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Existence of Solutions for an Approximation of the Paneitz Problem on Spheres

K. Ould Bouh*

ABSTRACT: This paper is devoted to studying the nonlinear problem with subcritical exponent (Se) :
+

nt4
A2y — cpAu+ dpu = Kun=2 ", u > 0 on S™, where n > 5, ¢ is a small positive parameter and K is a a
smooth positive function on S™. We construct some solutions which blow up at ¢ different critical points of
K.
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1. Introduction

Given (M*, g), a smooth 4-dimensional Riemannian manifold, let S, be the scalar curvature of g and
Ricy be the Ricci curvature of g. In [13], Paneitz discovered the following fourth order operator

2
Plo=Alp— divg(gSg — 2Ricy)dy

This operator is conformally invariant in the sense that if § = e?“g is a metric conformally equivalent to
g, then
—4
Pfgcp =e “P;gp for all ¢ € C*°(M),

and it can be seen as a natural extension of the conformal Laplacian on 2-manifolds. A generalization of
P; to higher dimensions has been discovered by Branson [7]. Let (M, g) be a smooth compact Riemannian
n-manifol, n > 5. The Paneitz operator P’ of [7] is defined by

. _ n—4
Plu= Alu — divg(anSyg + bnRicg)du + TQZU,

g
where
" (n—2)2%+4 4
" 2n—1)(n-2) " n-2
1 n® —4n2 + 16n — 16 2
n_ _ A.S 2 Ric,|*.
2T Py Bty o o pr P il e oA

If § = u*/("Yg is a metric conformal to g, then for all ¢ € C° (M) one has

Py ug) = u /0= pr ()
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and

n—4
n _ " %n (n+4)/(n—4)
P (u) 5 qu . (1.1)

For more details about the properties of the Paneitz operator, see for example [7], [8], [9], [10], [11].
In view of relation (1.1), it is natural to consider the problem of prescribing the conformal invariant Q™
called the Paneitz curvature, that is : given a function f : M — R does there exist a metric g conformally
equivalent to g such that Qf;i = f? By equation (1.1), the problem can be formulated as follows. We look

for solutions of
Pl (u) = nT_Zlfu(”Jr‘l)/("*‘l) , u>0 on M. (1.2)
In the case of the standard sphere (S™,¢g), n > 5. Thus, we are reduced to finding a positive solution u
of the problem
iPu:Azu—anu—Fdnu:Ku:_ti , vw>0 on S", (1.3)

where ¢, = $(n? —2n —4) , d,, = Z2n(n? — 4) and K is a given function defined on 5.
It is well known that, there are topological obstructions to solve (1.3), based on a Kazdan-Warner type
condition, see [9]. Thus a natural question arises : under which conditions on K, does (1.3) admit a
solution? In this paper, we give sufficient conditions on K such that (1.3) possesses a solution.
Notice that, problem (1.3) has been widely studied in the last decades. In [5], [9], [10], the authors
treated the lower dimensional case (n = 5, 6). In [11], Felli proved a perturbative theorem and some
existence results under assumptions of symmetry.

Note that the embedding of HZ(S™) into L?"/(»=%)(S8") is noncompact. Hence, for the study of

problem (1.3), it is interesting to approach it by a family of subcritical problems (.S;)
(Se) iPuzA2u—anu—|—dnu=Ku%_s, u>0 on S",

and we need to study the asymptotic behavior of the solutions (u.) as € — 0. Observe that, since € > 0,
problem (S:) has always a positive solution (u.).

In this paper, we aim to construct some sign-changing solutions (u.) of (S:) which blow up at one or
two different points in the interior.

Before stating the result, we need to introduce some notations. For K = 1, the solutions of (1.3) form
a family 0, ) defined by
,3 )\"_—4
~ 2
dan(®) = Tz e (1.4)
2
(1 21— cosd(a,x)))

2

(n—4)/8
where a € S™ , A >0 and 3, = ((n —4)(n —2)n(n + 2)) .
After performing a stereographic projection m with the point —a as pole, the function g(a, ») is transformed

into 4
A =

So = n(i)

ox =0 1+ \2[y[?

which is a solution of the problem (see [12])
A2y =un4, u>0, onR"
The space H35(S™) is equipped with the norm :
)2 = (u,u)p = | Puu= / Aul? + cn/ Va2 +d, [ 2
S"L S’V'L n S’V'L

