

(3s.) v. 2025 (43) : 1-9. ISSN-0037-8712 doi:10.5269/bspm.62961

Interval-Valued Fuzzy b-Irresolute Mappings

S. Al Ghour, R. Nirmala, S. Shanthi, N. Rajesh* and B. Brundha

ABSTRACT: In this paper, we introduce the concepts of IVF b- irresolute mappings and IVF b-irresolute open mappings and in- vestigate some characterizations for them on the interval-valued fuzzy topological spaces.

Key Words: IVF b-open, IVF b-closed, IVF b-interior, IVF b-closure.

Contents

1	Introduction]
2	Preliminaries	1
3	${\bf Interval\text{-}valued\ fuzzy\ \textit{b-}irresolute\ mappings}$	2

1. Introduction

The concept of a fuzzy subset was introduced and studied by L. A. Zadeh [6] in the year 1965. The subsequent research activities in this area and related areas have found applications in many branches of science and engineering. C. L. Chang [3] introduced and studied fuzzy topological spaces in 1968 as a generalization of topological spaces. Many researchers like this concept and many others have contributed to the development of fuzzy topological spaces. M. B. Gorzalczany [4] introduced the concept of interval-valued fuzzy set which is a generalization of fuzzy sets. T. K. Mondal and S. K. Samantha [5] introduced the topology of interval valued fuzzy sets. In this paper, we introduce the concepts of IVF b- irresolute mappings and IVF b-irresolute open mappings and in- vestigate some characterizations for them on the interval-valued fuzzy topological spaces.

2. Preliminaries

Let D[0,1] be the set of all closed subintervals of the unit interval [0,1]. The elements of D[0,1] are generally denoted by capital letters M,N,..., and note that $M=[M^L,M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denote $\mathbf{0}=[0,0]$, $\mathbf{1}=[1,1]$, and $\mathbf{a}=[a,a]$ for every $a\in(0,1)$. We also note that (i) $(\forall M,N\in D[0,1])(M=N\Leftrightarrow M^L=N^L,M^U=N^U)$. (ii) $(\forall M,N\in D[0,1])(M\subseteq N\Leftrightarrow M^L\subseteq N^L,M^U\subseteq N^U)$. For every $M\in D[0,1]$, the complement of M, denoted by M^c , is defined by $M^c=1-M=[1-M^U,1-M^L]$. Let X be a nonempty set. A mapping $A:X\to D[0,1]$ is called an interval-valued fuzzy set (briefly, an IVF set) in X. For each $x\in X$, A(x) is a closed interval whose lower and upper end points are denoted by $A(x)^L$ and $A(x)^U$, respectively. For any $[a,b]\in D[0,1]$, the IVF set whose value is the interval [a,b] for all $x\in X$ is denoted by [a,b]. In particular, for any $a\in[0,1]$, the IVF set whose value is $\mathbf{a}=[a,a]$ for all $x\in X$ is denoted by simply \widetilde{a} . For a point $p\in X$ and for $[a,b]\in D[0,1]$ with b>0, the IVF set which takes the value [a,b] at p and $\mathbf{0}$ elsewhere in X is called an interval-valued fuzzy point (briefly, an IVF point) and is denoted by $[a,b]_p$. In particular, if b=a, then it is also denoted by a_p . Denote by IVF(X) the set of all IVF sets in X. For every $A,B\in IVF(X)$, we define $A=B\Leftrightarrow (\forall x\in X)([A(x)]^L=[B(x)]^U)$. The complement A^c of A is defined by $[A^c(x)]^L=1-[A(x)]^U$ and $[A^c(x)]^U=1-[A(x)]^U$ for all $x\in X$. For a family of IVF sets $\{A_i:i\in A\}$, where A is an index set, the union $G=\bigcup_{i\in A}A_i$ and the intersection $F=\bigcap_{i\in A}A_i$ are defined by $(\forall x\in X)([G(x)]^L=\sup_{i\in A}[A_i(x)]^L,[G(x)]^U=\sup_{i\in A}[A_i(x)]^U)$,

^{*} Corresponding author. 2010 Mathematics Subject Classification: 54A40. Submitted March 19, 2022. Published December 04, 2025

 $(\forall x \in X)([G(x)]^L = \inf_{i \in \Lambda} [\mathcal{A}_i(x)]^L, [G(x)]^U = \inf_{i \in \Lambda} [\mathcal{A}_i(x)]^U), \text{ respectively. Let } f: X \to Y \text{ be a mapping and let } \mathcal{A} \text{ be an IVF set in } X. \text{ Then the image of } \mathcal{A} \text{ under } f, \text{ denoted by } f(\mathcal{A}), \text{ is defined as follows:} \\ [f(\mathcal{A})(y)]^L = \left\{ \begin{array}{ll} \sup_{y=f(x)} [\mathcal{A}(x)]^L & f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{array} \right. [f(\mathcal{A})(y)]^U = \left\{ \begin{array}{ll} \sup_{y=f(x)} [\mathcal{A}(x)]^U & f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise.} \end{array} \right.$ for all $y \in \mathcal{A}$

Y. Let \mathcal{B} be an IVF set in Y. Then the inverse image of \mathcal{B} under f, denoted by $f^{-1}(\mathcal{B})$, is defined as follows: $(\forall x \in X)([f^{-1}(\mathcal{B})(x)]^L = [\mathcal{B}(f(x))]^L, [f^{-1}(\mathcal{B})(x)]^U = [\mathcal{B}(f(x))]^U).$

Definition 2.1 [5] A family τ of IVF sets in X is called an interval-valued fuzzy topology (briefly, IVF topology) for X if it satisfies:

- 1. $0, 1 \in \tau$,
- 2. $\mathcal{A}, \mathcal{B} \in \tau \Rightarrow \mathcal{A} \cap \mathcal{B} \in \tau$,
- 3. $A_i \in \tau$, $i \in \Lambda \Rightarrow \bigcup_{i \in \Lambda} A_i \in \tau$.

Every member of τ is called an IVF open set. An IVF set \mathcal{A} in X is called an IVF closed set if the complement of \mathcal{A} is an IVF open set, that is, $\mathcal{A}^c \in \tau$. Moreover, (X, τ) is called an interval-valued fuzzy topological space (briefly, IVF topological space).

