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Three Weak Solutions for a Class of Quasilinear Choquard Equations Involving the
Fractional p(x, .)-Laplacian Operator with Weight

H. Harcha, H. Belaouidel, O. Chakrone and N. Tsouli

abstract: In this paper, we establish the existence of at least three weak solutions to a problem involving
the fractional p(x, .)- Laplacian operator with weight. Our method used for obtaining the existence of three
solutions for a class of Choquard equations is based on the variational method concerned a type of version of
Ricceri.
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1. Introduction

Partial differential equations (PDEs) and variational problems with nonstandard p(x, .)-growth con-
ditions does not only have an impact in the applied sciences, but also plays a very important role in the
current development of mathematics itself, both in geometry and in analysis. The study of such problems
has a strong development due to the fact that they can model various phenomena, which arise in the
problem of elastic mechanics [18], electrorheological fluids [17] or image restoration [8] etc.

Besides, the p(x, .)-Laplacian operator, where p(x, .) is a continuous function, possesses more com-
plicated properties than the p-Laplacian operator mainly due to the fact that it is not homogeneous.
There has been many results devoted to the existence of solutions for variable exponent problems, for
more details we refer readers to [4,3] and the references therein. Moreover, some researchers extended
the integer case to the fractional one. In particular, many authors generalized the last operator to the
fractional case (fractional p(x, .)-Laplacian operator).

The main objective of this work is to present some results about the existence of three weak solutions
for the following class of nonlinear Choquard problem:

(P s)





−(∆p(x,.))
su+ w(x)|u|p(x)−2u = (

∫
Ω

F (y,u(y))
|x−y|a(x,y) dy)f(x, u(x))

+λ(
∫

Ω
G(y,u(y))

|x−y|b(x,y) dy)g(x, u(x)) in Ω,

u = 0 on R
N\Ω,

where Ω ⊂ R
N is a Lipschitz bounded open domain, p : Ω̄ × Ω̄ −→ (1,+∞) is a bounded continuous

functions. We assume that

1 < p− = min
(x,y)∈Ω̄×Ω̄

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω̄×Ω̄

p(x, y) < +∞. (1.1)

and we set p̄(x) = p(x, x) for all x ∈ Ω̄, s ∈ (0, 1) and a, b ∈ C(RN×R
N,R), λ is a positive real number,

w ∈ L∞(Ω) such that inf
x∈Ω̄

w(x) = w− > 0 and f, g such that f : Ω × R −→ R and g : Ω × R −→ R

are two Carathéodory functions with subcritical growth conditions, such that F (x, t) =
∫ t

0 f(x, s)ds and

G(x, t) =
∫ t

0 g(x, s)ds are the primitive of f and g respectively . Here, the operator (−∆p(x,.))
s is the

fractional p(x, .)-Laplacian operator defined as follows
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(−∆p(x,.))
su(x) = p.v.

∫
RN

|u(x)−u(y)|p(x,y)−2(u(x)−u(y))
|x−y|N+sp(x,y) dy

for all x ∈ R
N,where p.v. is a commonly used abbreviation in the principal value sense.

Note that (−∆p(x,.))
s is a nonlocal pseudo-differential operator of elliptic type which can be seen as

a generalization of the fractional p-Laplacian operator (−∆p)s in the constant exponent case (i.e., when
p(x,.)=p=constant) and is the fractional version of the well-known p(x)-Laplacian operator ∆p(x)u(x) =

div(|∇u(x)|p(x)−2u(x)) (where p(x) = p(x, x)) which is associated with the variable exponent Sobolev
space.

One typical feature of the problem (P s) is the nonlocality in the sense that the value of (−∆p(x))
su(x)

at any point x ∈ Ω depends not only on the values of u on Ω, but actually on the entire space RN. Therfore,
the Dirichlet datum given in R

N\Ω (which is different from the classical case of the p(x)- Laplacian) and is
not simply on ∂Ω, which implies that the first equation in (P s) is no longer a pointwise equation. It is no
longer a pointwise identity. Therefore it is often called nonlocal problem. This causes some mathematical
difficulties, which make the study of such a problem particularly interesting and challenging.

The nonlinearity on the right-hand side of (P s) is motivated by the Choquard equation which was
proposed by Choquard in 1976, and can be described an electron trapped in its own hole. Very recently
Alves, Rădulescu and Tavares [1] studied generalized Choquard equations driven by nonhomogeneous
operators. In [2] , Alves et al. proved a Hardy-Littlewood-Sobolev-type inequality for variable exponents
and used it to study the quasilinear Choquard equations involving variable exponents. Further results
for related problems we refer to [7,2,1] and references therein.

