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Further Results on the Hop Domination Number of a Graph

D. Anusha, S. Joseph Robin and J. John

abstract: A hop dominating set S in a connected graph G is called a minimal hop dominating set if no
proper subset of S is a hop dominating set of G. The upper hop domination number γ+

h
(G) of G is the

maximum cardinality of a minimal hop dominating set of G. Some general properties satisfied by this concept
are studied. It is shown that for every two positive integers a and b where 2 ≤ a ≤ b, there exists a connected
graph G such that γh(G) = a and γ+

h
(G) = b. It is proved that minimal hop dominating set is NP-complete.

It is proved that γh(G) and γ(G) are in general incomparable. It is shown that for every pair of positive
integers a and b with a ≥ 2 and b ≥ 1, there exists a connected graph G such that γh(G) = a and γ(G) = b.
Finally, we formulate an Integer linear programming problem to compute the hop domination number of G.

Key Words: Distance, hop domination, hop domination number, upper hop domination number,
NP-complete.
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1. Introduction

For notation and graph theory terminology we in general,follow [6]. A graph G = (V, E) is a set V of
vertices and a set E of edges. Each edge e ∈ E is associated with two vertices u and v from V , and we
write e = (u, v). We say that u is adjacent to v or v is adjacent to u; e is incident with u or v; and u is a
neighbor of v or v is a neighbor of u. Graphs are a common abstraction to represent data. Some examples
include: road networks, where the vertices are cities and there is an edge between any two cities that
share a highway; protein interaction networks, where the vertices are proteins and the edges represent
interactions between proteins; and social networks, where the nodes are people and the edges represent
friends. Let v be a vertex in V . Then the open neighborhood of v is the set N(v) = {u ∈ V/uv ∈ E},
and the closed neighborhood of v is N [v] = {v} ∪ N(v). The degree of a vertex v is deg(v) = |N(v)|. The
minimum and maximum degrees of a graph G are denoted by δ(G) and △(G) respectively. If e = uv is
an edge of a graph G with deg(u) = 1 and deg(v) > 1, then e is called a pendant edge or end edge, u is a
leaf or end vertex and v is a support vertex of u. For S ⊆ V , N(S) = ∪v∈SN(v). The subgraph induced
by a set S of vertices of a graph G is denoted by 〈S〉 with V (〈S〉) = S and E(〈S〉) = {uv ∈ E : u, v ∈ S}.
The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v
path in G. An u-v path of length d(u, v) is called an u-v geodesic. Let H be a subgraph of G and v ∈ V .
Then the distance d(v, H) = min{d(v, u)/u ∈ V (H)}.

A set D ⊆ V is a dominating set of G if for every v ∈ V \ D is adjacent to some vertex in D.
A dominating set D is said to be minimal if no subset of D is a dominating set of G. The minimum
cardinality of a minimal dominating set of G is called the domination number of G and is denoted by
γ(G). The domination number of a graph was studied in [1,8,11]. A set S ⊆ V of a graph G is a hop
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dominating set of G if for every v ∈ V \ S, there exists u ∈ S such that d(u, v) = 2. The minimum
cardinality of a hop dominating set of G is called the hop domination number and is denoted by γh(G).
Any hop dominating set of order γh(G) is called γh-set of G. The hop domination number of a graph was
studied in [4,7,9,10,14,15,17]. The hop dominating set is defined in another way. The open hop neighbor-
hood of a vertex v is the set N2(v) = {u ∈ V/d(u, v) = 2}. A set S ⊆ V is a hop dominating set of G if
for every v ∈ V \ S is hop neighbor of some vertex in S. Obviously 2 ≤ γh(G) ≤ n, for any connected
graph G of order n. Among graphs on n vertices only complete graph attained the upper bond, while the
family of graphs that attain the lower bound is much richer (see Theorem 1.2 and Corollary 2.11 in [4]).
Applications of domination in graphs are known in serveral areas such as wireless sensor networks [2],
mobile ad hoc networks [3,13], ware house and station placement [12], viral marketing in social networks
[5], etc. Another notion of graph notion is called hop domination by applying hop domination concepts
there is a effectiveness in networks. The following theorems are used in sequel.