Definition 2.2 [5] For an IVF set \mathcal{A} in an IVF topological space (X, τ) , the IVF closure and the IVF interior of \mathcal{A} , denoted by $Cl(\mathcal{A})$, $Int(\mathcal{A})$, respectively, are defined as $Cl(\mathcal{A}) = \cap \{\mathcal{B} \in I^X : \mathcal{B} \text{ is IVF closed and } \mathcal{A} \subset \mathcal{B}\}$, $Int(\mathcal{A}) = \cup \{\mathcal{B} \in I^X : \mathcal{B} \text{ is IVF open and } \mathcal{B} \subset \mathcal{A}\}$, respectively. Note that $Int(\mathcal{A})$ is the largest IVF open set which is contained in \mathcal{A} , and that \mathcal{A} is IVF open if and only if $\mathcal{A} = Int(\mathcal{A})$.

Definition 2.3 [1] An IVF set A of an IVF topological space (X, τ) is said to be b-open if $A \subseteq Int(Cl(A)) \cup Cl(Int(A))$.

The complement of an IVF b-open set is called an IVF b-closed set.

Definition 2.4 [1] For an IVF set A in an IVF topological space (X, τ) , we define the following

- 1. $b\operatorname{Cl}(\mathcal{A}) = \bigcap \{\mathcal{B} \in I^X : \mathcal{B} \text{ is IVF } b\text{-closed and } \mathcal{A} \subset \mathcal{B}\},\$
- 2. $b \operatorname{Int}(A) = \bigcup \{ B \in I^X : B \text{ is IVF b-open and } B \subset A \}.$

Definition 2.5 [2] A map $f:(X,\tau)\to (Y,\sigma)$ is said to be IVF b-continuous if for every IVF open set \mathcal{A} in Y, $f^{-1}(\mathcal{A})$ is IVF b-open in X.

3. Interval-valued fuzzy b-irresolute mappings

Definition 3.1 A map $f:(X,\tau)\to (Y,\sigma)$ is said to be IVF b-irresolute if for every IVF b-open set $\mathcal A$ in Y, $f^{-1}(\mathcal A)$ is IVF b-open in X.

Proposition 3.1 Every IVF b-irresolute mapping is IVF b-continuous.

The converse of the above Proposition is not true as seen from the following example.

Example 3.1 Let A, B, C be IVF sets in I = [0, 1] defined by

$$\mathcal{A}(x) = \begin{cases} \begin{bmatrix} \frac{1}{3}x, \frac{2}{3}x \end{bmatrix} & 0 \le x \le \frac{1}{2} \\ -\frac{1}{2}x + \frac{5}{12}, -\frac{2}{3}x + \frac{2}{3} \end{bmatrix} & \frac{1}{2} \le x \le \frac{5}{6} \\ [0, -\frac{2}{3}x + \frac{2}{3}] & \frac{5}{6} \le x \le 1 \end{cases}$$

$$\mathcal{B}(x) = \begin{cases} \begin{bmatrix} \frac{5}{6}x + \frac{1}{6}, x + \frac{1}{6} \end{bmatrix} & 0 \le x \le \frac{5}{6} \\ \frac{5}{6}x + \frac{1}{6}, 1 \end{bmatrix} & \frac{5}{6} \le x \le 1 \end{cases}$$

$$\mathcal{C}(x) = \left[\frac{1}{3}x, \frac{1}{2}\right], 0 \le x \le 1$$

for all $x \in I$. Then $\tau = \{0, A, C, 1\}$ and $\sigma = \{0, A, 1\}$ are IVF topologies for I. It is clear that \mathcal{B} is an IVF b-open set in (X, σ) but not IVF b-open set in (X, τ) . Hence the identity mapping $f : (X, \tau) \to (X, \sigma)$ is an IVF b-continuous but it is not IVF b-irresolute.

Theorem 3.1 For a map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is IVF b-irresolute.
- 2. $f^{-1}(\mathcal{B})$ is IVF b-closed for each IVF b-closed set \mathcal{B} of Y.
- 3. $f(b\operatorname{Cl}(A)) \subset b\operatorname{Cl}(f(A))$ for each $A \in I^X$.
- 4. $b\operatorname{Cl}(f^{-1}(\mathcal{B})) \subset f^{-1}(b\operatorname{Cl}(\mathcal{B}))$ for each $\mathcal{B} \in I^Y$.
- 5. $f^{-1}(b\operatorname{Int}(\mathcal{B})) \subset b\operatorname{Int}(f^{-1}(\mathcal{B}))$ for each $\mathcal{B} \in I^Y$.

Proof: $(1) \Rightarrow (2)$: It is obvious.

- (2) \Rightarrow (3): For any $\mathcal{A} \in I^X$, since $b\operatorname{Cl}(f(\mathcal{A}))$ is an IVF b-closed set in Y, by (2), $f^{-1}(b\operatorname{Cl}(f(\mathcal{A})))$ is IVF b-closed and $\mathcal{A} \subset f^{-1}(b\operatorname{Cl}(f(\mathcal{A})))$. Thus we have $b\operatorname{Cl}(\mathcal{A}) \subset b\operatorname{Cl}(f^{-1}(f(\mathcal{A}))) \subset f^{-1}(b\operatorname{Cl}(f(\mathcal{A})))$. Then $f(b\operatorname{Cl}(\mathcal{A})) \subset b\operatorname{Cl}(f(\mathcal{A}))$.
- (3) \Rightarrow (4): For any $\mathcal{B} \in I^Y$, from (3), we have $f(b\operatorname{Cl}(f^{-1}(\mathcal{B}))) \subset b\operatorname{Cl}(f(f^{-1}(\mathcal{B}))) \subset b\operatorname{Cl}(\mathcal{B})$. Hence $b\operatorname{Cl}(f^{-1}(\mathcal{B})) \subset f^{-1}(b\operatorname{Cl}(\mathcal{B}))$.
- (4) \Rightarrow (5): For any $\mathcal{B} \in I^Y$, from (4), it follows $f^{-1}(b\operatorname{Int}(\mathcal{B})) = \mathbf{1} (f^{-1}(b\operatorname{Cl}(\mathbf{1} \mathcal{B}))) \subset \mathbf{1} b\operatorname{Cl}(f^{-1}(\mathbf{1} \mathcal{B})) = b\operatorname{Int}(f^{-1}(\mathcal{B}))$. Hence, we have $f^{-1}(b\operatorname{Int}(\mathcal{B})) \subset b\operatorname{Int}(f^{-1}(\mathcal{B}))$.
- (5) \Rightarrow (1): Let \mathcal{A} be an IVF *b*-open set of Y. By (5), $f^{-1}(\mathcal{A}) = f^{-1}(b\operatorname{Int}(\mathcal{A})) \subset b\operatorname{Int}(f^{-1}(\mathcal{A}))$. Hence $f^{-1}(\mathcal{A})$ is an IVF *b*-open set. Therefore, f is IVF *b*-irresolute.