Our result deals with the construction of some solutions (uc) of (Se) which blow up at ¢ different points
of S™.
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Theorem 1.1. Let n = 6 and y1, Y2, ..., Yq be nondegenerate critical points of K with —AK (y;) > 0
fori=1,2,...,q. Then, there exists ey > 0 such that for each ¢ € (0,&g), the problem (S:) has a solution
(us) of the form

q
Ue = Zaié(ru)\i) + v, (15)
i=1

where a; — K (y;) Y% ||v]| = 05 2 — i, i = +00; Ay = YA (1 +0(1)) as e — 0.
Here, v is a positive fixed constant.

Remark 1.2. Note that, Theorem 1.1 is proved only in dimension n = 6. We think that it is also true
for m > 6 but it is too technical to discuss this problem in this paper.

The remaind of this paper is organized as follows. In Section 2, we recall some preliminaries. In
Section 3, we give some careful expansions of gradient of the associated variational functional I. for
(¢ > 0). While Section 4 is devoted to the proof of Theorem 1.1.

2. Preliminary results

First, let us introduce the general setting. For € > 0, we define the functional

1 n
I.(u) = / |Aul? + Cn/ |Vu|? + dn/ T Kunti ¢ y e HZ(S™). (2.1)
Sn Sn Sn pe—y — & Jgn

Note that if u is a positive critical point of I, then u is a solution of (S:), and inversely.
Let o

= 00; 00; .

Ex ={we H3(S™)/(w,p) =0 Vo € Span{s;, -, —, i <
’ X" Ox!
Here, xf denotes the j-th component of x;. For sake of simplicity, we will write 5; instead of g(r ;) and
therefore, for u = ), @;d(,, x,) +v we can write u = ), a;d; + v. In the sequel, we mention that it will
be convenient to perform some stereographic projection in order to reduce our problem to R™.

Lemma 2.1. [2] For a € S™ and X > 0 large enough. Using the stereographic projection w_,, the
function 04 xy will be transformed to 6o ). Furthermore, we have

PR o _2n _2n
Po;.0; = 5in_4 :/ (5{174 =5,, (22)
sn sn n
~ 86,
diy Aig) =0 2.3
i dig) (23)
~ 106,
81, — 201y — . 2.4
oy ) (24)
Lemma 2.2. [2] For ai,as € S™ and A1, A2 > 0 large enough, let b € S™ such that d(a1,b) = d(az,b).
Using the stereographic projection m_y, the function d(q, x,) will be transformed to 5(;_;) with
_ A2 — 1) Projg. < 24+ (A —1)(1 —cosf
g= Py 22 UAZeost) g gay, )
24+ (A —1)(1 — cos o) Ai
Furthermore, we have i # j,
- _ondd nta
Poi.05 = / 0;"" 85 = / 6,105 = c18ij + o(€5) = c1g45 + o(eij), (2.5)
S’n. n n
where
NN N -
€ij = (/\—] + )\—Z + 5 21— cosd(ai,aj))) (2.6)
~ Xl FS\ T |~ ~ 12 _n;4
sij—(rj+x—i+)\l)\j|ai—aj| ) (27)
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3. Expansions of the gradient of the functional I.

In this section, we collect some expansions of the gradient of the functional I. associated to the
problem (S;) for € > 0 which are needed in Section 4. We start by giving the following remark which is
proved in [14] when S™ is replaced by a bounded domain of R3.

Remark 3.1. Let 645 be the function defined in (1.4). Assume that €log A is small enough. Fore > 0,

we have
Sany (@) =1 —elogdi ) + O log” A)  in ™.

