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Semi-Delta-Open Sets in Topological Space

Kushal Singh and Asha Gupta

ABSTRACT: The purpose of this paper is to introduce a new class of open sets, namely semi-delta-open
sets (briefly ds—open sets). Further, some basic topological concepts such as neighbourhood axioms, border,
exterior, and frontier of a set are defined and their properties have been investigated. In addition, in terms of
these open sets, semi-delta-closed functions (briefly 0s—closed functions) and semi-delta-continuous functions
(briefly §s—continuous functions) are also defined and their properties have been discussed.
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1. Introduction

The notion of an open set is very fundamental in topology. Many topologists have extensively studied
open sets and their new versions for so long. Amongst them, Levine [7] was the first who made known
the notion of semi-open sets. His work was not confined to this concept; he also introduced and studied
the term semi-closed set and the concept of semi-continuity of a function. A subset G; of a topological
space (G, 1) (briefly G) is termed as semi-open set if G; C Cl[Int(G1)]. The complement of a semi-open
set is termed as semi-closed set. For a subset GGy of a space G, a point g in G is a semi-closure point
of G if for each semi-open set G2 in G containing g , Go N G # (). Levine’s work opened up a new
window for many researchers. Many topologists used his notion of semi-open sets as a substitute to open
sets and proved various results. Velicko [10] purposed the notion of j—closure and §—closure of a set.
d—closure of a subset G of space G is defined as the set of all such g in G such that Int[CI(G2)]NGy # 0,
for each open set G2 in G containing g, and d—interior of a subset G of space G is the set of all such
g € G such that Int[CI(G2)] € Gy for some open set G in G containing g. It is a well-established
result that the collection of all §—open sets forms a topology on G, referred to as a semi-regularization
topology on G. Andrijevi¢ [1] generalized open sets by introducing b-open sets. Dutta and Tripathi [3]
proposed fuzzy b-6 open sets, and in 2019, Sarma and Tripathi [9] investigated several aspects of a fuzzy
semi-pre quasi-neighbourhood of a fuzzy point. In 2020, Latif [6] introduced and studied @—irresolute,
f—closed, pre-6-open, and pre--closed mappings and investigated their properties. Moreover, properties
of —continuous and §—open mappings are further investigated. Latif [5] also proposed and explored the
various properties of d—derived, d—border, §—frontier of a set and concepts of §-D-sets. Recently, Hassan
and Labendia [4] introduced a new version of open sets called §s—open sets and explored various terms,
namely 6,—continuous, #s—open, and 6s—closed function. In addition, some forms of separation axioms
are introduced and characterized. The present paper gives an insight into semi-delta-open sets (briefly
ds—open sets), semi-delta-neighbourhood axioms (briefly §s—neighbourhood axioms), and various other
topological concepts using semi-delta-open sets. Moreover, the concepts of semi-delta-closed (briefly
0s—closed) and semi-delta-continuous functions (briefly §s—continuous functions) are introduced and
investigated.
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2. Preliminaries

In this paper, (G,7) and (K, o) represent topological spaces (briefly G and K) unless otherwise
mentioned. CI(Gy) and Int(G1) symbolize the closure and the interior of the subset Gy of space G,
respectively.

Definition 2.1. [7] Let G be a topological space. A subset G1 of G is termed as semi-open set if
G1 C Cl(Int(G1)) and semi-closed set if Int(Cl(G1)) C Gy

Definition 2.2. [2] The intersection of all semi-closed supersets of subset Gy of space G is called semi-
closure of Gy and is represented by sCl(G1). Also sCl(G1) = Gy U Int(Cl(Gy)).

For the following Lemma, one may refer to Navalagi and Gurushantanavar [8].
Lemma 2.3. For subsets G1 and Go of G, the following hold for the semi-closure operator.
(1) G1 C sCl(G1) C Cl(Gh);
(2) sCl(G1) C sCl(G2) if G1 C Go;
(3) sCUCUGL)) = sCUGCH);
(4) sCl(G1 N Ggz) C sCl(G1) N sCl(Ga);
(5) sCl(G1) UsCl(G2) C sCl(G1 U Ga);
(6) G1 is semi-closed if and only if sCl(G1) = G1.
3. 0,—Open Sets and Neighbourhood Axioms

The term §s—open sets, a new class of open sets, is defined in this section. Furthermore, the concept
of §s—neighbourhood axioms is proposed and investigated.