Theorem 3.2 A bijective map $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute if and only if $b\operatorname{Int}(f(\mathcal{A}))\subset f(b\operatorname{Int}(\mathcal{A}))$ for each $\mathcal{A}\in I^X$.

Proof: Suppose that f is IVF b-irresolute. For any $\mathcal{A} \in I^X$, since $f^{-1}(b\operatorname{Int}(f(\mathcal{A})))$ is IVF b-open, from Theorem 3.1 and injectivity, it follows $f^{-1}(b\operatorname{Int}(f(\mathcal{A}))) \subset b\operatorname{Int}(f^{-1}(f(\mathcal{A}))) = b\operatorname{Int}(\mathcal{A})$. And from surjectivity of f, $b\operatorname{Int}(f(\mathcal{A})) = f(f^{-1}(b\operatorname{Int}(f(\mathcal{A})))) \subset f(b\operatorname{Int}(\mathcal{A}))$. For the converse, let \mathcal{B} be an IVF b-open set of Y. From the hypothesis and surjectivity of f, it follows $f(b\operatorname{Int}(f^{-1}(\mathcal{B}))) \supset b\operatorname{Int}(f(f^{-1}(\mathcal{B}))) = b\operatorname{Int}(\mathcal{B}) = \mathcal{B}$. Since f is injective, $b\operatorname{Int}(f^{-1}(\mathcal{B})) \supset f^{-1}(\mathcal{B})$. Then $b\operatorname{Int}(f^{-1}(\mathcal{B})) = f^{-1}(\mathcal{B})$. Hence f is IVF b-irresolute.

Theorem 3.3 For a map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is IVF b-irresolute.
- 2. $\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \subseteq b \operatorname{Cl}(f^{-1}(\mathcal{B}))$ for any $\mathcal{B} \in I^Y$.
- 3. $b \operatorname{Int}(f^{-1}(\mathcal{B})) \subset \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cup \operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B})))$ for any $\mathcal{B} \in I^Y$.
- 4. $f(\operatorname{Cl}(\operatorname{Int}(\mathcal{A})) \cap \operatorname{Int}(\operatorname{Cl}(\mathcal{A}))) \subseteq b \operatorname{Int}(f(\mathcal{A}))$ for every $\mathcal{A} \in I^X$.

Proof: (1) \Rightarrow (2): Let $\mathcal{B} \in I^Y$. Then $b \operatorname{Cl}(\mathcal{B})$ is an IVF b-closed set of Y. By (1), $f^{-1}(b \operatorname{Cl}(\mathcal{B}))$ is an IVF b-closed set in X. Hence $f^{-1}(b \operatorname{Cl}(\mathcal{B})) \supseteq (\operatorname{Int}(\operatorname{Cl}(f^{-1}(b \operatorname{Cl}(\mathcal{B})))) \cap \operatorname{Cl}(\operatorname{Int}(f^{-1}(b \operatorname{Cl}(\mathcal{B}))))) \supseteq \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))))$.

 $(2) \Rightarrow (3)$: Let $\mathcal{B} \in I^Y$. Then $1 - \mathcal{B} \in I^Y$. By (2),

$$\begin{array}{ccc} f^{-1}(b\operatorname{Cl}(1-\mathcal{B})) & \supseteq & \operatorname{Int}(\operatorname{Cl}(f^{-1}(1-\mathcal{B}))) \cap \operatorname{Cl}(\operatorname{Int}(f^{-1}(1-\mathcal{B})))) \\ 1-f^{-1}(b\operatorname{Int}(\mathcal{B})) & \supseteq & 1-(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))) \cup \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \\ f^{-1}(b\operatorname{Int}(\mathcal{B})) & \subseteq & (\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))) \cup \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))). \end{array}$$

 $(3) \Rightarrow (4)$: Let $\mathcal{A} \in I^{Y}$. Let us put $\mathcal{B} = f(\mathcal{A})$, then $\mathcal{A} \subseteq f^{-1}(\mathcal{B})$. According to the assumption, $1 - (\operatorname{Int}(\operatorname{Cl}(1-\mathcal{A})) \cup \operatorname{Cl}(\operatorname{Int}(1-\mathcal{A})) \subseteq 1 - (\operatorname{Int}(\operatorname{Cl}(f^{-1}(1-\mathcal{B}))) \cup \operatorname{Cl}(\operatorname{Int}(f^{-1}(1-\mathcal{B})))) \subseteq 1 - (f^{-1}(b\operatorname{Int}(1-\mathcal{B}))).$ Thus, $Cl(Int(\mathcal{A})) \cap Int(Cl(\mathcal{A})) \subseteq Cl(Int(f^{-1}(\mathcal{B}))) \cap Int(Cl(f^{-1}(\mathcal{B}))) \subseteq f^{-1}(bCl(\mathcal{B}))$. So $f(Cl(Int(\mathcal{B})) \cap Int(Cl(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(bCl(\mathcal{B}))$. $\operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \subseteq f(f^{-1}(b\operatorname{Cl}(\mathcal{B}))) \subseteq b\operatorname{Cl}(\mathcal{A}) = b\operatorname{Cl}(f(\mathcal{A})).$

 $(4) \Rightarrow (1)$: Let \mathcal{B} be any IVF b-closed set of Y. So $f(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq b \operatorname{Int}(f(f^{-1}(\mathcal{B})))$ $\subseteq b \operatorname{Int}(\mathcal{B}) = \mathcal{B}, (\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(f(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))))) \subseteq f^{-1}(f(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(f(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(f(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B}))))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \subseteq f^{-1}(\operatorname{Cl}(\operatorname{Int}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B})))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Int}(\operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B})) \cap \operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B})) \cap \operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B}))) \cap \operatorname{Cl}(f^{-1}(\mathcal{B})) \cap \operatorname{Cl}(f^{-1}(\mathcal{B})) \cap \operatorname{C$ $f^{-1}(\mathcal{B})$. Thus, $f^{-1}(\mathcal{B})$ is an IVF b-closed set of X; hence f is IVF b-irresolute.

Theorem 3.4 If $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute mapping, then $f^{-1}(B)\subseteq b\operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(\mathcal{B}))))$ $Cl(Int(\mathcal{B})))$ for each IVF b-open set \mathcal{B} of Y.