Now, explicit computations, by Remark 3.1, yield the following propositions

Proposition 3.2. Foru=>)_, aig(ri7Ai) + v with v € B, x, we have

8

- 8. 1
(VI.,0;) = a;Sp(1— " K(z;)) + O(slog i + = + Zeij + |\v||2),

i
where Sy =[5, Pl
Proof. We have
(VI h) = Pu.h — KuP~%h. (3.1)
n S’V‘L
A computation similar to the one performed in [1] shows that
- 20 20
Po;.0; = 51'"_4 = 5;_4 =S, (32)
Sn Sn R
— _nt4 n+4
iP(Sj(Sl = / (Sj nt 0; = (5;-174 0; = 0(6”) (33)
sm n R

For the integral, we write

= _/ ZO‘J =Ry +O(Z€w logs” + |v] ) (3.4)

s J#i

We also write

nta_ n+4 wii—e =
/”LK(J'Z_;O[J'(S 4 55 —Z KOéJ 55 (n_4—6)2ai * Qi ’ K(sl * 5]‘

S'L ]¢1 SIL
+O(Zeij loge;; ) (3.5)
i#j
Expanding of K around z; and x;, j # i, we get
~7L2Tn4,€ ~ 2n_ _ . 1
K5 = [ Ko7 = K(2:)Sy +O(cloghi + ) (3.6)
S R™ )‘i
ndd_ _ ntd_
K5j " 0; = K(S;_4 0; =0 (E log )\j + é‘ij) . (37)
sn Rn

Combining (3.1)-(3.7), we easily derive our proposition.

Proposition 3.3. Foru=7)_, aig(ri7Ai) + v with v € E, x, we have the following expansion:

90, 8 Oe
(VIe(u), Aigsn) = [agcl(l—za ))‘ 8/\12Jr n( =
ntd_c4(n —4)eg AK () elogAi 1 2
tal - ¢ +o(g log A\; + 7 +A—?+Hvll )

N T RNV
+ O(Z {saij(logaijl) ote 4 logsij1 +5¢j(logsij1) n ()\— + )\—J)D,
i !
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where

2n 1 1

n—4 n— 4
c] = ———dr, = || 5 dx

" /]R (1+ |z2)*= 2n Jan

Proof. Observe that (see [1])

06,
i digt) =0 (39)
80, Oeij
<5J,)\ 8)\> N o, + o(gij). (3.9)
For the other part
~n+4_€ ~ ~ 'n+47€ i — i n
T VALY Ly WA U C K G RISy
9 1 elog \;
96, ~ ontde 06 Oeij IR
. K5 )\la)\i = L. Ko )\la)\i =1 K(zj)\; o, + O(Esu(log(aij )+ )\?)
+O( ot log(e;; )), (3.11)
n+4 —e~ . 00 n+d — 05 Oeij
- K5 d - KsrT K () \i =2
G179, o gy~ G 9 ), Ko didigy, =l (@higy
O (zei;(log(e;; O(er "1 2 (log (1)) *+ 2
+0(se (og(e) ") + O] " os(e) + S loa(e ) *T). (3.12)
Combining (3.1) and (3.8)-(3.12), we derive our proposition.
Proposition 3.4. Foru=7)_, aig(%Ai) + v, with v € E; x, we have
1 85; P 4 s 8812 Z—fi—s
<VI€ (u)v )\_1 8$1> alCQ( Za )—8$1 — CBVK(!M)‘|
elog \; 1
+HO(STVR @)l + 57 + ol + Ajlon = aalef™ )
—1\2n—4 2 —1 — 1,1 1 1
+0(eerz(loges )T + hylogery +eralloges) (= + 1))-
Al A2
Proof. An easy computation shows
~ 199,
T =0, 1
oy o) =0 (313)
~ 1 ({9&' co Ogyj 2 - e =
(95, /\_18x1> = on +0 <€ij log(sij ) + iz — ;] ) - (3.14)
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For the other part

ntt e 1 85 ~ ot o1 99; VK(x )
K Ko™ log \;). |
sn 5 N oz, Rn 0 X Ox; -G \; +O()\l +&? ogA) (3.15)
"'Z_Jri—f 1 35 Co 6612 _ 1 3 1
5n Ko; \; O, =K@ )/\i ox; ( )‘ |21 — x| + €35 log(ery ) + )\—i€12(10g(€121)) >,
(3.16)
n+d e~ 199, c2 Oe12
— K5 "0, =K _
=179 N am - R + (el ley — )
1 1
+0 <sf2 log(eyy) + o (log(e12)) 2) , (3.17)

Using (3.1), (3.13)-(3.17), we have our proposition.