Definition 3.1. Let G be a topological space and G1 C G. Then Gy is said to be semi-delta-open (briefly
ds—open) if for every g € Gy, there exists an open set Ga(say) containing g such that Int[sCl(G2)] C G .

Definition 3.2. Let G be a topological space. Let g € G and G1 C G. We say that G1 is a semi-delta-
neighbourhood (briefly 0 ,—mneighbourhood) of g if there is a 65— open set Go of G such that g € Go C G.

Definition 3.3. Let G be a topological space and G1 C G. Then the semi-delta-closure (briefly 6,—clo-
sure) of Gh is denoted and defined by Cls,(G1) = N{G2 : G is d5—-closed and G1 C Ga}.

Definition 3.4. A point g € G is called the semi-delta-cluster point (briefly 05— cluster point) of G1 C G
if G1NInt[sCl(G2)] # O for every open set Ga (say) of G containing g. Sometimes we define the §s— closure
of the set Gy as the set of all §s— cluster points of G .

Definition 3.5. Let G be topological space and G1 C G. Then the semi-delta-interior (briefly 0s—inte-
rior) of Gy is denoted and defined by Ints (G1) = U{G2 : Ga is ds-open and G2 C G1}. Moreover, a
point g € G is said to be a ds—interior point of Gy if there exist a §s—open set Go containing g such that
Gy C Gy.

Definition 3.6. A subset G1 C G is called semi-delta-closed (briefly 6s—closed) if G = Cls_ (G1).
Moreover, the complement of a semi-delta-closed set is a semi-delta-open set.

Remark 3.7. The arbitrary union of semi-delta-open sets is semi-delta-open.
Remark 3.8. Cls (G1 NG2) C Cls (G1) N Cls (G2), for any subsets Gy, G2 of space G.
Theorem 3.9. Let G be a topological space. Then the following conditions hold:

(1) Empty set and space G are §s— closed.
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(2) Arbitrary intersections of §s— closed sets are §s— closed.
(3) Finite union of 65— closed sets are 65— closed.

Proof. (1) 0 and G are §s— closed because they are the complement of d,— open sets G and (), respectively.

(2) Given a collection of d5—closed sets {Fy }acr, we apply DeMorgan’s law,
G- (N Foa= U (G- F,). Since the sets G — F,, are d,—open by definition and arbitrary union of §,—

acl acl
open sets is ds— open. Thus [ F,, is d,—closed.
acl
(3) Similarly, if F; is 6,— closed for i = 1,...n, consider the equality G — |J_, F; = (., (G — F}). Since
finite intersection of §s— open set is §s— open. Hence U?:lFi is §,— closed. O

Theorem 3.10. Let G be a topological space. Then the intersection of two §s—neighbourhoods of g € G
18 also a ds— neighbourhood of g.

Proof. Let N7 and Ns be two §s—neighbourhoods of g € G. Then there exists ds—open sets G; and G4
such that g € Gy € N7 and g € G2 C Ny. Therefore, g € G1 N Ga € Ny N No. Thus Gy NGy is an §5—
open set containing g and is contained in N1 N No. This implies that N7 N N, is also a s—neighbourhood
of g. O

Theorem 3.11. Let G be a topological space. If N is a §s—neighbourhood of g € G then there exists a
ds—mnetghbourhood M of g which is subset of N i.e M C N such that M is a 0s—mneighbourhood of each
of its points.

Proof. Let N be a ds—neighbourhood of g € G. Then there exists ds—open set M such that g € M C N.
Now M being a ds—open set, it is a ds—neighbourhood of each of its points. Hence the result follows. [J

Theorem 3.12. A subset of topological space is §s—open iff it is 0 s—neighbourhood of each of its points.