Theorem 1.1. [4] For a connected graph G order n ≥ 2, γh(G) = n if and only if G = Kn.

Theorem 1.2. [4] Let G be a connected graph G order n ≥ 3. Then γh(G) = n−1 if and only if G = P3

or G = Kn − {e}.

2. The Upper Hop Domination Number of a Graph

Definition 2.1. A hop dominating set S in a connected graph G is called a minimal hop dominating set
if no proper subset of S is a hop dominating set of G. The upper hop domination number γ+

h (G) of G is
the maximum cardinality of a minimal hop dominating set of G.

Example 2.2. For the graph G given in Figure 2.1, S1 = {v2, v3}, S2 = {v3, v4}, S3 = {v1, v2, v5} and
S4 = {v1, v4, v5} are the only four minimal hop dominating sets of G so that γh(G) = 2 and γ+

h (G) = 3.
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Figure 2.1 
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Observation 2.1. (a) For the path G = Pn (n ≥ 3),

γ+
h (G) =


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




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










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

2 if n = 3 or 4

3 if n = 5

2r + 1 if n = 6r

2r + 2 if n = 6r + 1 or 6r + 2

2r + 3 if n = 6r + 3 or 6r + 4 or 6r + 5 where r ≥ 1

(b)For the cycle G = Cn (n ≥ 4),

γ+
h (G) =




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










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

2 if n = 4 or 5

2r if n = 6r

2r + 1 if n = 6r + 1

2r + 2 if n = 6r + 2 or 6r + 3 or 6r + 4

2r + 3 if n = 6r + 5 where r ≥ 1

Observation 2.2. For a connected graph G, 2 ≤ γh(G) ≤ γ+
h (G) ≤ n.
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The following theorems shows that the bounds in Observation 2.2 are strict and sharp. For this
purpose, we define the following.

Definition 2.3. Let V (K4 − {e}) = {v1, v2, v3, v4}, where e = v1v3. Let H be the graph obtained from
K4 − {e} by attaching an edge xv4. Let V (K1,a−6) = {y, u1, u2, u3, ..., ua−6} for a ≥ 7, where y is the
central vertex of V (K1,a−6) and {u1, u2, ..., ua−6} is the set of all end vertices of K1,a−6. Let Ga be the
graph obtained from H and K1,a−6 (a ≥ 7) by joining x with each ui (1 ≤ i ≤ a − 6). The graph Ga is
given in Figure 2.2(a).

Definition 2.4. Let V (Ka−1) = {v1, v2, ..., va−1}, where a ≥ 3 and V (K2) = {x, y}. Let Ha be the graph
obtained from Ka−1 and K2 by joining x and y with each vi (1 ≤ i ≤ a − 1). The graph Ha is given in
Figure 2.2(b).

Definition 2.5. Let V (K1) = {x}, V (K2) = {x, y} and V (Ka−1) = {u1, u2, ..., ua−1}, where a ≥ 3. Let
Qa be the graph obtained from K1, K2 and Ka−1 by joining x,y and z with each ui (1 ≤ i ≤ a − 1). The
graph Qa is given in Figure 2.2(c).
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Figure 2.2

Theorem 2.6. For the graph Ga (a ≥ 7), γh(Ga) = 2.

Proof. Let S = {x, v4}. Then d(x, y) = 2, d(x, vi) = 2 for all i, 1 ≤ i ≤ 3 and d(v4, ui) = 2 for all i,
1 ≤ i ≤ a − 6. Hence S is a hop dominating set of Ga so that γh(Ga) = 2. �

Theorem 2.7. For the graph Ha (a ≥ 3), γh(Ha) = γ+
h (Ha).
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Proof. Let S = {x} ∪ V (Ka−1). Then S is a hop dominating set of Ha so that γh(Ha) ≤ a. We prove
that γh(Ha) = a. On the contrary, suppose that γh(Ha) < a. Then there exists a γh-set S

′

such that
|S

′

| < a. Also there exists a vertex z ∈ Ha such that z 6∈ S
′

. If z = y, then it follows that x ∈ S
′

. Hence
V (Ha) = S′ and so γh(Ha) ≥ a, which is a contradiction. If z = vi for some i (1 ≤ i ≤ a − 1). Then S

′

is not a γh-set of Ha, which is a contradiction. Therefore γh(Ha) = a. Next we prove that γ+
h (Ha) = a.