Proof: Let \mathcal{B} be an IVF b-open set of Y. Then $f^{-1}(\mathcal{B}) \subseteq f^{-1}(Int(Cl(\mathcal{B})) \cup Cl(Int(\mathcal{B})))$. Since $f^{-1}(\mathcal{B})$ is an an IVF b-open set of X, we have $f^{-1}(\mathcal{B}) \subset b \operatorname{Int}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(\mathcal{B}))) \cup \operatorname{Cl}(\operatorname{Int}(\mathcal{B})))$.

Definition 3.2 An IVF set A of an IVF topological space (X,τ) is said to be an IVF b-neighbourhood of an IVF point M_x if there exists an IVF b-open set \mathcal{B} of X such that $M_x \in \mathcal{B} \subset \mathcal{A}$.

Theorem 3.5 For a map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is IVF b-irresolute,
- 2. for any IVF point x_{α} of X and any B is IVF b-open in Y containing $f(x_{\alpha})$, there exists an IVF b-open set A of X containing x_{α} such that $A \subseteq f^{-1}(\mathcal{B})$,
- 3. for any IVF point x_{α} of X and any | is IVF b-open in Y containing $f(x_{\alpha})$, there exists an IVF b-open set A of X containing x_{α} such that $f(A) \subseteq \mathcal{B}$,
- 4. For every IVF point M_x in X and every IVF b-neighbourhood \mathcal{B} of $f(M_x)$, $f^{-1}(\mathcal{B})$ is an IVF b-neighbourhood of M_x .

Proof: (1) \Rightarrow (2): Let f be IVF b-irresolute. Let x_{α} be an IVF point of X and let \mathcal{B} be IVF b-open in Y containing $f(x_{\alpha})$. Then $x_{\alpha} \in f^{-1}(\mathcal{B}) = b \operatorname{Int}(f^{-1}(\mathcal{B}))$. The result follows for $\mathcal{A} = b \operatorname{Int}(f^{-1}(\mathcal{B}))$.

- $(2) \Rightarrow (3)$: It follows from the relation $f(\mathcal{A}) \subseteq f(f^{-1}(\mathcal{B})) \subseteq \mathcal{B}$.
- (3) \Rightarrow (1): Let \mathcal{B} be IVF b-open in Y and let x_{α} be an IVF point of X such that $x_{\alpha} \in f^{-1}(\mathcal{B})$. Then $f(x_{\alpha}) \in \mathcal{B}$. According to the assumption, there exists an IVF b-open set \mathcal{A} of X containing x_{α} such that $f(\mathcal{A}) \subseteq \mathcal{B}$. Then $x_{\alpha} \in \mathcal{A} \subseteq f^{-1}(f(\mathcal{A})) \subseteq f^{-1}(\mathcal{B})$ and $x_{\alpha} \in \mathcal{A} = b \operatorname{Int}(\mathcal{A}) \subseteq b \operatorname{Int}(f^{-1}(\mathcal{B}))$. Since x_{α} is an arbitrary fuzzy point and $f^{-1}(\mathcal{B})$ is the union of all fuzzy points which belong in $f^{-1}(\mathcal{B})$, $f^{-1}(\mathcal{B}) \subseteq b \operatorname{Int} f^{-1}(\mathcal{B})$. Hence f is fuzzy b-irresolute.
- $(3) \Rightarrow (4)$: Let M_x be an IVF point in X and \mathcal{B} be an IVF b-neighbourhood of $f(M_x)$. Then there exists an IVF b-open set \mathcal{C} of Y such that $f(M_x) \in \mathcal{C} \subseteq \mathcal{B}$. By (3), there exists an IVF b-open set \mathcal{A} of X such that $M_x \in \mathcal{A}$ and $f(\mathcal{A}) \subseteq C \subseteq \mathcal{B}$. Thus $M_x \in \mathcal{A} \subseteq f^{-1}(f(\mathcal{A})) \subseteq f^{-1}(\mathcal{C}) \subseteq f^{-1}(\mathcal{B})$, and so $f^{-1}(\mathcal{B})$ is an IVF b-neighbourhood of M_x .
- $(4) \Rightarrow (3)$: Let M_x be an IVF point in X and \mathcal{B} an IVF b-open set of Y with $f(M_x) \in \mathcal{B}$. Then \mathcal{B} is an IVF b-neighbourhood of $f(M_x)$. By (4), there exists an IVF b-open set \mathcal{D} of X such that $M_x \in \mathcal{D} \subseteq f^{-1}(\mathcal{B})$. Then $f(M_x) \in f(\mathcal{D}) \subseteq f(f^{-1}(\mathcal{B})) \subseteq \mathcal{B}$, and thus (3) is valid.

Theorem 3.6 If $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ are IVF b-irresolute mappings, then $g \circ f: (X, \tau) \to (Z, \eta)$ is IVF an b-irresolute mapping.

Proof: Straightforward.

Corollary 3.1 If $f:(X,\tau)\to (Y,\sigma)$ is an IVF b-irresolute mapping and $g:(Y,\sigma)\to (Z,\eta)$ is an IVF b-continuous mapping, then $g \circ f: (X, \tau) \to (Z, \eta)$ is an IVF b-irresolute mapping.

Definition 3.3 An IVF set \mathcal{A} of an IVF topological space (X, τ) is said to be IVF b-compact if for every IVF b-open cover $\mathcal{A} = \{\mathcal{A}_i \in I^X : i \in J\}$ of \mathcal{A} , there exists $J_0 = \{1, 2, 3, ...n\} \subset J$ such that $\mathcal{A} \subset \bigcup_{i \in J_0} \mathcal{A}_i$.

Theorem 3.7 Let $F:(X,\tau)\to (Y,\sigma)$ be an IVF b-irresolute mapping. If $\mathcal A$ is an IVF b-compact set in X, then $f(\mathcal A)$ is IVF b-compact in Y.

Proof: Let $\{\mathcal{B}_i \in I^X : i \in J\}$ be an IVF *b*-open cover of $f(\mathcal{A})$. Then $\{f^{-1}(\mathcal{B}_i) : i \in J\}$ is an IVF *b*-open cover of \mathcal{A} in X. By the definition of IVF *b*-compactness, there exists $J_0 = \{1, 2, 3, ...n\} \subset J$ such that $\mathcal{A} \subset \bigcup_{i \in J_0} f^{-1}(\mathcal{B}_i)$. Then $f(\mathcal{A}) \subset f(\bigcup_{i \in J_0} f^{-1}(\mathcal{B}_i)) = \bigcup_{i \in J_0} f(f^{-1}(\mathcal{B}_i)) \subset \bigcup_{i \in J_0} \mathcal{B}_i$. Then $f(\mathcal{A}) \subset \bigcup_{i \in J_0} \mathcal{B}_i$. Hence $f(\mathcal{A})$ is IVF *b*-compact in Y.