Proof. Let G be a topological space. Let G be a subset of G. Let N, be §,—neighbourhood of g € G.

Then there exists ds—open set Gy(say) in G such that g € Gy, € N, € Gy. Now |J Gy = G1. As
geGy

arbitrary union of d,—open sets is also §s—open. Hence GG is §s—open set. Conversely, if G; is §s—open

set, we can take Ny = G for all g € G1. Hence for all g € Gy, we have N, € G such that N, € G;. O

4. Basic Properties of §;—Open Sets

In this section, the notions of semi-delta-limit point (briefly 0s—limit point), semi-delta-border (briefly
ds—border), semi-delta-frontier (briefly ds—frontier) and semi-delta-exterior (briefly ds—exterior) of a
subset G of space G have been introduced and investigated.

Definition 4.1. Let Gy be a subset of a space G. A point g € G is said to be §s—limit point of Gy if for
each 0s—open set Go containing g, Go N (G1 — {g}) # 0.

The set of all §s—limit points of G is called semi-delta-derived set (briefly §s—derived set) of G1 and is
denoted by D5 (G1).

Remark 4.2. For a subset Gy of the space G, the following results hold.
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(6) Cls. (Gl) =G1 U DJS(G1)~
(7) Int(;s (Gl) U Int(ss (Gg) g Int(;s (Gl U GQ)

Definition 4.3. §s—border of a subset Gi of space G is defined and denoted by Bds (G1) = Gy —
I?’Ltas (Gl)

Theorem 4.4. For a subset Gy of space G, the following statements hold:
(1) Bd(G1) C Bds,(G1), where Bd(Gy) denotes the border of G .
(2) Gy = Ints_(G1) U Bds_(G1).

(3) Ints (G1) N Bds (G1) = 0.

(4) Gy is 6s—open set if and only if Bds_ (G1) = 0.

(5) Bds,[Ints. (G1)] = 0.

(6) Ints [Bds, (G1)] = 0.

(7) Bds,[Bds,(G1)] = Bds, (G1).

(8) Bds,(G1) =G1N[Cls, (G —G1)].

(9) Bds,(G1) = D5, (G — G1).

Proof. (1) Bd(Gy) = G1 N (Int(G1))¢ = G1 N CUGY). Since Cl(G1) C Cls, (G1), therefore Bd(G;) C
G N Cls. (Gh)° = Gr N (Ints, (G1))° = By (Gh).

(2) Ints, (Gl)UBd(;S (Gl) = Int[ss(Gl)U[Gl—ITLt(;S (Gl)] = [Int(ss (Gl)UGl]ﬁ[Int[;S (G1)U(Int53(G1))c]
(3) Ints,(G1) N Bds,(G1) = Ints (G1) N (G1 — Ints,(G1)) = [Ints,(G1) N (Ints,(G1))9)] N G

(4) If Gy is 0s—open, then using Remark 4.2, Ints (G1) = G1. Therefore, Bds,(G1) = 0. Conversely,
if Bds_ (G1) =0 = G;1 — Ints.(G1) = 0, which implies G = Ints, (G1). Hence Gy is ds—open.

(5) Bds,[Ints, (G1)] = Ints (G1) — Ints, (Ints (G1))= 0. Using Remark 4.2.
(6) If g € Ints [Bds,(G1)], then g € Bds (G1). On the other hand, since Bds (G1) C Gy, g €

Ints_[Bds (G1)] C Ints (G1). Hence, g € Ints (G1) N Bds,(G1) which contradicts (3). Thus,
Ints, [Bd5 ( )] = (.

(7) Bds,[Bds,(G1)] = Bds_ (G1) — Ints_[Bds.(G1)] = 0. Now, using result proved in (6) we get the
desired result.

(8) Bds.(G1) = G — Ints. (G1)= Gy — [G — Cls.(G — G1)] = G1 N Cls. (G — Gy).