Since V (Ha) = a + 1, by the definition of the upper hop dominating set of G, γ+
h (Ha) = a. �

Theorem 2.8. For the complete graph G = Kn (n ≥ 2), γ+
h (G) = n.

Proof. Since d = 1,we have γ+
h (G) = n. �

Theorem 2.9. For the graph G = Qa (a ≥ 3), γh(G) = a and γ+
h (G) = a + 1.

Proof. Let S be a hop dominating set of G. We prove that V (Ka−1) ⊂ S. On the contrary suppose
that V (Ka−1) * S. Then there exists ui ∈ V (Ka−1) such that vi 6∈ S for some i (1 ≤ i ≤ a − 1). Since
d(x, vi) = d(y, vi) = d(z, vi) = 1 for all i (1 ≤ i ≤ a − 1), S is not a hop dominating set of G. Therefore
V (Ka−1) ⊂ S. Since V (Ka−1) is not hop dominating set of G, γh(G) ≥ a. Let S = {z} ∪ V (Ka−1).
Then S is a hop dominating set of G so that γh(G) = a. Next we prove that γ+

h (G) = a + 1. Let

S
′

= V (Ka−1) ∪ {x, y}. Then S
′

is a hop dominating set of G. We prove S
′

is a minimal hop dominating
set of G. On the contrary, suppose that S

′

is not a minimal hop dominating set of G. Then there exists
a hop dominating set S

′′

of G such that S
′′

⊂ S
′

. Hence there exists u ∈ S
′

such that u 6∈ S
′′

. Then
u 6∈ V (Ka−1). Therefore u is either x or y. If u = x, then d(x, S

′′

) = 1 and if u = y, then d(y, S
′′

) = 1.
Hence it follows that S

′′

is not a hop dominating set of G, which is a contradiction. Therefore S
′

is
a minimal hop dominating set of G and so γ+

h (G) ≥ a + 1. We prove that γ+
h (G) = a + 1. Since

V (G) = a + 2, by the definition of the upper hop dominating set of G, γ+
h (G) = a + 1. Since a ≥ 3,

2 < γh(G) < γ+
h (G) < n. Hence it follows that γ+

h (G) ≥ a − 1. �

Theorem 2.10. For a connected graph G order n ≥ 2, γh(G) = n if and only if γ+
h (G) = n.

Proof. Let γ+
h (G) = n. Then S = V (G) is the unique minimal hop dominating set of G. Since no proper

subset of S is a hop dominating set, it follows that S is the unique hop dominating set of G and so
γh(G) = n. The converse follows from Observation 2.2. �

Corollary 2.11. Let G be a connected graph of order n ≥ 2. Then the following are equivalent.
(1) γh(G) = n. (2)γ+

h (G) = n. (3) G = Kn.

Proof. This follows from Theorems 1.1 and 2.10. �

Theorem 2.12. If G is a a connected graph of order n ≥ 3 with γh(G) = n − 1, then γ+
h (G) = n − 1.

Proof. Since γh(G) = n − 1, it follows from Observation 2.2, we get γ+
h (G) = n or n − 1. If γ+

h (G) = n,
then by Theorem 2.10, γh(G) = n, which is a contradiction. Therefore γ+

h (G) = n − 1. �

Theorem 2.13. For any connected graph G of order n ≥ 3, γh(G) = n − 1 if and only if γ+
h (G) = n − 1.