4. Proof of Theorem 1.1

The proof uses the same argument than the previous proof. We will focus only on the main points.
The first one is concerning the concentration points and speeds. As in the proof of Theorem 1.1, we
introduce the set

1
M, o :{m = (o, \,z,v) € R? x (R7)? x (S™)1 x HQQ(S") 2 € Bz, v <vo, i > —,
, ”

_8
ot K(x; i
Zli(l)—l}<V0, Co<f <Cal, |$i—l‘j|>d0,Vi,j},
04;‘41((;3]») j

elog \; < vy,

where o, ¢g, dy are some suitable positive constants, v is a small positive constant. Let us define the
function by

q
Voo Meo =R, m= (a,)\,xﬂ)) HIE(Zaid(ImM) +U). (41)
i=1
As in [3], using the Euler-Lagrange’s coefficients, we easily get the following proposition.
Proposition 4.1. Let m = (o, A\, x,v) € M. 2. m is a critical point of U, o if and only if u = ZO@&' +wv

is a critical point of I, i.e. if and only if there exists (A, B, C) € R?x R? x (R”)q such that the following
holds :

(Ea,) a;’—;f =0, Vi=1,..q (4.2)
(Ex,) %I’—;f: 51‘52, zn; JaA ), Vi=1,..q (4.3)
(E.,) 8;';;2 = By( a/\ 8% Zn; 8#83:1 v), Vi=1,..,q (4.4)
(E,) % =Z§< i0; igi j: ”Z‘;). (4.5)

The results of Theorem 1.1 will be obtained through a careful analysis of (4.2)-(4.5) on M. 2. As
usual in this type of problems, we first deal with the v-part of w, in order to show that it is negligible
with respect to the concentration phenomenon. The study of (F,) yields :
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Proposition 4.2. There exists a smooth map which to any (g,a, A\, z) such that (a, \,x,0) in ME 1
associates T € E(, \) such that ||[v]| < vo and (E,) is satisfied for some (A, B,C) € R? x R? x (R”)
Such a T is unique, minimizes W, o(a, X, z,v) with respect to v in {v € E n/|v]| < vo}, and we have
the following estimate

VK xX; min(1, P —1\min(2=4 n

7l = O(e+Z (B 2y o 3™ T g i 5 ) (4.6)
i 4 % VE)

Proof. Expanding I. with respect to v € E(, ), we obtain

IE(Zai&. +) = c(a,z,\) + %Q(v, v) — f(v) + R(v), (4.7)

where Q(.,.) is a quadratic form positive definite, f(.) is a linear form and R(v) satisfies R(v) = o(||v[|?),
R(v) = of[[o]}) and R"(v) = o(1).

Since Q(v,v) is positive definite, we derive that the following problem

min{Ig(Zaigi +v), v € B,y and [Jv]| < vo} (4.8)

is achieved by a unique function ¥ which satisfies [[7]| < c||f||. Now, following [5] we get the estimate
(4.6). Since T is orthogonal to the functions {4;, dd;/d\;, D6, Joxl,i < q, j <n}, there exist A, B and C
such that

0w, ! ~
81},2 (a0, \,2,7) = VI( Zoms +7) = Z (A¢5¢—|—B +;C”8 J) (4.9)

=1

The proposition follows.

Proof of Theorem 1.1. Once 7 is defined by Proposition 4.2, we estimate the corresponding num-
bers A, B,C by taking the scalar product in H3(S™) of (E,) with &;, 85;/0\;, 85;/0z; for 1 < i < ¢
respectively. Thus we get a quasi-diagonal system whose coefficients are given by

1 0Pé; 1

/Ri |VP5i|2:S4+O()\%2); o VPV P, —O(AA) v O, :O(A_f)’
R 8£\§j_0(A1Af) / V%gzl; )\3 / V 8P5‘ _O(/\;A?)’
[ #2Roh) [ 625 ot [ ors oy
. VPs; vaé;‘j O()\ii); vagr‘jvaéij = O(%i),

with I'y, T's are positive constants and where we have used the fact that |21 — x| > ¢ > 0.
The other hand side is given by

OWep _ Ve 5, 1 0%ep  0Vep 85, 1 0V., 0V, 99

- 1/ - 9 y T = 5 . 41
O, < ov "’ ) a; O\ < Ov 8/\i> o; O0x; < v 8xi> (4.10)
Using Proposition 3.2, some computations yield
oV, 5 8
= = ——5,0; a; \©H &y A, ) 4.11
D, n_4Sﬁl—|—V1(6o¢)\a:) (4.11)

with 8 = (84,..., 8,) where 3; = a; — l/K(yi)"T_4 and V,, is a smooth function which satisfies