(9) Bds.(G1) = Gy — Ints_(G1) = G1 — [G1 — Ds_(G — G1)] = Ds_(G — Gh).
(]

Definition 4.5. d,—frontier of a subset Gy of space G is defined and denoted by Frs (G1) = Cls, (G1) —
Ints, (Gl)

Theorem 4.6. For a subset Gy of space G, the following statements hold:
(1) Fr(Gy) C Frs,(Gy), where Fr(G1) denotes the frontier of G .
(2) Cls,(G1) = Ints (G1) U Frs, (Gq).
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(3) Ints,(G1) N Frs (G1) = 0.

(4) Bds,(Gy) C Frs, (Gy).

(5) Frs, (G1) = Bds,(G1) U D5, (G1).

(6) Gy is a 65— open set if and only if Frs, (G1) = Ds.(G1).

(7) Frs (G1) =Cls,(G1) NCls (G — Gy).

(
(8 5 (Gl):F’/‘gs(G—Gl).
(9) Frs (Gy) is 65— closed.

11) Frs, [ITLt5 (Gl)] C Frs (Gy).

)

) F

)

10) Frs, [Frs,(G1)] C Frs, (Gh).

)

12) Frs,[Cls,(G1)] C Frs, (Gh).
)

(
(
(
(13) Ints,(G1) = G1 — Frs (G1).

Proof. (1) Fr(G1) = Cl(G1) N [Int(G1)]¢ = Cl(G1) N Cl(G)°. Since, Cl(G1)¢ C Cls_(G1)°, therefore,
Fr(G1) CClUG1)NCls (Gr) = Cl(Gh) — Ints,(G1) = Frs.(G1).

G1)]
| = Cls (Gy).

G1)]
)] =0.

(4) Bds,(G1) = Gy — Ints,(G1) = G1 N [Ints,(G1)]°. Since G1 C Cls,(G1), therefore Bds, (G1) C
Cls.(G1) N [Ints. (G1)]¢ = Frs (Gh).

(2) Ints.(G1) U Frs (G1) = Ints.(G1) U [Cls.(G1) — Ints,
=[Ints (G1)UCls (G1)] N [Ints (G1) U (G — Ints (Gq)

—_

(3) Ints (G1) N Frs (G1) = Ints.(G1) N [Cls.(G1) — Ints,
— [Ints (G1) N Cls. (G1)] A [Ints, (G1) N (G — Ints. (G

\_//-\

(5) Since Ints (G1) U Frs (G1) = Ints (G1) U Bds, (G1) U Ds_(G1). Using Remark 4.2, result proved
in (2) and Theorem 4.4. We have, Frs (G1) = Bds,(G1) U Ds_(G1).

(6) If Gy is §s—open, this implies Bds (G1) = 0 = Frs,(G1) = Ds_ (G1), using result proved in
(5). Conversely, if F'rs (G1) = Ds_(G1) then using result proved in (2) and Remark 4.2 = G is
ds—open.

(7) Frs (Gy) = Cls,(G1) — Ints, (G1) = Cls (G1) N Cls (G — Gy). By using Remark 4.2.
(8) From (7), Frs (G1) = Cls_ (G1) N Cls, (G — G1). Replacing G1 by G — G we have,
Fhss (Gl) = F?”(;S (G - G1)

(9) Cls,[Frs,(G1)] = Cls,|Cls,(G1)NCls, (G—G1)] € Cls, [Cls,(G1)]NCls,[Cls, (G—Gh)]=Cls,(G1)N
Cls. (G — Gy) = Frs_(G1). Hence, Frs_(G1) is 65— closed.

(10) Frs,[Frs,(G1)] = Cls, [Frs,(G1)] N Cls, [G — Frs, (G1)] € Cls, [F'rs (G1)] = Frs, (Gh).

(11) Frs, [Ints,G1]) = Cls, [Ints,(G1)] N Cls, [Ints (G1)]¢ C Cls [Frs,(G1)] = Frs.(G1). Using result
proved in (3).