In recent years, the kind of problems of the form (P s) in which a fractional variable exponent operator
Quasilinear Choquard equations have been extensively studied by many authors, using various methods,
we refer the reader to [15,6,9] and the references therein.

For instance, E. Azroul, A. Benkirane, M. Shimi and M. Srati in [4] used the fundamental tool for
proving the existence result is a recent three critical-points theorem established by Ricceri for a problem
involving the fractional p(x, .)-Laplacian operator with weight defined as follow:

(P 1)

{
−(∆p(x,.))

su(x) + w(x)|u(x)|p̄(x)−2u(x) = λf(x, u) + µg(x, u), in Ω,
u = 0, on R

N\Ω,

where Ω is a Lipschitz open and bounded set in R
N, (N ≥ 3), λ > 0 is a real number, p : Ω̄×Ω̄ −→]1,+∞[

is a bounded continuous functions and p(x) = p(x, x) for all x ∈ Ω̄, s ∈ (0, 1), λ, µ are two positive real
numbers.

In other work of Reshmi Biswas and Sweta Tiwari [7], they established the existence and multiplic-
ity results for the variable order nonlocal Choquard problem with variable exponents and in the same
work they study the analougs Hardy-Sobolev Littlewood-type result for variable exponents suitable for
the fractional Sobolev space with variable order and variable exponents. they considered the following
problem

(P 2)





−(∆p(.))
s(.)u(x) = λ|u(x)|α(x)−2u(x)

+(
∫

Ω
F (y,u(y))

|x−y|µ(x,y) dy)f(x, u(x)) in Ω,

u = 0, on R
N\Ω,

where Ω ⊂ R
N is a smooth and bounded domain, N ≥ 2 p ∈ C(RN × R

N, (1,∞)), s ∈ C(RN × R
N, (0, 1)),

µ ∈ C(RN × R
N,R) and f ∈ C(Ω × R,R) are continuous functions.

The authors, considered some conditions about the funcional f and by using the variational methods,
which is the mountain-pass geometry they proved the existence and multiplicity of solutions for the above
problem (P 2).

In the present paper, we are concerned with the existence of solutions for quasilinear Choquard Equa-
tions involving by Fractional p(x, .)-Laplacian operator. Our main objective in this work is to generalize
results concerning quasilinear Choquard equations involving variable exponents and the following prob-
lems (P 1) and (P 2) to the fractional case by using one type version of Ricceri note that this version was
used in [12,13,14].

Throughout this paper, we suppose the following assumpions, then we discuss several settings where
these assumptions are satisfied.
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(H1) p is symmetric, that is,
p(x, y) = p(y, x), ∀ (x, y) ∈ Ω̄ × Ω̄. (1.2)

(H2) a : RN × R
N −→ R is a symmetric function, i.e. a(x, y) = a(y, x)

∀ (x, y) ∈ R
N × R

N with 0 < a− ≤ a+ < N .

(H3) b : RN × R
N −→ R is a symmetric function, i.e. b(x, y) = b(y, x)

∀ (x, y) ∈ R
N × R

N with 0 < b− ≤ b+ < N .

(F1) f, g ∈ C(Ω̄ × R,R) such that | f(x, t) |, | g(x, t) |≤ A1 +A2 | t |r(x)−1

∀(x, t) ∈ Ω̄ × R, where r ∈ C(Ω̄), A1, A2 > 0 and 1 ≤ r(x) ≤ p∗
s(x) ∀x ∈ Ω̄, with

p∗
s(x) = Np(x)

N−sp(x) .

(F2) lim
|t|−→∞

[F (x, t) − λ1

p(x) | t |p
−

] = −∞ uniformly for almost every x ∈ Ω̄.

(F3) There exist x0 ∈ Ω, ρ0 ∈]0, 1[ and t0 > 1 with B(x0, 2ρ0) ⊂ Ω such that
F (x, t) ≥ 0 for x ∈ B(x0, 2ρ0) ⊂ Ω and t ∈]0, t0],
F (x, t0) ≥ A0 for x ∈ B(x0, ρ0).
Denote

A0 = [( 2
ρ0

)p+(B(x0,2ρ0),B(x0,2ρ0))(2N − 1)+ | w |∞ 2N ] |t0|p+(B(x0 ,2ρ0),B(x0 ,2ρ0))

p−(B(x0,2ρ0),B(x0,2ρ0)) ,

such that

p−(B(x0, 2ρ0), B(x0, 2ρ0)) = inf
x,y∈B(x0,2ρ0)×B(x0,2ρ0)

p(x, y),

p+(B(x0, 2ρ0), B(x0, 2ρ0)) = sup
x,y∈B(x0,2ρ0)×B(x0,2ρ0)

p(x, y)

(F4) There exist a0 > 0, ε > 0 such that
F (x, t) ≤ a0 | t |r0(x), ∀x ∈ Ω, | t |< ε, where r0 ∈ C(Ω̄) with
p+ < r0(x) < p∗

s(x), for x ∈ Ω̄.

