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On Algebraic Independence of Some Continued Fractions

Sarra Ahallal and Ali Kacha

abstract: In the present paper, we prove the algebraic independence of a finite number of real continued
fractions that have partial quotients that increase rapidly. We then use a general Liouville criteria to justify
the algebraic independence of limits in some real series. We note that these results extend some work of
Bundschuh, and we use a new and simple method.
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1. Introduction

Many results in transcendental number theory are proved by constructing a sequence of sufficiently
good approximations (perhaps by rational numbers) or possibly a sequence of polynomials with integer
coefficients that take small values at a number that we study.
So, in 1844, Liouville [8] has explicitly constructed the first example of transcendental numbers. We recall
that the transcendence of the continued fractions having partial quotients that increase rapidly have been
studied by several authors, such as W. W. Adams [1], P. Bundschuh [3], A. Durand [4], W. Lianxiang [7],
G. Nettler [10], T. Okano [11].
We also note that the transcendence of some power series with rational or integer coefficients or p-adic
numberss are given by some authors, see [6], [13].

Let A = [a0; a1, a2, · · ·, an, ...] and B = [b0; b1, b2, · · ·, bn, ...] be two real continued fractions. In 1984,
P. Bundschuh [3] proved that A and B are algebraically independent if there exists a reel number r > 1
such that

r−1an ≥ bn ≥ an−1
n−1 for all n ≥ 2.

In particular, the six numbers A, B, A ± B, and AB±1 are transcendental.
Similarly, A. Kacha (see [5]) in 1993 has improved Bundschuh result by showing first that if α is a real
constant > 3 such that for all n ≥ 2

r−1an > bn > aα
n−1, (1.1)

then for any non-constant polynomial P ∈ Z[X ] of total degree d <
α − 1

2
, P (A, B) is a transcendental

number.
To prove this result, he used the approximation theorem of Roth [12]. Then he has deduced the algebraic
independence of A and B if in the relation (1.1) the exponent of an−1 is an increasing sequence of real
numbers αn−1 which tends to infinity. He also proved the transcendence of the six numbers A, B, A ± B,
and AB±1 in his recent paper [2].

A first aim in the present note is to prove the algebraic independence of a finite family of real num-
bers which are defined by their continued fraction expansions. Our work also generalizes a work of
Bundschuh in [3] from two numbers to an arbitrary number of real numbers.
We use a general Liouville type algebraic independence criteria due to Adams [1]. We notice that our
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method is new and simple. The following theorem is a criterion of the algebraic independence over Q

that will be used for the case of continued fractions.

Theorem 1.1. [1]. Let θ1, θ2, ..., θm be m real numbers. Assume that we are given integers Pn,j ; Qn,j for

j = 1, .., m such that limn→+∞ Qn,j = +∞. Assume that for 2 ≤ j ≤ m,

lim
n→+∞

|θj−1 − Pn,j−1/Qn,j−1|

|Aj − Pn,j/Qn,j|
= 0. (1.2)

Further assume that for all j, 1 ≤ j ≤ m and all positive integers d there is an n0 = n0(d) such that for

all n ≥ n0,

0 < |θj − Pn,j/Qn,j| < (Qn,1Qn,2...Qn,j)−d. (1.3)

Then, θ1, θ2, ..., θm are algebraically independent.

A second aim of this paper is also to prove the algebraic independence of limits of some real series.

2. Algebraic independence of a family of continued fractions

We study the algebraic independence over Q of real numbers by using their expansions as continued
fractions. Let A1, A2, ..., Am be m real numbers (m ≥ 2) which are defined by the simple continued
fractions

Aj = [a0,j ; a1,j , a2,j, ...].

For all 1 ≤ j ≤ m and n ≥ 0, denote the convergents of Aj by
apn,j

aqn,j
and

An,j = [a0,j ; a1,j , · · ·, an,j ] =
apn,j

aqn,j
.

Our first main result is.