(12) Frs,[Cls,(G1)] = Cls,[Cls, (Gh1)] — Ints,[Cls, (G1)] = Cls,(G1) — Ints, (Cls,(G1)) € [Cls, (G1) —
Intgs (Gl)] = FT‘(SS (Gl)

(13) G1 — Frs.(G1) = Gy — [Cls (Gh) — Ints, (Gh)] = Ints, (G).
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Definition 4.7. §s—exterior of a subset Gy of space G is defined and denoted by Exts (G1) = Ints, (G —
G1).

Theorem 4.8. For the subset G1 of space G, the following statements hold:

1) Euxts (G1) C Ext(Gy), where Ext(G1) denotes the exterior of Gy.

s

(
2) Euxts, (G1) is ds— open.
(

(1)

(2)

(3) Bats (G1) = Ints, (G —G1) = G — Cls.(G).
(4) Eats [Exts,(G1)] = Ints,[Cls,(Gh)].

(5) If Gy C Ga, then Exts (G2) C Exts (Gy).
(6) Eats (G1) N Exts, (Ga) C Exts, (G1 N Ga).
(7) Bats,(G) =0.

(8)

(9)

)

)

2)

9 G1) = Exts |G — Exts (G1)).
(10) Ints. (G1) C Bats.[Exts. (G1)].

(11
(1

Proof. (1) Since, Exts_(G1) = Ints,(G—G1), therefore, Ints (G—G1) = G—Cls (G1) C G—CIl(G1) =
ITLt(G - Gl) = E{Et(Gl)

G = Int(; (Gl) U El‘tgs (Gl) U FT‘(sS (Gl)

Exts (G1) U Exts (G2) C Exts (G1 N Ga).

2) Since Ints (G1) is ds— open for any subset G of space G, this implies Fxts (G1) is ds— open.

(2)

(3) Using result, Ints (G — G1) = G — Cls_(G1).

(4) Exts [Exts (Gh)] = Exts [G — Cls, (G1)] = Ints, |G — (G — Cls (G1))] = Ints_[Cls. (G1)].

(5) As G1 € G = G — G2 C G — G1. Therefore, Exts (Ga) = Ints (G — Ga) C Ints. (G — G1) =
Exts_ (Gy).

6) Using the fact, Gy N G2 C G1, G1 N G2 C G2 and result proved in (5).

)
7) Exts (G) = Ints_(0) = 0.
8) ®
)

Eaxts,

(
(
( ) = Ints (G).
(

9) Euxts, [G — Exts, (Gl)] = Emtas[G — Ints, (G — Gl)] = Ints, [Intgs (G — Gl)] = Ints, (G — Gl) =
Extgs (Gl)

(10) ITLt(;S(Gl) - Intés[Clés(Gl)] = Int[ss[G — ITLt(;S(G — Gl)] ZITLt(;S[G — Ewt(;s(Gl)]
= Euxts, [Ext(ss (Gl)].

(11) Intgs (Gl) U El‘tgs (Gl) U FT‘(sS (Gl) = Intgs (Gl) U Int(ss (G - Gl) U Bd(ss (Gl) U D(;S (Gl) =G.

(12) Eaxts, (Gl)UExt(;s (Gg) = Ints, (G— Gl)UITLt(;S (G—Gg) - ITLt(;S[(G—G1)U (G—Gg)] = Ints, [G—

(Gl n GQ)] = Extgs (Gl n GQ)
]
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5. 0;—Open Functions, ,—Closed Functions and §;—Continuous Functions

In this section, we introduce the concepts of §s—open, §s—closed, and §s—continuous functions and
further study their properties.

Definition 5.1. Let G and K be topological spaces. A function g : G — K is ds—open if g(G1) is ds—
open in K for each open set Gy in G.

Definition 5.2. Let G and K be topological spaces. A function g : G — K is ds—closed if g(G1) is ds—
closed in K for every closed set G1 in G.

Definition 5.3. A function g : (G,7) — (K,0) is said to be §s—continuous function if g~1(Ky) is
ds—open for every open set K1 of K.

Theorem 5.4. Let G and K be topological spaces and g : G — K be a function. Then the following
statements are equivalent:

(1) g is 05— closed on G.
(2) Cls.(g(Gr)) C g(Cl(Gy)) for every Gy C G.

