deﬁned by (1.4) is in the class 8* for some 1 < § < 2.



GEOMETRIC PROPERTIES OF AN INTEGRAL OPERATOR ... 5

Proof. The proof of above theorem is much akin to that of Theorem 3.1. Therefore, we omit the details.
O

1
Theorem 3.4. Let ay, ag, -+, ap > 1, By, B, -+, B, = 5(1—1—\/5), B =max{f;, By, -+, B,} and
Y1, Yo, ©c s Yn GTE positive real numbers. Moreover, suppose that these numbers satisfy the following
inequality

24+1 §+1— 20

2+l S, < 120

BP-p-1 = 25(0 +1)

0+1
20

Proof. The proof of above theorem is similar to that of Theorem 3.2. Therefore, we omit the details. [

is satisfied. Then the function Fy, . o, (2) defined by (1.4) is in the class 8* ( ) for some § > 1.

4. Some Consequences

Here we give some examples.

Example 4.1.

sinh v/t
Vit

<2[cosh;/f —~ 1])7

. v
1. If0§57§375,thenf dt € 8* for some 2 <6 < 3.
206 —1) o

2(6—1)’
3

9 -4 Z (6[sinh v/t — V1] 7
X < — _ - * < .
3 If0117<2(5_1),then0f( Y dt € 8* for some 2 <6 <3

7 z
2. If0§37< then [ dt € 8* for some 2 < 6 < 3.
0

Example 4.2.

202 — 5 +1 z (sinh 1\ 1
1. If0<by < 2o+l thenf<M> dt € 8* <5+ ) for some § < —1.
- 0

%06 —1) NG 2

7207 —0+1 z (2cosh v — 1]\ 541
o< iy 0T Sk Al o < 1.
2 If0757< 25(5_1),theng< ; > dt € 8§ < 55 )forsomeé 1

9 20 — 0 +1 z /6[sinh Vi — 1]\ 541
, <l 0TS QEMAVE T VE o < 1.
3. If0 < 117< 20— 1) ,thenof( 2 dt € 8 55 for some § < —1

Example 4.3.

1 - /sinh v
1. IfOS5’YSM, thenf(sm ﬁ) dt € 8* for some 1 < § < 2.
200+1) o

. B 2l
2. F0T0<gw<§gg+1;,then0f<M> dt € 8* for some 1 < § < 2.
9 3(6-1) z (6[sinh v — 1]\~
CIf0 < — — _ * 1 < 2.
3 f0_117<2(5+1),then0f< Y dt € 8* for some 1 <6 <
Example 4.4.
§+1— 262 z (sinh ) 541
. < < ol — .
1. If0 <5y < %G 1) ,then{( i > dt € 8 < 55 )forsome(5>1

704126 z (2cosh /i — 1]\ 541
 For0< —~y<—— " th Y D) dtest [ —
e hor0s e s S5 e”{( ? < 25

9  §4+1-—20° z /6[sinh v — 1]\ §+1
CIf0< oy < —— = e S [ —=
3. If0< 77 < %G T 1) ,then({( 37 dt €8 55

) for some § > 1.

) for some § > 1.
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