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Stability Analysis of Nonlinear Riemann-Liouville Fractional Differential Equations
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ABSTRACT: In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero
solution to a kind of nonlinear fractional differential equations with the Riemann Liouville fractional derivative
of order @ € (n —1,n) by using Krasnoselskii’s fixed point theorem and the Banach contraction mapping
principle in a weighted Banach space. The results obtained here extend the work of Li and Kou [6].
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1. Introduction

Study of fractional differential equations appears from a variety of applications including in various
fields of science and engineering such as applied sciences, practical problems concerning mechanics, the
engineering technique fields, economy, control systems, physics, chemistry, biology, medicine, atomic
energy, information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability and
instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional differential equations with
and without delay have received the attention of many authors, see [1]-[8], [10], [11] and the references
therein.

In [6], the authors have used the Schauder fixed point theorem and the Banach contraction mapping
principle for study the stability of solutions for nonlinear FDEs with the Riemann-Liouville fractional
derivative of order a € (n — 1,n)

DS—%—Q; (t) =/ (tvx (t))’ t >0,
DoTFz (07) = by, k=1,2,....n.

Inspired and motivated by the above work, we concentrate on the stability of solutions for nonlinear
FDEs with the Riemann-Liouville fractional derivative of order « € (n — 1,n)

(
{ Dhefe®s oz =sita). 120 "
B @) =gt O)lgr = b k=1,2m, |

where f,g : RT x R — R are given continuous functions and f (¢,0) = g (£,0) = 0. We first establish
the equivalence between the IVPs for nonlinear FDEs and the Volterra integral equation on an infinite
interval. Then, we introduce a special weighted Banach space and utilize the Krasnoselskii fixed point
theorem and the Banach contraction mapping principle to investigate the stability to solutions of IVPs
(1.1). The results obtained here extend the work of Li and Kou [6].

This paper is organized as follows. In Section 2, we present some preliminaries needed in later sections.
In Section 3, we give and prove our main results on stability. In Section 4, we give an example to illustrate
our main results.
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2. Preliminaries

In this section, we introduce several elementary definitions and lemmas to be applied throughout
the paper. Let R = [0,4+00) and Cy,— (RY) = {z : RT = R, " “z € C(R")}. For any b > 0, we
denote Cp_q ([0,0]) = {z: [0,0] = R, t" 2z € C([0,b])}, Cri—a ([0,0]) is a Banach space equipped with
the norm

llc, o = 1" lloo.n = max [z @)
Definition 2.1 ([3]). The left-side fractional integral of order o > 0 of a function x : RT — R is given
by
1

! a—1
m/o (t—9)"" x(s)ds,

provided the right-side is pointwise defined on RT.

Definition 2.2 ([3]). The left-side Riemann-Liouville fractional derivative of order o > 0 of a function
z:RT — R is given by

D6¥+x(t):ﬁ (%)n/ot(t—s)x(s)ds, n—1<a<n,

provided the right-side is pointwise defined on RT.

In [3] and [4], the equivalence between the IVPs for FDEs (1.1) and the Volterra integral equation
on a finite interval has been proven in detail. Similarly, we have the following lemma.

Lemma 2.3. Let f:RT x R — R be a function such that f (.,z) € Cp_o (RT) for any z € Cp—o (RT).
If x € C,_o (RT), then x is a solution of (1.1) if and only if it satisfies the Volterra integral equation

1 t a—1
+ m/o (t—s) f(s,z(s))ds, t >0. (2.1)

Lemma 2.4 ([6]). Let

.t (t)
E:{xeCna(R+), t%m:o},

with the norm

Then, (E,||.||) is a Banach space.

Lemma 2.5 ([4]). Let Q be a subset of a Banach space E. Then, § is is relatively compact in E if the
following conditions are satisfied

(i) {t"2z () / (1 + ") : z € Q} is uniformly bounded;

(i1) {t" 2 (t) / (L + ") 1 2 € Q} is equicontinuous in RT;

(ii7) {t"~“x (t)/ (1+t"T') 1z € Q} equiconverges to 0 as t — oo, i.e., for any given € > 0, there
exists T' > 0, such that for all x € Q and t > T, it holds

[t (t) ) (1+ )| <e.

Theorem 2.6 (Banach'’s fixed point theorem [9]). Let Q be a non-empty closed convex subset of a Banach
space (E||.|]), then any contraction mapping ® of Q into itself has a unique fized point.
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Theorem 2.7 (Krasnoselskii [9]). Let Q be a non-empty bounded closed convex subset of a Banach space
(E,|I.Il). Suppose that A and B map Q into E such that

(1) Ax + By € Q for all x,y € Q,

(1) A is continuous and compact,

(1i1) B is a contraction.
Then there is a © € Q with Ax + Bx = x.