Proof. (1) = (2) Let G; C G. Note that g(G1) C g[Cl(G1)] and ¢g[CI(G1)] is 65— closed. As d,—closure
of Gy is the smallest 6,— closed set containing G;. Therefore, Cls_[g(G1)] C ¢g[CI(G1)].

(2) = (1) Let Gy be closed set in G. By assumption, g(G1) C Cls_[g(G1)] C g[Cl(G1)] = g(G1).
Thus, g(G1) is ds—closed. Therefore, g is §s—closed in G. O

Theorem 5.5. Let g : (G, 7) = (K,0) be ds—closed. If K1 C K and G1 C G is an open set containing
g 1(Ky), then there exists a §s—open set Ko C K containing K1 such that g~ (K3) C Gy.

Proof. Let Ko = K — g(G — G1). Since g~ '(K1) C Gy, we have g(G — G1) C (K — K;). Since g is
§s—closed, then K is a §s— open set and g~ 1(K3) = G — g7 1[g(G — G1)] C G — (G — G1) = Gy. O

Theorem 5.6. Suppose that g : (G,7) — (K,0) is a 0s—closed function. Then Ints [Cls_ (g(G1))] C
g(Cl(Gr)) for every subset Gy of G.

Proof. Suppose g is a d5—closed function and G is an arbitrary subset of G. Then g[Cl(G1)] is §s—closed
set in K. Then Ints_ [Cls, (9(Cl(G1)))] C g[CI(G1)]. Butalso Ints_[Cls_ (9(G1))] C Ints_ [Cls.(g(ClL(G1))].
Hence Ints_ [Cls.(9(G1))] C g(Cl(Gy)). O

Theorem 5.7. Let g : (G,7) — (K,0) be a §s— closed function, and K1, Ky C K. Then the following
statements hold:

(1) If U is an open neighbourhood of g~ (K1), then there exists a §s—open neighbourhood V of K1 such
that g~' (K1) C g~ (V) C U.

(2) If g is also onto, then if g~ (K1) and g~ (K2) have disjoint open neighbourhoods, so have Ky and
K.

Proof. (1) Let V =K —g(G—U). Then K —V = g(G—U). Since g is ds—closed, so V is a js—open set.
Since g71(K1) C U, we have K — V = g(G —U) C glg” (K — K1)] C (K — K1). Hence, K; C V, thus
V is a §s—neighbourhood of K;. Further G — U C g g(G —U)] =g Y (K - V) =G — g (V). This
proves that g~ (V) C U.

(2) If g7 (K1) and g~ (K3) have disjoint open neighbourhoods M and N, then by (1), we have §,—open
neighbourhoods U and V of K; and K, respectively such that ¢g='(K;) € ¢~} (U) C Ints,(M) and
g H(K2) C g7 1(V) C Ints,(N). Since M and N are disjoint, so are Ints (M) and Ints (N), hence so
g 1 (U) and g~ (V) are disjoint as well. It follows that U and V are disjoint too, as g is onto. O
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Theorem 5.8. Prove that a surjective mapping g : (G,7) — (K,0) is ds—closed, if and only if for
each subset K1 of K and each open set Gy in G containing g~ (K1), there exists a ds—open set V in K
containing K1 such that g=*(V) C Gj.

Proof. Necessity. Follows from (1) of Theorem 5.7.

Sufficiency. Suppose F is an arbitrary closed set in G. Let k be an arbitrary point in K — g(F'). Then
g k) CG—-gtg(F)] C(G-F)and (G — F) is open in G. By using assumption, there exists a §,—
open set Vj containing k such that ¢g=!(V}) C (G — F). This implies that k € V; C [K — g(F)]. Thus
K —g(F)=U{V,: ke K —g(F)}. Hence K — g(F), being a union of 65— open sets, is d;—open. Thus
its complement g(F') is ds—closed. Which proves that g is d,—closed. (]

Theorem 5.9. Let G and K be topological spaces and g : G — K be a function. Then the following
statements are equivalent:

(1) g is 05— continuous on G.