(G1) There exist an open ball B(x1, ρ1) ⊂ Ω, µ ∈ C(B(x1, ρ1),R) with
1 ≤ µ(x) ≤ µ+(B(x1, ρ1)) ≤ p−(B(x1, ρ1), B(x1, ρ1)), z > 0 and θ > 0 such that

G(x, t) ≥ z | t |µ
+(B(x1,ρ1)) for all x ∈ B(x1, ρ1) and | t |< θ.

with

µ+(B(x1, ρ1)) = sup
x∈B(x1,ρ1)

µ(x), µ−(B(x1, ρ1)) = inf
x∈B(x1,ρ1)

µ(x).

Now we present an example which verifies assumptions (H1), (H2), (H3), (F1), (F2), (F3), (F4) and
(G1).

Example 1.1. We just consider Ω a convex domain (for example Ω = B(0, R)), then we suppose that :

1. a(x, y) = b(x, y) = p(x, y) = xy, ∀x, y ∈ Ω, to check assumptions (H1), (H2) and (H3),

2. Concerning assumption (F1), we just take f and g two polynomial functions
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3. If Ω = B(0, 5), we take x0 = (0, 1) ∈ Ω, ρ0 = 1
2 ∈]0, 1[ and t0 > 1, then B(x0, 2ρ0) ⊆ Ω and for

f(x, s) = 2x2s we have F (x, t) ≥ 0, this example verifies assumption (F3)

4. Finally, we take µ(x) = ‖x‖, p(x, y) = ‖x + y‖, for all x, y ∈ B(0, 2) × B(0, 2) and for t small
enough we just take θ = ε. We consider G(x, t) = 2xt, this example verifies assumption (G1)

The main result of this paper is the following theorem

Theorem 1.2. Under assumptions (H1), (H2), (H3), (F1), (F2), (F3), (F4) and (G1). Then, there
exist λ∗ > 0 such that for any λ ∈]0, λ∗[, the problem (P s) admits at least three weak solutions.

This work based on three sections. In section 2, we give some preliminary important results on
theory of Lebesgue-Sobolev spaces with variables exponent. Moreover, we present some fundamental
propositions follows from the Hardy-Littlewood-Sobolev type of inequality of the solution of the variable
order nonlocal Choquard equation with variable exponents. In section 3, we present one type version of
Ricceri’s variational principle that we use to prove that the problem (P s) has three solutions.

2. Variational setting and Preliminaries Results

In this subsection, we present the main properties and results on variable exponent Lebesgue and
Sobolev spaces. For more details, we refer the reader to [13,16]. Denote by M(Ω) the set of all measurable
real functions on Ω and consider the set

C+(Ω̄) = {q ∈ C(Ω̄) : q(x) > 1 for all x ∈ Ω̄}.

For all q ∈ C+(Ω̄), we define

q+ = sup
x∈Ω̄

q(x) and q− = inf
x∈Ω̄

q(x),

such that
1 < q− ≤ q(x) ≤ q+ < +∞. (2.1)

For any q ∈ C+(Ω̄), we define the variable exponent Lebesgue space as

Lq(x)(Ω) = {u ∈ M(Ω) :
∫

Ω |u(x)|q(x)dx < +∞}.

This vector space endowed with the Luxemburg norm, which is defined by

‖u‖Lq(x)(Ω) = inf{λ > 0 :
∫

Ω
| u(x)

λ
|q(x)dx ≤ 1}

is a separable reflexive Banach space.
Let q̂ ∈ C+(Ω̄) be the conjugate exponent of q, that is,

1
q(x) + 1

q̂(x)
= 1.

So we give the following Hölder-type inequality.

Lemma 2.1 (Hölder′s inequality). If u ∈ Lq(x)(Ω) and v ∈ Lq̂(x)(Ω), then

|
∫

Ω uvdx| ≤ ( 1
q−

+ 1

q̂−
)‖u‖Lq(x)(Ω)‖v‖

Lq̂(x)(Ω)
≤ 2‖u‖Lq(x)(Ω)‖v‖

Lq̂(x)(Ω)

An immediate consequence of the Hölder′s inequality is the following.