Proof. Let V (G) = {v1, v2, ..., vn}. First assume that γ+
h (G) = n − 1. Let S = {v1, v2, ..., vn−1} be a

minimal hop dominating set of G with maximum cardinality. We claim that vn is adjacent to at most n−2
elements of S. On the contrary, suppose that vn is adjacent to each elements of S. Then d(vn, x) = 1, for
every x ∈ S. Hence it follows that S is not a hop dominating set of G, which is a contradiction. Therefore
vn is adjacent to at most n − 2 elements of S. We prove that S is a γh-set of G. If G = Kn − {e}, then
the result is obvious. So we assume that G 6= Kn − {e}. On the contrary, suppose that S is not a γh-set
of G. Since G 6= Kn − {e}, vn is adjacent to at most n − 3 elements of S. Then there exist y, z ∈ S such
that yz 6∈ E(G). Hence it follows that y 6= vn, z 6= vn. Then S1 = S − {y} is a hop dominating set of G,
which is a contradiction. Therefore S is a γh-set of G. Hence γh(G) = n − 1. The converse follows from
Theorem 2.12. �
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Corollary 2.14. Let G be a connected graph of order n ≥ 3. Then the following are equivalent.
(1) γh(G) = n − 1. (2)γ+

h (G) = n − 1. (3) G = Kn − {e} or P3.

Proof. This follows from Theorems 1.2 and 2.13. �

Theorem 2.15. Let G be a connected graph of order n and u ∈ V (G). Then γ+
h (G − u) ≤ γ+

h (G).

Proof. Let u ∈ V (G) and S be a minimal hop dominating set of G − u with maximum cardinality of G.
Therefore γ+

h (G − u) = |S|

Case 1: Let uv ∈ E(G). We have the following two cases.
Case 1a: v ∈ S. Since S is a hop dominating set of G − u, there exists a vertex w ∈ V (G − u) \ S

such that dG−u(v, w) = 2.
If dG(u, w) = 2, then S

′

= S −{v}∪{u, w} is a minimal hop dominating set of G so that γ+
h (G−u) ≤

|S| ≤ |S
′

| ≤ γ+
h (G). Therefore γ+

h (G − u) ≤ γ+
h (G).

If dG(u, w) = 1, then S
′

= S −{v}∪{u, w} is a minimal hop dominating set of G so that γ+
h (G−u) ≤

|S| ≤ |S
′

| ≤ γ+
h (G). Therefore γ+

h (G − u) ≤ γ+
h (G).

If dG(u, w) ≥ 3, then S
′

= S −{v}∪{u, w} is a minimal hop dominating set of G so that γ+
h (G−u) ≤

|S| ≤ |S
′

| ≤ γ+
h (G). Therefore γ+

h (G − u) ≤ γ+
h (G).

Case 1b: v 6∈ S. Then consider S
′

= S ∪ {u}. It is straight forward to verify that S
′

is a minimal
hop dominating set of G so that γ+

h (G − u) ≤ |S| ≤ |S
′

| ≤ γ+
h (G). Therefore γ+

h (G − u) ≤ γ+
h (G).

Case 2: Let uv 6∈ E(G).
Case 2a: Let v ∈ S. Let x be an internal vertex in u-v path such that x 6∈ S

′

. Let dG(u, x) = 2.
Then S

′

= S − {v} ∪ {x} is a minimal hop dominating set of G so that γ+
h (G − u) ≤ |S| ≤ |S

′

| ≤ γ+
h (G).

Therefore γ+
h (G − u) ≤ γ+

h (G).

Case 2b: Let v 6∈ S. Let w be a vertex in u-v geodesic such that d(w, v) = 2. If w ∈ S, then
S

′

= S is a minimal hop dominating set of G so that γ+
h (G − u) ≤ |S| ≤ |S

′

| ≤ γ+
h (G). Therefore

γ+
h (G − u) ≤ γ+

h (G). If w 6∈ S then S
′

= S ∪ {w} is a minimal hop dominating set of G so that

γ+
h (G − u) ≤ |S| ≤ |S

′

| ≤ γ+
h (G). Therefore γ+

h (G − u) ≤ γ+
h (G). �

In view of Observation 2.2, we have the following realization theorem.

Theorem 2.16. For every two integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such
that γh(G) = a and γ+

h (G) = b.

Proof. Let V (Ka−1) = {v1, v2, ..., va−1} and V (Kb−a+1) = {u1, u2, ..., ub−a+1}. Let H be the graph
obtained from Ka−1 and Kb−a+1 by joining each vertex of Ka−1 with each vertex of Kb−a+1. Let G be
the graph obtained from H by introducing the vertex x and joining x with each vertex of Ka−1. The
graph G is shown in Figure 2.3.