Definition 2.8. The trivial solution x = 0 of (1.1) is said to be stable in a Banach space E, if for any
given & > 0, there exists § = & (¢) > 0 such that for all t > 0, Y_1_, |bx| < & implies that the solution
z(t) =z (t,b1,...,bx) satisfies ||z| < e.

3. Main results

This section is devoted to proving the stability of solutions to IVPs for nonlinear FDEs with the
Riemann-Liouville fractional derivative.

Theorem 3.1. Let f: RT xR = R, g: RT xR = R be continuous functions such that f (.,x),g(.,x) €
Ch—a (RT) for any x € Cp_q (RT), f(£,0) =g (¢,0) = 0. Assume that
(H1) There exist two nonnegative continuous functions p and r defined on R™, such that

|z (8)]
Pl < ({10, 1)
where p is bounded on RT and r (t) < t.

(H2) There exists nonnegative continuous function q defined on R™, such that ||q|| ., = sup,> |q ()| <
1, and

lg (&, (t) — g (ty ()] < q(t) |z () —y @) (3.2)
If
Milpl Bla=n+1a)
I'(a)

lalloo +

where My > sup;>g ‘#’;1‘ when 0 < B <n and ||p|l, = sup;>q [p (t)]. Then, the trivial solution x = 0
of (1.1) is stable in the Banach space E.

Proof. For any given € > 0, our aim is to prove the existence of § > 0 such that Y;_, |bg| < & implies

that ||z|| <e. Let
1 [ b
1> = B —
= A (;F(a—k—i—l) 1)’

where
M |pll, Bla—n+1,a)

I ()
Consider the non-empty bounded closed convex subset Q C E where Q = {x € E, ||z]| <1}. We define
two mappings A and B on 2 as follows

A=1—llgll -

o) () = i [ =9 P ) as (3.3)
and
n bk o
(th)(t):kZ:lmt gtz (). (3.4)
Note that
lg(tz(t)] = lg(t,(t)) —g(t,0)+g(t,0)|
< lg(t,z(t) —g(t0)|+]g(t0)
< q®) |z < llalls |z ()]
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Therefore
tn—()l n—o
o o )] < ol [ o 0] (5.5)
Thus
t’ﬂfa
TIng@x@ﬁ<HﬂmMW (3.6)
Here, we divide the proof into four steps.
Step 1. We first prove that A and B maps () into E.
What we need to verify Az, Bx € C,,_, (RT) and
" (Ax) (t) . " (Bx)(t)
e Tt i 1l 0.
Note that (Az) (1) .
e (Az) (¢ 1 tn—a o1
= t— d
o = e [ e 9 ) ds
and
e (Ba) (t) Z”: by Tt g (ke ()
Lttt D (a—k+1) 1+ 1+ ¢ntt

“g(t,z(t))

First, it is obvious that each term of 1+t7"+1

and the following formula

> i
_ n+1’
k:lF « k+1 1+¢

are continuous on R*, we only prove

1 t yn—a o
r(a)/o e (=) (5w (s) ds € C (R).

Note that t"~< (Ax) (t) is continuous at ¢y = 0. We consider the right-side continuity of

14 ¢ntt

L ot
w7/ (6= 5" f (s, (5)) ds,

on the interval (0, c0).
Let t > to, for given e, there exists §; = min {d2, 203,04} > 0, such that 0 < t — ¢y < 41, our aim is to
prove

/ ﬂ(t_s)a*lf(s,x(s))ds—/Oﬂ@ —8)" 7 f (s, (s))ds| < ¢
B 0

1 —l—t"'H 1 _|_tn+1

‘We know that

/ e (t—s)""" f (s, (s))ds — / L (to = )" [ (s,2(s)) ds
; 0

1+ttt
fo [ a—1 tg_a a—1
< | W(t_s) W(t 0—5) f(s,2(s))ds

/t s f (s, (s)) ds

to
< t— Ot*l_ t _ a—1 a—nd
<N e O, ororsn || (g €= =) ) soas
t n—a a1l aen
+ | ———(t—29)" s "ds|.