Corollary 2.2. [13] If r(.), q(.) ∈ C+(Ω̄), define p(.) ∈ C+(Ω̄) by

1
p(x) = 1

q(x) + 1
r(x) .

Then there exists a positive constant C such that, for all u ∈ Lq(x)(Ω) and
v ∈ Lr(x)(Ω), uv ∈ Lp(x)(Ω) and

‖uv‖Lp(x)(Ω) ≤ C‖u‖Lq(x)(Ω)‖v‖Lr(x)(Ω).
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We define the modular of the space Lq(x)(Ω) by

ρq(.)(u) : Lq(x)(Ω) −→ R.

such that

ρq(.)(u) =
∫

Ω
|u(x)|q(x)dx

Proposition 2.3. [4] Let u ∈ Lq(x)(Ω) and {uk} ⊂ Lq(x)(Ω) then we have

(i) ‖u‖Lq(x)(Ω) < 1(resp. = 1, > 1) ⇐⇒ ρq(.)(u) < 1(resp. = 1, > 1),

(ii) ‖u‖Lq(x)(Ω) < 1 =⇒ ‖u‖q+

Lq(x)(Ω)
≤ ρq(.)(u) ≤ ‖u‖q−

Lq(x)(Ω)
,

(iii) ‖u‖Lq(x)(Ω) > 1 =⇒ ‖u‖q−

Lq(x)(Ω)
≤ ρq(.)(u) ≤ ‖u‖q+

Lq(x)(Ω)
,

(iv) lim
k→+∞

‖uk − u‖Lq(x)(Ω) = 0 ⇐⇒ lim
k→+∞

ρq(.)(uk − u) = 0.

Now, let w ∈ M(Ω) with w(x) > 0 for a.e.x ∈ Ω. We define the weighted variable exponent Lebesgue

space L
q(x)
w (Ω) by

L
q(x)
w (Ω) = {u ∈ M(Ω) :

∫
Ω
w(x)|u(x)|q(x)dx < +∞},

with the norm

‖u‖q,w = inf{γ > 0 :
∫

Ω
w(x)| u(x)

γ
|q(x)dx ≤ 1}.

Then L
q(x)
w (Ω) is a Banach space obviously [10,5] . Besides, the weighted modular on L

q(x)
w (Ω) is defined

as follows

ρq,w : L
q(x)
w (Ω) −→ R

such that

ρq,w(u) =
∫

Ω
w(x)|u(x)|q(x)dx

the following proposition is similar to Proposition 2.3, and it follows easily from the definition of ‖u‖q,w

and ρq,w.

Proposition 2.4. [4] Let u ∈ L
q(x)
w (Ω) and {uk} ⊂ L

q(x)
w (Ω) then we have

(i) ‖u‖q,w < 1(resp. = 1, > 1) ⇐⇒ ρq,w(u) < 1(resp. = 1, > 1),

(ii) ‖u‖q,w < 1 =⇒ ‖u‖q+

q,w ≤ ρq,w(u) ≤ ‖u‖q−

q,w,

(iii) ‖u‖q,w > 1 =⇒ ‖u‖q−

q,w ≤ ρq,w(u) ≤ ‖u‖q+

q,w,

(iv) lim
n→+∞

‖un‖q,w = 0 ⇐⇒ lim
n→+∞

ρq,w(un) = 0.

(v) lim
n→+∞

‖un‖q,w = ∞ ⇐⇒ lim
n→+∞

ρq,w(un) = ∞.

Let Ω be a smooth bounded open set in R
N. We take s ∈ (0, 1) and

p : Ω̄ × Ω̄ −→ (1,+∞) be a continuous bounded function.
We define the fractional Sobolev space W = W s,p(x,y)(Ω) with variable exponent via the Gagliardo

approach as follows :

W = {u ∈ Lp̄(x)(Ω) :
∫

Ω×Ω
|u(x)−u(y)|p(x,y)

γp(x,y)|x−y|sp(x,y)+N dxdy < +∞, for some γ > 0}
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Where Lp̄(x)(Ω) is the Lebesgue space with variable exponent. W s,p(x,y)(Ω) is a Banach space, if it is
equipped with the norm:

‖u‖W = ‖u‖Lp̄(x)(Ω) + [u]s,p(x,y),

where [u]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is defined by

[u]s,p(x,y) = [u]s,p(x,y)(Ω) = inf{γ > 0 :
∫

Ω×Ω
|u(x)−u(y)|p(x,y)

γp(x,y)|x−y|sp(x,y)+N dxdy ≤ 1}

(W, ‖.‖W ) is a separable reflexive space, see[ [6], Lemma3.1].
In [15], Kaufmann, Rossi and Vidal introduced the variable exponent Sobolev fractional space