First we prove that γh(G) = a. Let S be a hop dominating set of G. We prove that V (Ka−1) ⊂ S.
On the contrary, suppose that there exists vi ∈ V (Ka−1) such that vi 6∈ S for some i (1 ≤ i ≤ a − 1).
Since d(x, vi) = d(vi, uj) = 1 for all i (1 ≤ i ≤ a − 1) and j (1 ≤ j ≤ b − a + 1), S is not a hop dominating
set of G, which is a contradiction. Therefore V (Ka−1) ⊂ S and so γh(G) ≥ a − 1. Since V (Ka−1) is not
a hop dominating set of G, γh(G) ≥ a. Let S = V (Ka−1) ∪ {x}. Then S is a hop dominating set of G
so that γh(G) = a.
Next we prove that γ+

h (G) = b. Let S1 = V (Ka−1) ∪ V (Kb−a+1). Then S1 is a hop dominating set of
G. We prove that S1 is a minimal hop dominating set of G. On the contrary, suppose that S1 is not a
minimal hop dominating set of G. Then there exists a hop dominating set S

′

such that S
′

⊂ S1. Hence
it follows that S

′

contains no elements of V (Ka−1). Since d(vi, uj) = 1 for all i (1 ≤ i ≤ a − 1) and j

(1 ≤ j ≤ b − a + 1), S
′

is not a hop dominating set of G, which is a contradiction. Therefore S1 is a
minimal hop dominating set of G and so γ+

h (G) ≥ b − a + 1 + a + 1 = b. Since |V (G)| = b + 1, it follows
that γ+

h (G) = b. �
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Remark 2.17. The graph G in Figure 2.3 contains two minimal hop dominating sets viz. V (Ka−1)∪{x}
and T = V (Ka−1)∪V (Kb−a+1). Hence this example shows that there is no “Intermediate value Theorem"
for minimal hop dominating sets, i.e, if k is an integer such that γh(G) < k < γ+

h (G), then there need not
exist a minimal hop dominating set of cardinality k in G. Using the structure of the graph G constructed in
the proof of Theorem 2.18, we can obtain a graph Gn of order n ≥ 5 with γh(Gn) = 3 and γ+

h (Gn) = n−1
for all n ≥ 5. Thus we have the following theorem.

Theorem 2.18. There is an infinite sequence {Gn} of connected graphs Gn of order n ≥ 5 such that

γh(Gn) = 3, γ+
h (Gn) = n − 1, limn→∞

γh(Gn)

n
= 0 and limn→∞

γh(Gn)

n
= 1.

Proof. Let Gn be the graph obtained from the complete graph K2 with vertex set {v1, v2} and Kn−3

with vertex set {u1, u2, ..., un−3} by adding x with vi (1 ≤ i ≤ 2) and also joining vi (1 ≤ i ≤ 2)
with each uj (1 ≤ j ≤ n − 3). The graph Gn is shown in Figure 2.4. Let S1 = {x, v1, v2} and
S2 = {v1, v2, u1, u2, ..., un−3}. It is clear from the proof of Theorem 2.16, that Gn contains exactly 2
minimal hop dominating sets S1 and S2 so that γh(Gn) = 3 and γ+

h (Gn) = n − 1. Hence the result
follows. �

 

Figure 2.4
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The following corollary gives the smallest order of a graph satisfying the hypothesis of Theorem 2.18
consequence of Theorems 2.13 and 2.16.

Corollary 2.19. For every two positive integers a and b, where 2 ≤ a < b, the smallest order of a graph
G with γh(G) = a and γ+

h (G) = b is b + 1.

In [16], it is proved that hop independent dominating set (HIDS) is NP -complete for planar graphs
by using vertex cover problem. In the following, we show that minimal hop dominating set (MHDS) is
NP -complete by using independent set (IS) problem of G.

Theorem 2.20. Minimal hop dominating set is NP-complete.
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Proof. MHDS ∈ NP . Given an instance (G, K) for MHDS, we guess the certificate, which consists of
the K-vertices that will form the MHDS. Then we verify that these vertices form a MHDS, by checking
that every vertex of G is either in this set or at a distance two in this set. In this case, we output “yes"
and otherwise “no" (Again if G has MHDS of size K, one of these guesses will work and we accurately
characterize in G as having a MHDS of size K. Otherwise all fail and we classify G as not having such a
MHDS).