4 Lttt
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We analyze the two terms in brackets, respectively.
Clearly, we have

e (t—tg)”

t —
tn « a—1 _ B
t— a=n o < pa—n
/t t—5)"""s §S o a(l+ )

o Lttt

by part integral. Thus, for the given e, there exists do > 0, such that for 0 < t — ty < d2, we have

t n—o 1 e
—— (t—s8)" s "ds < =, 3.7
| e s < (37)
Now we analyze the rest. It is easy to show
L getgeng = Y g 1
0 1+tn+1(t_s) S 8_1_|_tn+1 (OZ—TL—I— ,a). (38)
Thus, for the given g, there exists a small enough d3 > 0 such that for 0 < ¢t < d3, we have
t n—o
t a—1 _a—n €
Let h(t) = % (t—s)*""' t > s, we have
1 _ _
B (t) = 7{[71—& e =) (= 1) (t—5) 2t"’("} 14 ¢+
R o (U L DR LRI ( )

e o ]
n—a—1 —s a—2
= t (1 +(ttn+1))2 [(n — 1)t — (TL — a) s + (n _ 1)tn+2 . (n o a) st
—(n+1)t" 4 (n+1) st
A 5)(!72 n+1 n+1
= e e DT = a5+ [0 - 1) - 2] )
gn—a—1 (t _ S)a72

(14 nt1)?

[(a=1D)t"™ +(a—1)]s
>0

)

through calculation, thus h is a monotonous increasing function on R*. We divide the interval [0, t] of
s into the small enough interval [0, d3] and the other interval [d3, %], together with (3.9), we get that

% e a—1 tg_a a—1
— (t—s5)" = —L— (tg— )" | s" s
/0 <1+t"+1( ) 1+tg+1(0 ) >

5 - 5 -
s a—1 n—a : tg “ a—1 n—«a
< (t—s)"" " s" %ds — g (to—8)" " s"%ds
0 0

— +
IS 1+tg
03 sn—a el
<2 / % (9 n+81) s" " %ds
0 1446

< (3.10)

o
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Meanwhile, we have

/to tn—oz (t )(171 tgfa (t )(171 n_ad
— — S - — S S S
5y \L+¢nHT 14t
to tnia a—1 tg_a a—1
—(t—8) T = (tg—s)"|d
/53 (1+tn+1( 2 1+t8+1(0 °) ) ’

J— t —_
ey G

t— 5 a—1 0 (4 — 5 a—1
1+ ¢ntl ( 3) 1t t'(r)L—‘,—l (to 3)
which implies that there exists d4 such that for 0 < t — tg < d4, we have
to n—ao n—o
t a—1 t() a—1 — €
— (t-— -0 (tg— nmads <
/53 <1+t”+1( 5) 1+tg+1(° 2 )5 =7
Then, (3.10) together with (3.11) leads to

/ Y i L T T
——(t—s ————(to—s s s < <.
o \ 14 14ttt =2

Therefore, by (3.12) and (3.7), we complete the proof of the right-side continuity of

1 tyn—a (t— s)a71
I'(a) /o 1+ o+l f(s,x(s))ds,

n—o
< o3

t'n.—()l

o (t — )
1+ tntt

+

).

(3.11)

(3.12)

ie., t"(Ax) (t) is right-continuous on (0,400). Similar procedure can be applied on left-continuous

discussion. Next, we only prove

fim £ A g £ BB

t—o00 1+ tn+l t—00 1+ tn+l =0.

By (3.1), we have

14 ¢ntt

< [ (o (22))

— —1 —
<ol [ ),
0

1 [t (t—s)* !
() /0 f(s,x(s))ds

~ I'(a) 1+ ¢ntl 1+ sntl
t yn—a A
B
T'(a) Jo 14 ¢t

By (3.8), we obtain the result

tn (Az) @] _ zllllplee Bla—n+1,0) |  t*
L+tntl |~ I'(a) 1+ttt
l _ «
CUpleBla—ntro)| = |,
I'(a) 1+ttt
as t — 0.
By (3.2) and (3.5), we get
t"= (Bzx) (t) Z": by tn—k g (t,x (t))
1+ ¢l T & Tle—k+ 1)1+t 1+ n+l
n bk tnfk n—ao
< — ()| >0,
= ;F(a—/wrl) Tt | T 1l ‘1+t"+1x( )'

(3.13)

(3.14)
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as t — oo.
Step 2. We prove that Ax + By €  for all =,y € Q.

It is easy to get sup;> ’ 1—+ii+1 < M; when 0 < § < n, and with (3.13) and (3.14) we have
(e (A2) (1) | 170 (By) (1)
14 ¢ntl 1+ ¢+l
[zl Pl " by n—k
< M ——XB(q — 1 .
=M (a—n+ ,oz)+212118 e keIt + [lgll oo 1]l
Mllpllo Blo—n+1,0) be
= = M L
B I (a) +§F(a—k+1) 1+ llalle
Therefore
4z + By
S b M; [lpll,, B(a —n+1,0)
< " M 0o !
_;P(a—kﬂ) 1+<|q”°°+ T (a)
<L

Hence Az + By € Q for all z,y € Q.