E = W s,q(x),p(x,y)(Ω) as follows:

E = {u ∈ Lq(x)(Ω) :
∫

Ω×Ω
|u(x)−u(y)|p(x,y)

γp(x,y)|x−y|sp(x,y)+N dxdy < +∞, for some γ > 0},

where q : Ω̄ −→ (1,+∞) is a continuous function, such that:

1 < q− = min
(x,y)∈Ω̄×Ω̄

q(x) ≤ q(x) ≤ q+ = max
(x,y)∈Ω̄×Ω̄

q(x) < +∞

Remark 2.5. Let W0 denote the closure of C∞
0 (Ω)

‖.‖W

Next, we introduce the fractional weighted variable
exponent Sobolev space as follows:

Ww = W
s,p(x,y)
w (Ω) = {u ∈ L

p(x)
w (Ω) :

∫
Ω×Ω

|u(x)−u(y)|p(x,y)

γp(x,y)|x−y|sp(x,y)+N dxdy < +∞, for some γ > 0},

which endowed with the norm:

‖u‖w = ‖u‖Ww

= inf{γ > 0 :

∫

Ω×Ω

| u(x) − u(y) |p(x,y)

γp(x,y) | x− y |sp(x,y)+N
dxdy +

∫

Ω

w(x)|
u(x)

γ
|q(x)dx ≤ 1}

The norms ‖.‖w and ‖.‖W are equivalent in Ww. Moreover, the space (Ww , ‖.‖w) is a separable
reflexive Banach space.

We set

ρw
p(.,.)(u) =

∫
Ω×Ω

|u(x)−u(y)|p(x,y)

|x−y|sp(x,y)+N dxdy +
∫

Ω
w(x) | u(x) |p(x) dx,

which is a modular on Ww, and it satisfies the following inequalities.

Proposition 2.6. [4] For all u ∈ Ww we have

(i) ‖u‖w < 1(resp. = 1, > 1) ⇐⇒ ρw
p(.,.)(u) < 1(resp. = 1, > 1),

(ii) ‖u‖w < 1 =⇒ ‖u‖p+

w ≤ ρw
p(.,.)(u) ≤ ‖u‖p−

w ,

(iii) ‖u‖w > 1 =⇒ ‖u‖p−

w ≤ ρw
p(.,.)(u) ≤ ‖u‖p+

w ,

Theorem 2.7. [15] Let Ω be a smooth bounded domain in R
N and let s ∈]0, 1[. Let p : Ω̄ × Ω̄ →]1,∞[

be a continuous variable exponent with sp(x, y) < N for all (x, y) ∈ Ω̄ × Ω̄. Let 1.1 and 2.1 are satisfied
and r : Ω̄ −→]1,+∞[ be a continuous variable exponent such that

p∗
s(x) = Np(x)

N−sp(x) > r(x) ≥ r− > 1, for all x ∈ Ω̄

Then, there exists a constant C = C(N, s, p, r,Ω) > 0, such that, for any u ∈ W , ‖u‖Lr(x)(Ω) ≤ C‖u‖W .
Thus, this embedding is continuous and compact for any r ∈]1, p∗

s[

W → Lr(x)(Ω).

In order to formulate the variational approach of problem (P s) we introduce the following defintion:
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Definition 2.8. Let u ∈ W0, we side that u is a weak solution of problem (P s), if for all v ∈ W0, we
have

∫
Ω×Ω

|u(x)−u(y)|p(x,y)−2(u(x)−u(y))(v(x)−v(y))
|x−y|sp(x,y)+N dxdy +

∫
Ωw(x) | u |p̄(x)−2 uvdx

=
∫

Ω×Ω
F (x,u(x))f(y,u(y))v(y)

|x−y|a(x,y) dxdy + λ
∫

Ω×Ω
G(x,u(x))g(y,u(y))v(y)

|x−y|b(x,y) dxdy.

Definition 2.9. The energy functional ϕ : Ww −→ R associated to the problem (P s) is defined as

ϕ(u) =

∫

Ω×Ω

1

p(x, y)

| u(x) − u(y) |p(x,y)

| x− y |sp(x,y)+N
dxdy +

∫

Ω

w(x)

p̄(x)
| u |p̄(x) dx

−
1

2

∫

Ω×Ω

F (x, u(x))F (y, u(y))

| x− y |a(x,y)
dxdy −

λ

2

∫

Ω×Ω

G(x, u(x))G(y, u(y))

| x− y |b(x,y)
dxdy.