Theorem 2.1. Let (an,j) be as before, we suppose that there exist a real number r > 1, (βn) a real

sequence > 1 which tends to +∞ such that







r−1an,j−1 > an,j , 2 ≤ j ≤ m,

an+1,m > a
βn

n,1 for all n ≥ 1.

(2.1)

Then A1, A2, ...Am are algebraically independent over Q.

Remark 2.2. For the proof of Theorem 2.1, we can assume that the sequence βn is increasing. Because

if it is not, we can take γn = inf(βp, p ≥ n) which is increasing since βn tends to infinity. Further, the

hypothesis bn > a
γn−1

n−1 implies that bn > a
βn−1

n−1 .

In order to prove Theorem 2.1, we will first require a preliminary Lemma.
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Lemma 2.3. (i) For all 1 ≤ j ≤ m, we have

1

2qn,jqn+1,j
< |Aj − An,j | <

1

qn,jqn+1,j
.

(ii) If r−1an,j−1 > an,j for all j = 2, ..., m and n ≥ 1, then we get

qn,j−1 > r
n
2 qn,j > qn,j. (2.2)

(iii) If an,j > a
βn−1

n−1,j for all n ≥ 2, then for any ε > 0 we obtain

qn,j < a
β1

β1−1 +ε

n,j ,

for all sufficiently large n.

Proof. (i) See [10].

(ii) We prove it as in Lemma 2 of Bundschuh [3].

(iii) We have

qn,j = an,j qn−1,j + qn−2,j < (an,j + 1) qn−1,j

<

n
∏

k=1

(ak + 1) .

Which becomes

qn,j <
n
∏

k=1

(

1 +
1

ak,j

) n
∏

k=1

ak,j .

However, for all k ≥ 1 we get

ak+1,j > a
β1

k,j and a1,j ≥ 2 then ak,j > 2βk−1
1 .

Hence, there exists a positive real constant C(β1) such that

n
∏

k=n1

(

1 +
1

ak,j

)

<

n
∏

k=1

(

1 +
1

2βk−1
1

)

< C (β1) .

Finally, we obtain

aqn,j < C (β1)

n
∏

k=1

ak,j

< C (β1) a
1+ 1

β1
+ 1

β2
1

+...+ 1

β
n−1
1

n,j .

Then, for any ε > 0 we get

aqn,j < C (β1) aa

1

1−

1
β1

n,j < a
β1

β1−1 +ε

n,j

for all sufficiently large n. �

Proof of Theorem 2.1. (i) We will note bellow β(n) = βn. For the proof of Theorem 2.1, we need
only verify the hypotheses of Theorem 1.1. We have

|Aj−1 − An,j−1| <
1

qn,j−1qn+1,j−1
.
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By using (i) and (ii) of Lemma 2.1, qn,j−1 > rn/2qn,j and
1

2qn,jqn+1,j
< |Aj − An,j|, the inequality above

becomes

|Aj−1 − An,j−1| <
2

rn/2qn,jqn+1,j
<

2

rn/2
|Aj − An,j |.

So, we obtain

|Aj−1 − Pn,j−1/Qn,j−1|

|Aj − Pn,j/Qn,j|
<

2

rn/2
,

which tends to zero by hypothesis. To verify (1.3) of Theorem 1.1, we use

|Aj − An,j | <
1

qn,jqn+1,j
<

1

an+1,j
.

Remark 2.4. We recall that the hypotheses an+1,m > a
βn

n,1 and an,j−1 > an,j for all 2 ≤ j ≤ m, one gets

an+1,j > a
βn

n,l, for all 1 ≤ l ≤ m.

From this remark, we deduce that

|Aj − An,j | <
1

a
βn

n,l

<
1

∏j
l=1 a

βn/m
n,l

.

By using (iii) of Lemma 2.1, for any ε > 0 one find

|Aj − An,j | <
1

∏j
l=1 q

β1−1

m(β1+ε(β1−1))
βn

n,l

,

for all sufficiently large n.