Step 3. We show that A is continuous.

According to the definition of continuity for a mapping, let {2} C E, for the given ¢, there exists
N > 0 such that for any k > N implies ||z — x| < &, our aim is to prove ||Axy — Azx| <e.

In view of limg_, o ||xx — 2|| = 0, there exists K > 0 such that ||zx|| < K (k=1,2,...) and ||z] < K.
By virtue of (3.8) and (3.1), for any k, we have

Az — Ax||
 gup | P AR () 1 (Ax) ()

>0 1+tn+1 1+tn+1

1 [t (t—s)!

= sup s / [ (v () = f (5, () ds

2K |lp|| N
<2 W pa—n+1,a)|——|. 1
S TT(a) Blomntle) |y (3.15)

From the above formula, because the fact (3.15) tends to zero at infinity and continuous dependence at
t = 0. Thus, for the given ¢, there exists T > 0 and J5 > 0, such that

1 tyn—a (t— S)afl
I () /0 Tt (52 () = f (s,2(s))] ds

<e t>T, (3.16)

and

1 tyn—a (t — S)a—l
I'(a) /0 1+ (nt1 [f (s,25 (s)) — f (5,2 (s))]ds

Now we analyze the case when t € [d5, T]. For the above k > N,

<e, 0<t <6 (3.17)

1 tyn—a (t— s)a71
I'(a) /0 Tt (k) = fs,2(s))] ds

Fgnme(t —5)*7!
14 ¢ntt

< sup [f (5,25 (8) — (5,2 (8) —— sup / ds

s€[0,T] T (@) tefss,1]

IN

sup |f (s, 2k (s)) = f (s, 2 (s))].

ol («) s€[0,T]
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In view of limy o |75 — z|| = 0, we know limy— o0 SUpsepo, 77 |7k (8) — 2 (s)] = 0 and f is uniformly

continuous on any compact subsets. Thus, we have

sup]|f(s 2k (8)) — f(s,z(8))] — 0, k — oo.

sel0,T
Therefore 1
1 tyn—a (4 _ g\~
F(Oz) A 1:_#:,—}-2 [f (S,.’Ek (8))—f(8,$(8))] ds < e, 55 StST,

together with (3.16) and (3.17), we obtain [Axy — Az|| <e, i.e.,, mapping A is continuous.
Step 3. We prove mapping A is compact.
Let €2 C E be a bounded set. For any = € , there exists [ > 0 such that ||z| <. Now we only need

Tr¢n+t <M
when 0 < 3 < n, together with (3.13), we know {t"~* (Az) (t) / (1 4 t"**)} is uniformly bounded in E
and equiconvergent at infinity.

Finally, we shall verify {t"~“ (Az)(t)/(1+t"*1)} is equicontinuous on R*. For any z € Q2 and
t1,12 € RJr, t1 < ta,

to utilize Lemma 2.5 to prove that A (Q2) is a relatively compact set in E. In fact, SUpP;>0 ’

ty"* (Az) (t2) _

t (Az) (1)

145t 1+ ¢ptt
S n - n
;F(a—n—k) IR L
1| [ (=)
4 s,x(s))ds
I (a) /0 145+t fs2()
Lo (=)
4 s,x(s))ds
() /0 14ttt fs2()
S n - n
I;F(a—n—k) L+pth 1t
1 e (P
+If (s,2(s)lle, a([0:62]) T () / : 14t 5 "ds
2
1 N (T
+If (s,2(s)lle, a([0:41]) T () / - 14t 5 "ds
1
< 2T
;F(a—n—k)‘l—i—t;rl 14t
B(a—n+1,a) s ¢
+ ||f(57$(5))||cn,a[0,t2] T (o) 14t - 1+t - 0,
2 1

as t; — to. That is to say that A () is equicontinuous. Hence, mapping A is compact.

Step 4. We prove mapping B is contraction.
For all z € Q, from (H2), we have

CLO0 OO e ) - sy )
< il | g [l 0 = 0.

Therefore
" (Bx) (t)

T (By) ()

14 7T

1+ tntt

] < llall 1z — vl
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Thus
Bz — Byl < gl [z —yll-

Hence, the operator B is a contraction.

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus the operator A + B has a
fixed point in €.