To prove theorem 1.2, we need to show some auxiliary lemmas.
So we define the functionals φ, ψ, J : Ww −→ R corresponding to the problem (P s), as follow:

φ(u) =

∫

Ω×Ω

1

p(x, y)

| u(x) − u(y) |p(x,y)

| x− y |sp(x,y)+N
dxdy +

∫

Ω

w(x)

p̄(x)
| u |p̄(x) dx,

ψ(u) = −

∫

Ω×Ω

1

2

F (x, u(x))F (y, u(y))

| x− y |a(x,y)
dxdy,

and

J(u) = −

∫

Ω×Ω

1

2

G(x, u(x))G(y, u(y))

| x− y |b(x,y)
dxdy.

Lemma 2.10. [2,7] Let f , g two Carathèodory functions, then ψ, J ∈ C1(Ww,R) with the derivatives
given by

〈ψ
′

(u), v〉 = −

∫

Ω×Ω

1

2

F (x, u(x))f(y, u(y))v(y)

| x− y |a(x,y)
dxdy

and

〈J
′

(u), v〉 = −

∫

Ω×Ω

1

2

G(x, u(x))g(y, u(y))v(y)

| x− y |b(x,y)
dxdy.

Let define I(u) = φ(u) + ψ(u). The critical point of the integral functional ϕ(u) = I(u) + λJ(u) is
solution of the problem (P s).

Lemma 2.11. [4,6] Assume that the assumptions of Theorem 1.2 are satisfied , then

(i) the functional φ is sequentially weakly lower semi-continuous, and its Gâteaux derivative φ
′

:
Ww −→ W ∗

w is given by

〈φ
′

(u), v〉 =
∫

Ω×Ω
|u(x)−u(y)|p(x,y)−2(u(x)−u(y))(v(x)−v(y))

|x−y|sp(x,y)+N dxdy

+
∫

Ω w(x) | u |p̄(x)−2 uvdx.

(ii) the functional φ
′

: Ww −→ W ∗
w is a strictly monotone, bounded, homeomorphism and is of type

(S+), i.e. if uk ⇀ u in Ww and lim sup
k→+∞

〈φ
′

(uk) − φ
′

(u), uk − u〉 ≤ 0 implies uk → u, where 〈., .〉

denotes the usual duality between Ww and its dual space W ∗
w.

We get some definitions and properties of Ricceri’s variational principle in the following paragraph,
when we used to show the main results concerning the existence of three nontrivial solutions.

Definition 2.12. [12] Let G a bounded subset of Ww and r ∈ R. G is called a block of I with type r if

I(u) < r, ∀x ∈ G and I(x) = r, ∀x ∈ ∂G. Where ∂G = G
Ww

\G and G
Ww

is the closure of G in Ww in
the weak topology.
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Definition 2.13. [12] Let G a bounded open subset of Ww and c < c
′

is called Ricceri box of I with the
type (c, c

′

) if

c = inf I
G

< inf I
∂G

= c
′

.

Definition 2.14. [12] Let Y be a Banach space, G0 and G be two bounded open subset of Y with G0 ⊂ G
and φ : Y −→ R a functional. (G0, G) is a valley box of φ if

sup φ
G0

< inf φ
∂G

.

Theorem 2.15. [12] Assume that I, J : WW −→ R are sequentially weakly lower semi continuous and
G is a Ricceri block of I with type r. Let

λ∗ = sup
x∈G

r−I(x)
J(x)−inf J

G
Ww

then for each λ ∈]0, λ∗[, the restriction of I + λJ to G
Ww

achieves its infimum at some x∗ ∈ G, so x∗ is
a local minimizer of I + λJ .

Remark 2.16. (i) let u∗ ∈ Ww a strictly local minimizer of I, then for ε > 0 small enough, we have
inf I

∂B(u,ε)

> I(u∗) i.e. B(u∗, ε) is a Ricceri box of I.

(ii) So, by proposition 2.6 in [12], I, J : Ww −→ R are sequentially weakly lower semi continuous.

Proposition 2.17. [12] Suppose that G is a Ricceri box of I with type (c, c
′

) and I : Ww −→ R

continuous. Then for every r ∈]c, c
′

] we have I−1(] − ∞, r[) ∩G is a Ricceri block of I with type r.