IS ⊆p MHDS. We claim that given an instance of the IS problem (G, K), we can produce an

equivalent instance of the MHDS problem in polynomial time. We create a new vertex uuv in G
′

an add
{u, wuv} and {v, wuv} in G

′

. Set an vertex set with cardinality K
′

= K + ns, where K is cardinality of
a IS, say S and ns is the nearest vertex of S. Output (G

′

, K
′

). This reduction outlined in Figure 2.5.
Note that every step can be performed in polynomial time.

 = 3 

! 

Figure 2.5

 
 
"
=  + #$ = 4 

To establish the correctness of the reduction, we need to prove that G has a IS of size K if and
only if G

′

has a MHDS of size K
′

. First we prove that if G has a IS of size K, then G
′

has a MHDS
of size K

′

. Let S be a set of vertices of G and S1 = N(S). We claim that if S is a IS of G, then
S

′

= S ∪ S1 is a MHDS of G
′

. Observate that | S
′

|= K + ns = K
′

. To prove that S
′

is a MHDS. For
each special vertex wuv in G

′

corresponds to an edge uv in G implying that either u or v is in IS of v
′

.
Thus d(wuv, N(v)) = d(u, N(v)) = 2. Then S

′

is a hop dominating set of G
′

. Next to prove that S
′

is
a minimal hop dominating set of G

′

. On the contrary, suppose S
′

is not a minimal hop dominating set
of G

′

. Then there exists a hop dominating set S such that S ⊂ S
′

. Then d(u, v) = 1, where u ∈ S and
v ∈ V \ S, S

′

is not a hop dominating set of G
′

, which is a contradiction. Therefore S
′

is a MHDS of G
′

.
Conversely we prove that S

′

is a MHDS of G
′

, then S is a IS of size K. On the contrary, suppose that
S is not a IS of G of size K. Let S

′′

= S
′

\ S be the remaining K vertices. We might to claim something
like S

′′

is IS of G. Since S
′′

have vertices that are not part of original graph. However we claim that
we never need to use any of newly created vertices in S

′′

. In particular, if some vertex wuv ∈ S
′′

then
modify S

′′

by replacing wuv with u. Then d(v, x) = 1 for every x ∈ S
′

, which is a contradiction. Hence
S is a IS of some K. �

3. On the hop domination number and the domination number of a graph

Most of the domination parameters are comparable. The following example shows that γh(G)
and γ(G) are in general incomparable.

Example 3.1. For G = P3, γ(G) = 1 and γh(G) = 2. Thus γ(G) < γh(G). Also for the graph G given
in Figure 3.1. S = {v1, v2} is a γh-set of G so that γh(G) = 2 and D = {v2, v4, v6} is a γ-set of G so
that γ(G) = 3. Thus γh(G) < γ(G).
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Figure 3.1 
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In view of Example 3.1, we have the following realization result. For this purpose, we present
some graphs from which various graphs arrives in Theorem 3.3 are generated using identification. Let
H = K1,a. Let Ga be the graph obtained from H by subdividing each edge exactly once. Let V (Ga) =
{x, x1, x2, ..., xa, y1, y2, ..., ya}, where x is the central vertex of Ga and {y1, y2, ..., ya} is the set of all end
vertices of Ga. The graph Ga is shown in Figure 3.2(a).
Let Pi : ui, vi, wi (1 ≤ i ≤ b) be a copy of path on three vertices. The graph Ga,b is obtained from Ga

and Pi (1 ≤ i ≤ b) by introducing the edges xui (1 ≤ i ≤ b). The graph Qa is obtained from Ga by
introducing the edges xyi (1 ≤ i ≤ a) and yiyj (1 ≤ i ≤ j ≤ a). The graph Qa is given in Figure 3.2(c).
Let Qa,b be the graph obtained from Qa and Pi (1 ≤ i ≤ b) by introducing the edges xiuj (1 ≤ i ≤ a),
(1 ≤ j ≤ b) and xuj (1 ≤ j ≤ b). The graph Qa,b is given in Figure 3.2(d).
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Observation 3.1. Let G be a connected graph, x a cut vertex of G and C a component of G − x. If
d(x, C) ≥ 2, then every γ-set of G contains at least one element from C.