Now, we consider the stability of (1.1). For any given € > 0, together with (3.1) and (3.6), there exists

A
0<0< s,
M
Z T'(a— li—i—l)
such that > _, |bg| < § implies

T (Ax) (1) "7 (By) (1) ‘

[[]| = sup
>0

14ttt 1ttt
- tn t" g (t, @ (t))
<o kzzlr a—k+1 Y IS o e
1 e (f— ) e
d

e A L
<3 s+ gl fal + 2 L 1 )

2T (a—k+1) T ()
<ee.

Then, x = 0 is stable in Banach space E. ]

Remark 3.1. The implication of the expression

" (t)
im ——— =
t—oo 1 4+ tn+1

3

in the definition of the Banach space E means that x = 0 is weighted asymptotically stable in the Banach
space E.

Moreover, we obtain the following theorem using the Banach contraction mapping principle.

Theorem 3.2. Let f :RT xR = R, g: RT x R — R be continuous functions such that f (.,x),q(.,x) €
Cr—o (RT) for any x € C,_o (RT), f(¢,0) =g (¢,0) =0. Assume (H2) and the following hypotheses

(H3) |f<t,a:<t>> ~F ) < T2l -y @) 20, 2y e R

+ t"+1
tnfa (t _ 8)04—1 ga—n
(H4) ( ] SUpP;>( fo 1 it p(s)ds+ ¢l <1 and
t — a—1 _
tn « (t _ S) Sot n
sy [ =0

Then the trivial solution x =0 of (1.1) is stable in the Banach space E.

Proof. Like the procedure proven in Theorem 3.1, we can get that ®z € C,,_,, (RT) where

(@) (1) = (Az) (t) + (B) (1) -
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In accordance with the requirements, we have

1 byn—a (¢ — S)a—l
F(a) /0 1 4 ¢nt+l f(Saﬂf(S)) ds

1 tyn—a (t — S)a—l

= T () i‘;‘g/o BT If (s,2(s)) — f(t,0)]ds
[z /t e (t — 5) o

< <

=T (@) 120 T

—0ast— oo.

p(s)ds

Thus, we know that ® maps €2 into E. Then, we will use the contraction mapping principle to discuss
the stability of (1.1). In fact

£ (@) () 70 (By) (1) ‘

1+ttt 1+ ¢+l
tnfa
- }1 + tn—i—l |g (t,!l? (t)) -9 (tvy (t))|
1 t tn—o (t _ S)afl
+ I(«) /0 1+ ¢ntl |f (s,2(s)) — f(s,y(s))|ds
[z —yll /t ot — 5)* g
= B d
> ”fJHoon yll + (o) igo ; T p(s)ds
Mz =yl
Thus
[@z — y|| < M|z —yll,
where

1 tyn—a (p — g)* ! gam
A=——5 d < 1.
e | e s+ lal
Thus, ® is a contraction mapping and ® has a fixed point = in Q.

Note that for any given € > 0, there exists 0 < § < — (1=2)

= e such that >"}'_, |bg| < o implies
T(a—k+1)
k=1

" (Ax) (1) | " (By) (1) ’

So| 1+tnt! 1+ ¢l
s b trk t"=%g (t,z (1))
<su + su T —
_tzggf(a—wrl)lﬂ”*l tzlg 1+ tntt
1 byn—a (p — g)* ! g
d
Hlallsup | o [ () ds

_ S)afl ga—n

Hq” F‘lI: 1‘\ / . (] + 1[ (é) [ié HxH
* t>0 ([Y) 0 t'ﬂ




FRACTIONAL DIFFERENTIAL EQUATIONS 11

thus
ol € Y M6 A e
- kzlf‘(a—k—i—l)
< e
Therefore, the trivial solution = 0 of (1.1) is stable in the Banach space E. g

4. An example

Example 4.1. Consider the following initial value problem for the nonlinear fractional differential equa-

tion .
La@-tep(Dsm@®)
= L arctan (M) (f_&%)3sm<ff_?3)4 ,t>0, (4.1)
3_2

310 t243
27N (@ (0) — g (0%, 2 (0%))) = DZ77 (2 (07) — g (0F, 2 (01))) = 1,

)
2 % 3 1
where oo = 3. Assuming that p (t) = 15 arctan (M) (1+t ) and r (t) = t7sint1, then
)

On the other hand g (t,z (t)) = & exp (—t)sin (x (t)) satisfied

g (t,2 (1) =g (ty ()] < q )]z () —y @), (4.3)

where q (t) = ¢ exp (—t). The condition

o0 T (a) 5 20T (2)
~ 048 < 1. (4.4)

Note that (4.2), (4.3) and (4.4) satisfy Theorem 3.1, then the trivial solution of (4.1) is stable in the
Banach space E.
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