(2) g7 Y(F) is §s—closed in G for each closed subset F of K.

(3) g7 1(K1) is 6s—open for each basic open set Ki in K.

(4) For everyp € G and every open set V of K containing g(p), there exists a 65— open set U containing
p such that g(U) C V..

(5) ¢[Cls.(G1)] C Cllg(Gh)] for each G1 C G.

(6) Cls,[g7(K1)] € g~ (ClU(K)).

(7) Bds, g™\ (K1) € g~ [BA(K)), for every Ky C K.

(8) 9[Ds,(G1)] € Cllg(G)], for every G1 C G.

(9) g [Int(K1)] C Ints [g7 (K1), for every K1 C K.

Proof. (1) = (2) Let F be closed subset of K, then its complement is open in K. By using assumption,
g HK/F)=g"YK)/g YF)=G/g(F) is §s—open which implies that ¢~!(F) is §s—closed in G.

(2) = (1) Let F be an open set in K then K/F is closed in K, by using assumption, g~ (K/F) is
ds—closed in G, which implies g~1(F) is 65— open in G. Hence g is §,—continuous.

(2) = (3) Let K; be basic open set in K. Then K/K; is closed in K, therefore g='(G/K;) is ds—
closed in G, which implies g~!(K7) is §,—open.

(3) = (4) For each p € G and every open set V of K containing g(p). Then U = g=(V) is §s— open
in G, which implies g(U) C V

(4) = (5) Let G; € G and p € Cls,(G1). Let V be an open neighbourhood of g(p) and U be
ds—open set in G containing p, such that g(U) C V. Since p € Cls (G1) implies U N Gy # (). Hence
0#g(UNG1) Cg(U)ng(G1) CVNg(Gy). Since choice of V is arbitrary = every neighbourhood of
g(p) intersect g(G1) = g(p) € Cl(g(G1)). Hence ¢g[Cls,(G1)] C Cllg(Gy)] for each Gy C G.

(5) = (6) Let G; = g~ !(K;) then using assumption, g[Cls_(G1)] C Cllg(G1)] = Cllg(g~'(K1))] =
CIl(K;). Hence Cls_[g~1(K1)] C g HCU(K1)).

(7) = (9) Let K; C K. Then by hypothesis, Bds [g7'(K1)] C ¢ ![Bd(K1)]
= g (K1) — Ints [g7H (K1)] € g7 K — Int(Ky)] = g~ (K1) — g7 HInt(Ky))]
= g '[Int(Ky)] C Ints [g7 (K1)

(9) = (7) Let K1 C K. Then by hypothebib g UInt(Ky)] C Ints, [g7 (Ky)]
= g (K1) — Ints g7 (K1)] € g1 (K1) — g7 HInt(Kq)] = g7 ' [Ky — Int(K4)]
= Bds,[g" (K1)] € g~ ' [Bd(K)).
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(1) = (8) It is obvious, since g is §s—continuous, by (5), g(Cls.(G1)) C Cl(g(G1)) for each G1 C G.
So g[Ds,(G1)] € Cllg(Gy)].

(8) = (1) Let K; C K be an open set, V = K — K; and ¢g~}(V) = W. Then by hypothesis,

[ W) < Clg(W)].  Thus g[Ds (g7'(V))] < Cllglg7'(V))] € CIUV) = V. Then
[ LWV)] € g=Y(V) and g~ (V) is 6s—closed. Therefore g is §5—continuous.
(1) = (9)Let K; C K. Theng HInt(K1)]is ds—open in G. Thus g~ [Int(K;)] = Ints_ g~ (Int(K1)))

C Ints_[g7'(K1)]. Therefore g=[Int(K;)] C Ints_ [g7 (K1)

(9) = (1) Let K1 C K be an open set. Then g~ (K1) = g~ [Int(K1)] C Ints [¢g7'(K1)]. Therefore
g 1(K;) is ds— open. Hence g is §,—continuous. O
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