Theorem 3.2. For every pair of integers a and b with a ≥ 2 and b ≥ 1, there exists a connected graph
G such that γh(G) = a and γ(G) = b.

Proof. Case 1: a = b.
Let Fi : ui, vi, wi, xi, ui (1 ≤ i ≤ a) be a copy of C4. Let G be the graph obtained from Fi (1 ≤ i ≤ a)

by identifying the vertex xi−1 of Fi−1 and the vertex ui of Fi (2 ≤ i ≤ a). The graph G is shown in
Figure 3.3.
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Figure 3.3 
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We have to prove that γh(G) = a. Let S = {u1, u2, u3, ..., ua}. Since d(ui, wi) = 2 for 1 ≤ i ≤ a−1
and d(ui+1, vi) = 2 for 1 ≤ i ≤ a − 1, S is a subset of every hop dominating set of G and so γh(G) ≥ a.
Since for every x ∈ V \ S, there exists a y ∈ S such that d(x, y) = 2, S is a hop dominating set of G so
that γh(G) = a.

Next we have to prove that γ(G) = a. Since every element of V \ S is dominated by at least one
element of S, S is a dominating set of G and so γ(G) ≤ a. Suppose that γ(G) < a. Then there exists a
γ-set S′ such that |S′| < a. Let x be a vertex of S such that x 6∈ S′. Then x is not dominated by any
element of S′, or vi or wi is not dominated by any element of S′ for some i, (1 ≤ i ≤ a). Hence S′ is not
a dominating set of G, which is a contradiction. Therefore γ(G) = a.

Case 2: a < b.
Consider G = Gb−a+1,a−1. First we prove that γh(G) = a. Since d(ui, wi) = 2 for 1 ≤ i ≤ a − 1 and
d(ui, xj) = 2 for 1 ≤ i ≤ a − 1 and 1 ≤ j ≤ b − a + 1, W = {u1, u2, ..., ua−1} is a subset of every minimum



10 D. Anusha, S. Joseph Robin and J. John

hop dominating set of G and so γh(G) ≥ a − 1. Also since xui ∈ E(G) (1 ≤ i ≤ a − 1), W is not a hop
dominating set of G and so γh(G) ≥ a. Let S = W ∪ {x}. Then S is a hop dominating set of G so that
γh(G) = a.

Next we prove that γ(G) = b. Since d(x, vi) = 2 for 1 ≤ i ≤ a−1 and d(x, yi) = 2 for 1 ≤ i ≤ b−a+1,
by Observation 3.1, γ(G) ≥ a − 1 + b − a + 1 = b. Let D = {v1, v2, ..., va−1} ∪ {x1, x2, ..., xb−a+1}. Then
D is a dominating set of G so that γ(G) = b.

Case 3: b < a.
For b = 1 and a = 2, let G = P3. Then γ(G) = 1 = b and γh(G) = 2 = a. For b = 1 and a ≥ 3, let
G = Ka+1 − {e}. Since △(G) = n − 1, γ(G) = 1 = b. Also by Theorem 1.2, γh(G) = a. So, let b ≥ 2 and
a ≥ 3. Consider G = Ga−b+1,b−1. First we prove that γh(G) = a. Since d(ui, wi) = 2 for 1 ≤ i ≤ b − 1,
X = {u1, u2, ..., ub−1} is a subset of every minimum hop dominating set of G and so γh(G) ≥ b − 1. Also
since xui, xxj , u1xj ∈ E(G) for 1 ≤ i ≤ b−1 and 1 ≤ j ≤ a−b+1, X is not a hop dominating set of G and
so γh(G) ≥ a. Let S = X ∪{x, x1, x2, ..., xa−b+1}. Then S is a hop dominating set of G so that γh(G) = a.

Next we prove that γ(G) = b. Since d(x, vi) = 2 for 1 ≤ i ≤ b − 1, by Observation 3.1, γ(G) ≥ b.
Let D = {x, v1, v2, ..., vb−1}. Then D is a dominating set of G and so γ(G) = b. �

Theorem 3.3. The difference between the hop domination number and the domination number is arbi-
trarily large.