Definition 3.4 A map $f:(X,\tau)\to (Y,\sigma)$ is called an IVF b-irresolute open (resp. IVF b-irresolute closed) mapping if for every IVF b-open (resp. IVF b-closed) set A in X, f(A) is IVF b-open (resp. IVF b-closed) in Y.

Theorem 3.8 For a map $f:(X,\tau)\to (Y,\sigma)$, the following are equivalent:

- 1. f is IVF b-irresolute open.
- 2. $f(b\operatorname{Int}(A)) \subset b\operatorname{Int}(f(A))$ for $A \in I^X$.
- 3. $b \operatorname{Int}(f^{-1}(\mathcal{B})) \subset f^{-1}(b \operatorname{Int}(\mathcal{B}))$ for $\mathcal{B} \in I^Y$.
- 4. For $\mathcal{B} \in I^Y$ and each IVF b-closed set \mathcal{A} of X with $f^{-1}(\mathcal{B}) \subset \mathcal{A}$, there exists an IVF b-closed set \mathcal{C} of Y such that $\mathcal{B} \subset \mathcal{C}$ and $f^{-1}(\mathcal{C}) \subset \mathcal{A}$.

Proof: (1) \Rightarrow (2): For $A \in I^X$, $f(b \operatorname{Int}(A))$

```
= f(\cup \{\mathcal{B} \in I^X : \mathcal{B} \subset \mathcal{A}, \mathcal{B} \text{ is } IVF \text{ } b - open \text{ } in \text{ } X\})
= \cup \{f(\mathcal{B}) \in I^Y : f(\mathcal{B}) \subset f(\mathcal{A}), f(\mathcal{B}) \text{ } is \text{ } IVF \text{ } b - open \text{ } in \text{ } Y\}
\subset \cup \{U \in I^Y : \mathcal{U} \subset f(\mathcal{A}), \mathcal{U} \text{ } is \text{ } IVF \text{ } b - open \text{ } in \text{ } Y \in I^X\}
= b \operatorname{Int}(f(\mathcal{A})).
```

 $(2) \Rightarrow (3)$: For $\mathcal{B} \in I^Y$, from (2) it follows that $f(b \operatorname{Int}(f^{-1}(\mathcal{B}))) \subset b \operatorname{Int}(f(f^{-1}(\mathcal{B}))) \subset b \operatorname{Int}(\mathcal{B})$. Hence $b \operatorname{Int}(f^{-1}(\mathcal{B})) \subset f^{-1}(b \operatorname{Int}(\mathcal{B}))$.

 $(3) \Rightarrow (4): \text{ Let } \mathcal{A} \text{ be an IVF } b\text{-closed set of } X \text{ with } f^{-1}(\mathcal{B}) \subset \mathcal{A} \text{ for } \mathcal{B} \in I^Y. \text{ Since } \mathbf{1} - \mathcal{A} \subset \mathbf{1} - f^{-1}(\mathcal{B}) = f^{-1}(\mathbf{1} - \mathcal{B}), b \operatorname{Int}(\mathbf{1} - \mathcal{A}) = \mathbf{1} - \mathcal{A} \subset b \operatorname{Int}(f^{-1}(\mathbf{1} - \mathcal{B})). \text{ By } (3), \mathbf{1} - \mathcal{A} \subset b \operatorname{Int}(f^{-1}(\mathbf{1} - \mathcal{B})) \subset f^{-1}(b \operatorname{Int}(\mathbf{1} - \mathcal{B})). \text{ Thus } \mathcal{A} \supset \mathbf{1} - (f^{-1}(b \operatorname{Int}(\mathbf{1} - \mathcal{B}))) = f^{-1}(\mathbf{1} - b \operatorname{Int}(\mathbf{1} - \mathcal{B})) = f^{-1}(b \operatorname{Cl}(\mathcal{B})). \text{ Now set } \mathcal{C} = b \operatorname{Cl}(\mathcal{B}). \text{ Then } \mathcal{C} \text{ is an IVF } b\text{-closed set of } Y \text{ such that } \mathcal{B} \subset \mathcal{C} \text{ and } f^{-1}(\mathcal{C}) \subset \mathcal{A}.$

 $(4)\Rightarrow (1)$: Let \mathcal{A} be an IVF b-open set of X. Then $f^{-1}(\mathbf{1}-f(\mathcal{A}))=\mathbf{1}-f^{-1}(f(\mathcal{A}))\subset \mathbf{1}-\mathcal{A}$ and $\mathbf{1}-\mathcal{A}$ is IVF b-closed. By (4), there exists an IVF b-closed set \mathcal{C} such that $\mathbf{1}-f(\mathcal{A})\subset \mathcal{C}$ and $f^{-1}(\mathcal{C})\subset \mathbf{1}-\mathcal{A}$. It implies $\mathbf{1}-\mathcal{C}\subset f(\mathcal{A})$ and $f(\mathcal{A})\subset f(\mathbf{1}-f^{-1}(\mathcal{C}))=f(f^{-1}(\mathbf{1}-\mathcal{C}))\subset \mathbf{1}-\mathcal{C}$. Hence $f(\mathcal{A})$ is an IVF b-open set in Y.

Theorem 3.9 A map $f: (X,\tau) \to (Y,\sigma)$ is IVF b-irresolute open if and only if $f(b\operatorname{Int}(A)) \subset \operatorname{Int}(\operatorname{Cl}(f(A))) \cup \operatorname{Cl}(\operatorname{Int}(f(A)))$ for each $A \in I^X$.

Proof: Let $A \in I^X$. Then $f(b \operatorname{Int}(A))$ is IVF *b*-open in *Y*. Hence $f(b \operatorname{Int}(A)) \subset \operatorname{Int}(\operatorname{Cl}(f(b \operatorname{Int}(A))) \cup \operatorname{Cl}(\operatorname{Int}(f(b \operatorname{Int}(A))) \cup \operatorname{Cl}(\operatorname{Int}(f(A)))$.

Theorem 3.10 A map $f:(X,\tau)\to (Y,\sigma)$ satisfies $f(\mathrm{Cl}(\mathrm{Int}(\mathcal{A}))\cup\mathrm{Int}(\mathrm{Cl}(\mathcal{A})))\subset\mathrm{Cl}(\mathrm{Int}(f(\mathcal{A})))\cup\mathrm{Int}(\mathrm{Cl}(f(\mathcal{A})))$ for each IVf b-open set $\mathcal{A}\in I^X$, then f is IVF b-irresolute open.