Proposition 2.18. [11,12] Suppose that I, J : Ww −→ R are continuous. For some ρ > 0, u1 ∈
B(u0, ρ), I(u0) = inf I

B(u0,ρ)

= c0; inf I
∂B(u0,ρ)

= c
′

> c0 and u1 is a strictly local minimizer of I and I(u1) =

c1 > c0. Then for ε > 0 small enough and r1 > c1, r0 ∈]c0,min{c
′

, c1}[ and ∀λ ∈]0, λ∗[, I + λJ has
at least two local minima u∗

0, u∗
1 in B(u0, ρ). Where u∗

0 ∈ I−1(] − ∞, r0[) ∩ B(u0, ρ), u∗
0 ∈ B(u1, ε) and

u∗
1 ∈ I−1(] − ∞, r1[) ∩B(u1, ρ)

Theorem 2.19. [11] Let Y be a reflexive Banach space. Assume that

(1) φ ∈ C1(Y,R), the mapping φ
′

: Y −→ Y ∗ is of type S+.

(2) (G0, G) is a valley box of φ with G0, G being connected and 0 ∈ G0.

(3) There exist e ∈ G0 and ρ > 0 such that

‖e‖ > ρ, inf φ
∂B(0,ρ)

> max{φ(0), φ(e)}.

Then the functional φ has at least a critical point u0 ∈ G with φ(u0) = c, where c = inf
γ∈Γ

sup φ(γ(t))
t∈[0,1]

and

Γ = {γ ∈ C([0, 1], G) : γ(0) = 0; γ(1) = e}.

Corollary 2.20. [13] Under the same assumption as in previous theorem, furthermore, if J : Y −→
R ∈ C1 and J

′

: Y −→ Y
′

are weakly strongly continuous. Then, for each λ ∈]0, λ∗[, I + λJ has still a
mountain pass type critical point u2 ∈ G.
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3. Proof of the main results

Proof: [Proof of Theorem 1.2]

Define the positive parameter λ1 as follow

λ1 = inf
u∈Ww\{0}

φ(u)∫
Ω

1
p(x)

|u|p(x)dx
.

step (1) : We show that v0 = 0 is strictly local minimizer of I. By (F1) and assumption (F4), we may

find r1 ∈ C(Ω) with p+

2 < r−
1 ≤ r1(x) < p∗

s(x) such that

F (x, t) ≤ a3|t|r1(x), ∀x ∈ Ω, ∀t ∈ R. (3.1)

We suppose that ‖u‖w < 1 is small enough, so by [7] and proposition 2.6 there exists positive constants
c3, c4 and c5 such that

I(u) ≥

∫

Ω×Ω

1

p(x, y)

|u(x) − u(y)|p(x,y)

|x− y|N+sp(x,y
dxdy +

∫

Ω

w(x)

p(x)
|u|p(x)dx

−
1

2

∫

Ω×Ω

F (x, u(x))F (y, u(y))

|x− y|a(x,y)
dxdy

≥
1

p+
‖u‖p+

w − c3(max{‖u‖
2r

+
1

w , ‖u‖
2r

−

1
w })

≥
1

p+
‖u‖p+

w − c3‖u‖
2r

−

1
w , (3.2)

because, we have

|

∫

Ω×Ω

F (x, u(x))F (y, u(y))

|x− y|a(x,y)
dxdy| ≤ c4(‖F (., u(.))‖2

L
r

+
1 (Ω)

+ ‖F (., u(.))‖2

L
r

−

1 (Ω)
)

≤ c5{max{‖u‖
2r

+
1

w , ‖u‖
2r

−

1
w }} (3.3)

Since 2r−
1 > p+ there exist ε > 0, such that ∀x, y ∈ B(0, ε)\{0} with x 6= y, we have I(u) > 0 = I(v0)

step (2) : we prove that the functional I has a global minimizer v1 6= 0. Set ℜ(x, t) = F (x, t)− λ1

p(x) |t|p
−

,

so we use assumption (F2) we remark that for any M > 0, there exist RM , such that

ℜ(x, t) ≤ −M, ∀|t| ≥ RM , almost every x ∈ Ω. (3.4)

We have I is coercive, or else there exist K ∈ R and (un)n ⊂ W such that

‖un‖w −→ ∞ and I(un) ≤ K.

Define the sequence vn as follow vn = un

‖un‖w
, so that ‖vn‖w = 1.