Proof. First we prove that γ(G) − γh(G) = a. Consider G = Ga+2. Let S = {x, x1}. Then S is a
hop dominating set of G so that γh(G) = 2. Since d(x, yi) = 2 for 1 ≤ i ≤ a + 2, every minimum
dominating set of G contains at least one element from each component of G − x and so γ(G) ≥ a + 2.
Let D = {x1, x2, ..., xa+2}. Hence D is a dominating set of G so that γ(G) = a + 2. Now γ(G) − γh(G) =
a + 2 − 2 = a.

Next we prove that γh(G)−γ(G) = a. Consider G = Qa. Since x is a universal vertex of G, γ(G) = 1.
We have to prove that γh(G) = a+1. Since d(ui, vi+1) = 2, 1 ≤ i ≤ a−1, W = {u1, u2, ..., ua} is a subset
of every minimum hop dominating set of G and so γh(G) ≥ a. Also since xvi, xui ∈ E(G) 1 ≤ i ≤ a, X
is not a hop dominating set of G and so γh(G) ≥ a + 1. Let S1 = W ∪ {x}. Then S1 is a hop dominating
set of G so that γh(G) = a + 1. Now γh(G) − γ(G) = a + 1 − 1 = a. �

4. Integer Linear Programming for hop domination

In this section hop domination number of a connected graph G can be identified by converting
the problem into an integer linear programming problem of G.
Let G be a connected graph with n vertices and m edges. Decision variables xi indicates whether i
belongs to a hop dominating set S.

xi =

{

1 if vi ∈ S

0 if vi 6∈ S
(4.1)

The integer linear programming for hop dominating set problem can be formulated as

Minimize
n
∑

i=1

xi ... (4.2)

subject to: xi +
∑

j∈N2(i)

xj ≥ 1, 1 ≤ i ≤ n ...(4.3)

xi ∈ {0, 1}, 1 ≤ i ≤ n ...(4.4)

Theorem 4.1. Set S is a hop dominating set of G if and only if (4.2) to (4.4) are satisfied.

Proof. Let S be a hop dominating set of G and decision variables are characterized by (4.1). Constraints
about binary variables x are trivially satisfied by (4.4). Since S is a hop dominating set, then (∀i ∈ V )
(∃j ∈ N2(i)) (i ∈ S ∨ j ∈ S) imply that (∀i ∈ V )(∃j ∈ N2(i)) (xi = 1 or xj = 1), which means (∀i ∈ V )
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xi +
∑

j∈N2(i)

xj ≥ 1. From the equation (4.3), it holds that |S| =
n
∑

i=1

xi. Since decision variables x represent

a feasible solution has to be less or equal to |S|.
Conversely, let S = {i/xi = 1}. Since variables xi are binary, from equation (4.3), it holds that ((∀i)xi =
1 ∨

∑

j∈N2(i)

xj ≥ 1). Then, we get (∀i) (xi = 1 ∨ (∃j ∈ N2(i))xj = 1). So (∀i) (i ∈ S ∨ (∃j ∈ N2(i)) j ∈ S)

and therefore S is a hop dominating set of G. �

5. Application

Consider a computer network modelled by a 4-cube.The vertices of the 4-cube represents comput-
ers and edges represent direct communication link between two computers. So, in this model we have 16
computers or processors and each processor can pass information to the processor to which it is directly
connected. The problem is to collect information from all processors and we need to do it relatively
often and relatively fast. So we identify a small set of processors called collecting processors and each
processor send its information to one of a small set of collecting processors. We assume that a two–unit
delay between the time a processor sends its information and the time it arrives at a nearest collector is
allowed. In this case, we have to find a minimum hop dominating set of all processors. From Figure 6.1,
the set of vertices marked in dark forms a minimum hop dominating set in the hypercube network.

  

Figure 5.1 

6. Conclusion

It is proved that γh(G) and γ(G) are incomparable. Hence it can be investigated to find out under
which condition the inequality γh(G) ≤ γ(G) or γ(G) ≤ γh(G) holds true.
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