Proof: Let \mathcal{A} be an IVF *b*-open set of X. Then $\mathcal{A} \subset \operatorname{Cl}(\operatorname{Int}(\mathcal{A})) \cup \operatorname{Int}(\operatorname{Cl}(\mathcal{A}))$. By assumption, $f(\mathcal{A}) \subset f(\operatorname{Cl}(\operatorname{Int}(\mathcal{A})) \cup \operatorname{Int}(\operatorname{Cl}(\mathcal{A}))) \subset \operatorname{Cl}(\operatorname{Int}(f(\mathcal{A}))) \cup \operatorname{Int}(\operatorname{Cl}(f(\mathcal{A})))$; hence $f(\mathcal{A})$ is an IVF *b*-open set of Y. Hence $f(\mathcal{A})$ is IVF $f(\mathcal{A})$.

Corollary 3.2 A bijective map $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute open if and only if $b\operatorname{Cl}(f(A))\subset f(b\operatorname{Cl}(A))$ for each $A\in I^X$.

Theorem 3.11 A bijective map $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute closed if and only if $f^{-1}(b\operatorname{Cl}(A))\subset b\operatorname{Cl}(f^{-1}(A))$ for each $A\in I^Y$.

Proof: It is similarly proved from Theorem 3.8.

Theorem 3.12 If $f:(X,\tau) \to (Y,\sigma)$ is an IVF b-irresolute open map, then for each $\mathcal{B} \in I^Y$, $f^{-1}(\mathrm{Cl}(\mathrm{Int}(\mathcal{B})) \cap f^{-1}(\mathrm{Int}(\mathrm{Cl}(\mathcal{B})) \subseteq b\,\mathrm{Cl}(f^{-1}(\mathcal{B}))$.

Proof: Let $\mathcal{B} \in I^Y$. Then $b\operatorname{Cl}(f^{-1}(\mathcal{B}))$ be an IVF *b*-closed set in X. From Theorem 3.8 (4), it follows that there exists an IVF *b*-closed set \mathcal{C} of Y such that $\mathcal{B} \subseteq \mathcal{C}$ and $f^{-1}(\mathcal{C}) \subseteq b\operatorname{Cl}(f^{-1}(\mathcal{B}))$. Thus $f^{-1}(\operatorname{Cl}(\operatorname{Int}(\mathcal{B}))) \cap f^{-1}(\operatorname{Int}(\operatorname{Cl}(\mathcal{B}))) \subseteq f^{-1}(\operatorname{Cl}(\operatorname{Int}(\mathcal{C})) \cap \operatorname{Int}(\operatorname{Cl}(\mathcal{C}))) \subseteq f^{-1}(\mathcal{C}) \subseteq b\operatorname{Cl}(f^{-1}(\mathcal{B}))$.

Theorem 3.13 If $f:(X,\tau)\to (Y,\sigma)$ is a bijective map such that $f^{-1}(\mathrm{Cl}(\mathrm{Int}(\mathcal{B}))\cap f^{-1}(\mathrm{Int}(\mathrm{Cl}(\mathcal{B}))\subseteq b\,\mathrm{Cl}(f^{-1}(\mathcal{B}))$ for each $\mathcal{B}\in I^Y$, then f is an IVF b-irresolute open map.

Proof: Let \mathcal{A} be an IVF b-open set of X. Then from the given condition, $f^{-1}(\operatorname{Cl}(\operatorname{Int}(f(\bar{1}-\mathcal{A}))) \cap f^{-1}(\operatorname{Int}(\operatorname{Cl}(f(\bar{1}-\mathcal{A}))) \subseteq b\operatorname{Cl}(f^{-1}(f(\bar{1}-\mathcal{A}))) = b\operatorname{Cl}(\bar{1}-\mathcal{A}) = \bar{1}-\mathcal{A}$, and so $\operatorname{Cl}(\operatorname{Int}(f(\bar{1}-\mathcal{A}))) \cap \operatorname{Int}(\operatorname{Cl}(f(\bar{1}-\mathcal{A}))) \subseteq f(\bar{1}-\mathcal{A})$, which shows that $f(\bar{1}-\mathcal{A})$ is an IVF b-closed set of Y. Since f is bijective, $f(\mathcal{A})$ is an IVF b-open set of Y, hence f is an IVF b-iresolute open map.

Theorem 3.14 Foa a mapping $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is IVF b-irresolute closed.
- 2. $b\operatorname{Cl}(f(A)) \subseteq f(b\operatorname{Cl}(A))$ for each $A \in I^X$.
- 3. If f is bijective, then $f^{-1}(b\operatorname{Cl}(\mathcal{B})) \subset b\operatorname{Cl}(f^{-1}(\mathcal{A}))$ for each $\mathcal{B} \in I^Y$.

Proof: (1) \Leftrightarrow (2): Let $\mathcal{A} \in I^X$. Then $b\operatorname{Cl}(\mathcal{A})$ is an IVF b-closed set in X. Since f is IVF b-closed, $f(b\operatorname{Cl}(\mathcal{A}))$ is IVF b-closed in Y. Since $f(\mathcal{A}) \subseteq f(b\operatorname{Cl}(\mathcal{A}))$, $b\operatorname{Cl}(f(\mathcal{A})) \subseteq b\operatorname{Cl}(f(\operatorname{Cl}(\mathcal{A}))) = f(b\operatorname{Cl}(\mathcal{A}))$. Conversely, let \mathcal{A} be an IVF b-closed set in X. Then $b\operatorname{Cl}(\mathcal{A}) = \mathcal{A}$ and $f(\mathcal{A}) \in I^Y$. By (2), $b\operatorname{Cl}(f(\mathcal{A})) \subseteq f(b\operatorname{Cl}(\mathcal{A})) = f(\mathcal{A})$. So we have, $f(\mathcal{A}) \subseteq b\operatorname{Cl}(f(\mathcal{A})) \subseteq f(\mathcal{A})$ and hence $f(\mathcal{A}) = b\operatorname{Cl}(f(\mathcal{A}))$. Then $f(\mathcal{A})$ is IVF b-closed in Y; hence f is IVF b-irresolute closed.