Then for subsequence, we may prove that for v ∈ Ww. We obtain vn ⇀ v in Ww, vn −→ v in Lp(x)(Ω),
vn(x) −→ v(x) for almost every x ∈ Ω.
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Now, applying 3.4, we have

K ≥ I(un) =

∫

Ω×Ω

1

p(x, y)

|un(x) − un(y)|p(x,y)

|x− y|N+sp(x,y
dxdy +

∫

Ω

w(x)

p(x)
|un|p(x)dx

−
1

2

∫

Ω×Ω

F (x, un(x))F (y, un(y))

|x− y|a(x,y)
dxdy

≥

∫

Ω×Ω

1

p(x, y)

|un(x) − un(y)|p(x,y)

|x− y|N+sp(x,y
dxdy +

∫

Ω

w(x)

p(x)
|un|p(x)dx

− −
1

2

∫

Ω×Ω

(ℜ(x, un(x)) + λ1

p(x) | un(x) |p
−

)

| x− y |a(x,y)
dxdy

≥
1

p+
‖un‖p−

w −
1

2

∫

Ω×Ω

ℜ(x, un(x))

| x− y |a(x,y)
dxdy

−
λ1

2

∫

Ω×Ω

| un(x) |p
−

p(x) | x− y |a(x,y)
dxdy, (3.5)

dividing 3.5 by ‖un‖p−

w and passing to the limit, we obtain

1
p+ + λ1

2p−

∫
Ω×Ω

|v|p−

|x−y|a(x,y) dxdy ≤ 0,

then λ1 < 0, which is a contradiction. So I is coercive and has a global minimizer v1. When the
assumption (F3) holds, suppose that there exist w1 ∈ C∞

0 (B(x0, 2ρ0)) such that 0 ≤ w1 ≤ t0 for all

x, y ∈ B(x0, 2ρ0), w1(x) ≡ t0, w1(y) ≡ t0 for x, y ∈ B(x0, ρ0) and |
∫

Ω×Ω
1

p(x,y)
|u(x)−u(y)|p(x,y)

|x−y|sp(x,y)+N dxdy |≤ 2t0

ρ0

then w1 ∈ Ww.
On the other hand,

I(w1) ≤

∫

B(x0,2ρ0)\B(x0,ρ0)

|
2t0
ρ0

| dx+ | w |∞

∫

B(x0,2ρ0)

1

p(x)
| t0 |p(x) dx

−
1

2

∫

Ω×Ω

F (x,w1)F (y, w1)

|x− y|a(x,y)
dxdy

≤ A0 | B(x0, ρ0) | −
1

2

∫

Ω×Ω

F (x,w1)F (y, w1)

|x− y|a(x,y)
dxdy.

(3.6)

Since
∫

Ω×Ω

F (x,w1)F (y, w1)

|x− y|a(x,y)
dxdy >

∫

B(x0,ρ0)×Ω

F (x,w1)F (y, w1)

|x− y|a(x,y)
dxdy

≥ A0 | B(x0, ρ0) | ×|Ω|,

then for |Ω| > 1 we obtain

I(w1) ≤ A0|B(x0, ρ0)| −A0|B(x0, ρ0)||Ω| < 0

we deduce I(w1) < 0 then I(v1) < 0 = I(v0), so v1 6= 0.
step (3) : We prove that ϕ has two local minima.

Since I is coercive there is ρ0 > 0 large enough such that v0, v1 ∈ B(0, ρ0) and inf I
∂B(0,ρ0)

> I(v0) > I(v1).

By proposition 2.3, given any ε > 0, r1 ∈]I(v1), 0[ and r2 > 0 then ∀λ ∈]0, λ∗[, ϕ has at least two
local minima u0 ∈ B(0, ε) ∩ I−1(] − ∞, r2[), u1 ∈ B(0, I−1(] − ∞, r1[) and u1 /∈ B(0, ε). The minimizer
u0 6= 0. In consequence, when (G1) verifies, supposing that ω ∈ C∞

0 (B(x1, ρ1)) such that 0 ≤ ω ≤ 1 and
ω(x) ≡ 1 for x ∈ B(x1,

ρ1

2 ), so, it is easy to see that for λ ∈]0, λ∗[, when t > 0 is small enough, we get
tw ∈ B(0, ε) ∩ I−(] − ∞, r2[) and I(u0) + λJ(u0) ≤ I(tω) + λJ(tω) < 0. In particular, u0 6= 0.
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step (4) : ϕ has a mountain pass type critical point ∀λ ∈]0, λ∗[. We take ρ1 > 0 such that B(0, ρ1) ⊂ Ww

and I−1(]−∞, r1[)∪B(0, ε) ⊂ B(0, ρ1). Since I is coercive, there exists ρ2 > ρ1 such that inf I
∂B(0,ρ2)

> sup I
B(0,ρ1)

,

then (B(0, ρ1), B(0, ρ2)) is a valley box of I. Since I(v1) < 0 = I(v0) and by step (1), we have that for
some ε0 > 0 with ε0 > ‖v1‖w and inf I

∂B(0,ε)
> 0, then ϕ admits a mountain pass point u2. Consequently,

u0, u1 and u2 are at least three nontrivial solutions of the problem (P s). �
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