We then tend ε to zero in the last inequality. On the other hand, one has limn→+∞
β1−1
mβ1

βn = +∞, then

for all positive integers d there is an n0 = n0(d) such that for all n > n0 we have β1−1
mβ1

βn > d. So, we get

0 < |Aj − Pn,j/Qn,j| < (Qn,1...Qn,j)−d.

which completes the proof of Theorem 2.1.

Example. Let







a0 = b0 = 0, a1 = b1 = 1,
a2 = 9, b2 = 3,

r = 1, 5



























an = 3
(2n)!

2n , n ≥ 3

bn = 3
(2n)!

2n+1 , n ≥ 3

βn = (2n − 1)(n + 1), n ≥ 1.

By applying Theorem 2.1, we deduce that the real numbers A1, A2, ..., Am are algebraically independent.
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3. Algebraic independence of some series

Theorem 3.1. Let g1, ..., gm be m distinct integers ≥ 2, such that gj−1 > 2gj for all 2 ≤ j ≤ m, δ a real

number > 0. Let

θj =

+∞
∑

n=1

g−an

j

for all 1 ≤ j ≤ m, where an+1 = a1+δ
n for n ≥ 1 and a1 = 3. Then, the real numbers θ1, θ2, ..., θm are

algebraically independent.

Proof. From the definition of θj , it is clear that these series are convergent. In order to prove Theorem
3.1, it suffices to verify the hypotheses of Theorem 1.1. To this end, consider (

pn,j

qn,j
) = (

∑n
k=1 g−ak

j ) a

sequence of rational approximations of θj which is expressed in reduced form. So we obtain qn,j = gan

j

and
∣

∣

∣

∣

θj−1 −
pn,j−1

qn,j−1

∣

∣

∣

∣

=
1

g
an+1

j−1

(

1 +

+∞
∑

k=n+1

1

g
ak+1−an+1

j−1

)

.

Which yields
1

g
an+1

j−1

<

∣

∣

∣

∣

θj−1 −
pn,j−1

qn,j−1

∣

∣

∣

∣

<
2

g
an+1

j−1

. (3.1)

We deduce from (2.3) that θj is a Liouville number, so it is a transcendental number. Therefore, (3.1)
and gj−1 > 2gj imply that

∣

∣

∣

∣

θj−1 −
pn,j−1

qn,j−1

∣

∣

∣

∣

<
2

(2gj)an+1
<

1

2an+1−1

∣

∣

∣

∣

θj −
pn,j

qn,j

∣

∣

∣

∣

.

It follows that
∣

∣

∣

∣

θj−1 −
Pn,j−1

Qn,j−1

∣

∣

∣

∣

/

∣

∣

∣

∣

θj −
Pn,j

Qn,j

∣

∣

∣

∣

<
1

2an+1−1

which tends to zero. Since we have,
∣

∣

∣

∣

θj −
pn,j

qn,j

∣

∣

∣

∣

<
2

g
an+1

j

,

to verify (1.3) of Theorem 1.1, it suffices to prove that for all n ≥ n0(d),
g

an+1

j > (gan

1 ...gan

j )d. We can see that

lim
n→+∞

g
an+1

j

(g1...gj)an
= +∞.

This equality is true since one has

an+1 ln gj

an ln(g1...gj)
= aδ

n

ln gj

ln(g1...gj)
= 3δ(1+δ)n−1 ln gj

ln(g1...gj)
,

which tends to infinity. Hence, for any positive integer d there exists an n0 = n0(d) such that, for all
n ≥ n0

ln(g
an+1

j ) > d ln(g1...gj)an = ln(gan

1 ...gan

j )d.

Which yields
g

an+1

j > (gan

1 ...gan

j )d.

Finally, we obtain
∣

∣

∣

∣

θj −
pn,j

qn,j

∣

∣

∣

∣

<
2

(gan

1 ...gan

j )d
.

Which completes the proof of Theorem 3.1. �
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