(2) \Leftrightarrow (3): Let $\mathcal{B} \in I^Y$. Then $f^{-1}(\mathcal{B}) \in I^X$. Since f is on-to, $b \operatorname{Cl}(\mathcal{B}) = b \operatorname{Cl}(f(f^{-1}(\mathcal{B})) \subseteq f(b \operatorname{Cl}(f^{-1}(\mathcal{B})))$. Since f is one-to-one, $f^{-1}(b \operatorname{Cl}(\mathcal{B})) \subseteq f^{-1}(f(b \operatorname{Cl}(f^{-1}(\mathcal{B})))) = b \operatorname{Cl}(f^{-1}(\mathcal{B}))$. Conversely, let $\mathcal{A} \in I^X$. Then $f(\mathcal{A}) \in I^Y$. Since f is one-to-one, $f^{-1}(b \operatorname{Cl}(f(\mathcal{A}))) \subseteq b \operatorname{Cl}(f^{-1}f(\mathcal{A})) = b \operatorname{Cl}(\mathcal{A})$. Since f is on-to, we have $b \operatorname{Cl}(f(\mathcal{A})) = f(f^{-1}(b \operatorname{Cl}(f(\mathcal{A})))) \subseteq f(b \operatorname{Cl}(\mathcal{A}))$.

Theorem 3.15 A map $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute closed if and only if $\operatorname{Int}(\operatorname{Cl}(f(\mathcal{A})))\cap \operatorname{Cl}(\operatorname{Int}(f(\mathcal{A})))\subset f(b\operatorname{Cl}(\mathcal{A}))$ for each $\mathcal{A}\in I^X$.

Theorem 3.16 A map $f:(X,\tau)\to (Y,\sigma)$ satisfies $f(\mathrm{Cl}(\mathrm{Int}(\mathcal{A}))\cap\mathrm{Int}(\mathrm{Cl}(\mathcal{A})))\subset\mathrm{Cl}(\mathrm{Int}(f(\mathcal{A})))\cap\mathrm{Int}(\mathrm{Cl}(f(\mathcal{A})))$ for each IVF b-closed set $\mathcal{A}\in I^X$, then f is IVF b-irresolute closed.

Theorem 3.17 For a bijective map $f:(X,\tau)\to (Y,\sigma)$, the following statements hold:

1. f is IVF b-irresolute open if, and only if it is IVF b-irresolute closed;

2. f is IVF b-irresolute open (closed) if, and only if f^{-1} is IVF b-irresolute.

Proof: (1). Clear.

(2). It follows from the relation
$$(f^{-1})^{-1}(A) = f(A)$$
 for each $A \in I^X$.

Theorem 3.18 For a bijective map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is IVF b-irresolute closed.
- 2. $f^{-1}(b\operatorname{Cl}(\mathcal{B})) \subseteq b\operatorname{Cl}(f^{-1}(\mathcal{B}))$ for each $\mathcal{B} \in I^Y$.
- 3. f is IVF b-irresolute open.
- 4. f^{-1} is IVF b-irresolute.

Proof: (1) \Leftrightarrow (2): For each $\mathcal{B} \in I^Y$, by (1) and Theorem 3.14 (2), we have $f(b\operatorname{Cl}((f^{-1}\mathcal{B}))) \supseteq b\operatorname{Cl}(ff^{-1}(\mathcal{B})) = b\operatorname{Cl}(\mathcal{B})$. Since f is injective, $b\operatorname{Cl}(f^{-1}(\mathcal{B})) = f^{-1}(f(b\operatorname{Cl}(f^{-1}(\mathcal{B})))) \supseteq f^{-1}(b\operatorname{Cl}(\mathcal{B}))$. Conversly, from (2), put $\mathcal{B} = f(\mathcal{A})$ for each $\mathcal{A} \in I^X$. Since f is injective, $f^{-1}(b\operatorname{Cl}(f(\mathcal{A}))) \subseteq b\operatorname{Cl}(f^{-1}(f(\mathcal{A}))) = b\operatorname{Cl}(\mathcal{A})$. Since f is surjective, $f^{-1}(b\operatorname{Cl}(f(\mathcal{A}))) \subseteq f(b\operatorname{Cl}(f(\mathcal{A})))$. From Theorem 3.14 (2), f is IVF f-irresolute closed.

(2)
$$\Leftrightarrow$$
 (3): Clearly, it is proved from $f^{-1}(b\operatorname{Cl}(\mathcal{B})) \subseteq b\operatorname{Cl}(f^{-1}(\mathcal{B})) \Leftrightarrow f^{-1}(1-b\operatorname{Int}(1-\mathcal{B})) \subseteq 1-b\operatorname{Int}(1-f^{-1}(\mathcal{B})) \Leftrightarrow 1-f^{-1}(b\operatorname{Int}(1-\mathcal{B})) \subseteq 1-b\operatorname{Int}(f^{-1}(1-\mathcal{B})) \Leftrightarrow f^{-1}(b\operatorname{Int}(1-\mathcal{B})) \supseteq b\operatorname{Int}(f^{-1}(1-\mathcal{B})).$
(2) \Leftrightarrow (4): Follows Theorem 3.17, it is trivial.

Theorem 3.19 A map $f:(X,\tau)\to (Y,\sigma)$ is IVF b-irresolute closed if, and only if for each fuzzy set \mathcal{B} of Y and each IVF b-open set \mathcal{A} , $f^{-1}(\mathcal{B})\subset \mathcal{A}$, there exists an IVF b-open set \mathcal{C} such that $\mathcal{B}\subset \mathcal{C}$ and $f^{-1}(\mathcal{C})\subset \mathcal{A}$.

Proof: Let $\mathcal{B} \in I^Y$ and let \mathcal{A} be IVF *b*-open such that $f^{-1}(\mathcal{B}) \subset \mathcal{A}$. Then $f(\mathbf{1} - \mathcal{A})$ is IVF *b*-closed. We put $\mathcal{C} = \mathbf{1} - f(\mathbf{1} - \mathcal{A})$. Then \mathcal{C} is IVF *b*-open, $\mathcal{B} \subset \mathcal{C}$ and $f^{-1}(\mathcal{C}) = f^{-1}(\mathbf{1} - f(\mathbf{1} - \mathcal{A})) \subset f^{-1}f(\mathcal{C}) \subset \mathcal{C}$. Conversely, let \mathcal{A} be IVF *b*-closed. Then $\mathbf{1} - \mathcal{A}$ is IVF *b*-open and $\mathbf{1} - \mathcal{A} \supset f^{-1}(\mathbf{1} - f(\mathcal{A}))$. According to the assumption there exists an IVF *b*-open set \mathcal{C} such that $\mathbf{1} - f(\mathcal{A}) \subset \mathcal{C}$ and $f^{-1}(\mathcal{C}) \subset \mathbf{1} - \mathcal{A}$. Hence, $f(\mathcal{A}) = \mathbf{1} - \mathcal{C}$ is IVF *b*-closed.

The proof of the following Theorems are follows from Theorem 3.1, Theorem 3.8 and Theorem 3.9.

Theorem 3.20 A map $f:(X,\tau) \to (Y,\tau)$ is IVF b-irresolute closed and IVF b-irresolute if, and only if $f(b\operatorname{Cl}(A)) = b\operatorname{Cl}(f(A))$ for each $A \in I^X$.

Theorem 3.21 A map $f:(X,\tau)\to (Y,\tau)$ is IVF b-irresolute open and IVF b-irresolute if, and only if $f^{-1}(b\operatorname{Cl}(A))=b\operatorname{Cl}(f^{-1}(A))$ for each $A\in I^Y$.

Theorem 3.22 A map $f:(X,\tau)\to (Y,\tau)$ is IVF b-irresolute open and IVF b-irresolute if, and only if $f^{-1}(b\operatorname{Int}(A))=b\operatorname{Int}(f^{-1}(A))$ for each $A\in I^Y$.

Theorem 3.23 Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be mappings. Then the following statements are true:

- 1. If f and g are IVF b-irresolute open (closed), then $g \circ f$ is IVF b-irresolute open (closed).
- 2. If $g \circ f$ is IVF b-irresolute and g is IVF b-irresolute open (closed) and injective, then f is IVF b-irresolute.
- 3. If $g \circ f$ is IVF b-irresolute open (closed) and g is IVF b-irresolute and injective, then f is IVF b-irresolute open (closed).

- 4. If $g \circ f$ is IVF b-irresolute and f is IVF b-irresolute open (closed) and surjective, then g is IVF b-irresolute.
- 5. If $g \circ f$ is IVF b-irresolute open (closed) and f is IVF b-irresolute and surjective, then g is IVF b-irresolute open (closed).

Proof: Follows from the respective definitions.

Definition 3.5 A bijective mapping $f:(X,\tau)\to (Y,\sigma)$ is called a IVF b-homeomorphism if both f and f^{-1} are IVF b-irresolute.

Theorem 3.24 For a bijective map $f:(X,\tau)\to (Y,\sigma)$, the following statements are equivalent:

- 1. f is a IVF b-homeomorphism;
- 2. f^{-1} is a IVF b-homeomorphism;
- 3. f and f^{-1} are IVF b-irresolute open (closed);
- 4. f is IVF b-irresolute continuous and IVF b-irresolute open (closed);
- 5. $f(b\operatorname{Cl}(A)) = b\operatorname{Cl}(f(A))$ for each $A \in I^X$;
- 6. $f(b\operatorname{Int}(A)) = b\operatorname{Int}(f(A))$ for each $A \in I^X$;
- 7. $f^{-1}(b\operatorname{Int}(\mathcal{B}) = b\operatorname{Int}(f^{-1}(\mathcal{B}))$ for each $\mathcal{B} \in I^Y$;
- 8. $b\operatorname{Cl}(f^{-1}(\mathcal{B})) = f^{-1}(b\operatorname{Cl}(\mathcal{B}))$ for each $\mathcal{B} \in I^Y$.

Proof: (1) \Rightarrow (2): It follows immediately from the definition of an IVF *b*-homeomorphism and the relation $(f^{-1})^{-1} = f$.

- $(2) \Rightarrow (3)$: It follows from Theorem 3.17.
- $(3) \Rightarrow (4)$: It follows from Theorem 3.17.
- $(4) \Rightarrow (5)$: It follows from Theorem 3.17 and Theorem 3.20.
- (5) \Rightarrow (6): Let $\mathcal{B} \in I^Y$. Then $f(b\operatorname{Int}(\mathcal{B})) = \overline{1} (f(b\operatorname{Cl}(\overline{1} \mathcal{B}))) = \overline{1} (b\operatorname{Cl}(f(\overline{1} \mathcal{B}))) = b\operatorname{Int}(f(\mathcal{B}))$.
- (6) \Rightarrow (7): Let $\mathcal{B} \in I^X$. According to the assumption $f(b\operatorname{Int}(f^{-1}(\mathcal{B}))) = b\operatorname{Int}(f(f^{-1}(\mathcal{B}))) = b\operatorname{Int}(\mathcal{B})$. Thus $f^{-1}(f(b\operatorname{Int}(f^{-1}(\mathcal{B})))) = f^{-1}(b\operatorname{Int}(\mathcal{B}))$. Hence $b\operatorname{Int}(f^{-1}(\mathcal{B})) = f^{-1}(b\operatorname{Int}(\mathcal{B}))$.
- $(7) \Rightarrow (8): \text{ Let } \mathcal{A} \in I^Y. \text{ Then } b \operatorname{Cl}(f^{-1}(\mathcal{A})) = \overline{1} (f^{-1}(b\operatorname{Int}(\overline{1} \mathcal{A}))) = \overline{1} (b\operatorname{Int}(f^{-1}(\overline{1} \mathcal{A}))) = f^{-1}(b\operatorname{Cl}(\mathcal{A})).$
- $(8) \Rightarrow (1)$: It follows from Theorem 3.17 and Theorem 3.21.

References

- 1. Al Ghour, S., Princivishvamalar, J. and Rajesh, N., Interval-valued fuzzy b-open sets (submitted).
- 2. Al Ghour, S., Princivishvamalar, J. and Rajesh, N., Interval-valued fuzzy b-continuous functions (submitted).
- 3. Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- Gorzalczany, M.B., A method of inference in approximate reasoning based on interval-valued fuzzy sets, J. Fuzzy Math. 21 (1987), 1-17.
- Mondal, T.K. and Samanta, S.K, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math., 30(1) (1999), 23-38.
- 6. Zadeh, L.A., Fuzzy sets, Information and Control, 8 (1965), 338-353.

 $Department\ of\ Mathematics\ and\ Statistics$ Jordan University of Science and Technology Irbid 22110, Jordan.

E-mail address: algore@just.edu.jo

and

Department of Mathematics PGP College of Engineering and Technology Namakkal 637207 Tamilnadu, India $E\text{-}mail\ address: \verb|nirmala.karthik| 143@gmail.com|}$

and

 $Department\ of\ Mathematics$ Arignar Anna Govt. Arts College Namakkal -637 001 Tamilnadu, India $E ext{-}mail\ address: shanthiwini2005@yahoo.co.in}$

and

Department of Mathematics Rajah Serfoji Govt. College Than javur-613005 $Tamilnadu,\ India.$ $E\text{-}mail\ address: \verb|nrajesh_topology@yahoo.co.in||$

and

 $Department\ of\ Mathematics$ Government Arts College for Women Orathan adu-614625 $Tamilnadu,\ India.$

 $E ext{-}mail\ address:$ brindamithunraj@gmail.com