1
Va,; = O(ﬁ? + elog \; + F + |$i — yl|2) (4.12)
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Observe that, |z; — ;| > ¢ for i # j implies

2 2G(xs, ;)
AMA2(1 — cosd(zi, ;7)) (1+0(1)) = T(l +o(1)),

Eij =

where G(z;,7;) = (1 — cosd(z;,x;)) "', it is the Green’s function of P. Thus,

R R =
/\18)% gij(1+0(1))

—2G(£Ci, xj)
T(l +o(1)),

Now, using Proposition 3.3, we get

ey 1 <ssn A(n — 4)cy AK (;) 1)

D Ky Vi\on T 0 K@) X

1 G(xi,mj)
+§ yn— 4/8 )\ i) + Vi, (e, a0\ 2), (4.13)
J#i

where ¢y and ¢z are defined in Proposition 3.3 and V), is a smooth function satisfying

1/ 1 o —wyl? elog \; 9\, € 1
=0 = = 1 =yl ) (= + =)]. 4.14
Vi, O[Ai<)\f+ 3 +e%log \; + 32 >+(|ﬁ|+|x y|)()\i+)\?) (4.14)

i
Lastly, using Proposition 3.4, we have

8\11512 . —63
oz~ Ko7 YR @)+ Vel a0 2), (4.15)

where V;, is a smooth function such that
1
Va, = O(r + (I8 + elog A + |i — yil*) i — yi|)~ (4.16)

Notice that these estimates imply

8511022 —O(|ﬁ|+elog)\ + )\1? +|xi—yi|2), 621!—; 20(%? + )%), % =O(|xi — | + )\%)

The solution of the system in A, B and C shows that

lei —ys| 1
22 Af)

(2

1 1
Ai = O(|8] +elog i + 2 + |z —yil?), Bi=0(~—

M), Ci=0f

This allows us to evaluate the right hand side in the equations (Fy,) and (F,,), namely

an_ 1 |yl_ |
G +Z J(,M >:0((A3+A—+ )il (4.17)
2%+ 0%, _ 1 _

Bz g™ +;cij<m,v> - 0((2 +eXi + i — yi|)|v||), (4.18)

where we have used the following estimates

‘ 0%
0x?

T =c A(14C); i =y + &5,

H 8)\2 H@xi

Now,we set
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where (; € R, £, € R™ are assumed to be small and for 4,5 € 1,...,q, A; = A;(y;) verifies

&+4(n ez A2 +2 ZAA

n n
J#i

(=BG (ys, y;) = 0.

)

With these changes of variables and using (4.11), (E,,) is equivalent to
Bi = Vai(e,8,¢,6) = OB + el loge| + [¢[). (4.19)

Now, using (4.13), we show by an easy computation

eSn  An—4e AK(yi+§&) 1 > 2 aGlit+&yi+§)
ni\; n Ky +&) ? gy K(yj)n§4 i Aij
328, 4(

AK(yi)  VAK(y) >
Ai(1+¢) + i
1+ Kw) '+ K ©
3/2 42 (1 + 2C1‘)(1 + C ) 253/261[\2[\ 3G(yz,y )
;2615 / A1AJ K(y')(n_4)/8 yuyj +Z (n 1)/8 ox; = 51
JFi

2¢163/2A2A; OG (v,
Z C(lgj)(n 4)/8 givyj)f]‘FO( 3/2(§ +|§1| ))

%%53/2/\13(1 + 3@)(

J#i

J#i
8(n — 4)ca A3 AK (y;) 2c1A2A 2c15 ZAZA,

_ 23/2 i § : i E G TVl

g |: n K(yl) + ];ﬂ K(y])(n74)/8 (ylv y] :|< + J;él n 4 /8 (yla yJ)CJ

4(n — 4)ea A3 V(AK) (y5) 2e1A7N;  0G(yi,y5)
3/2 4 it J )

2 3/2A2A G (yi,
A D)o+

J#i
This implies that (E),) is equivalent, on account of (4.14) and (4.17), to
8(n — 4)ca A3 AK (y;) 2c1AZA 2c1AZA,
- + TGy |G+ ) = Gy yy)¢;
[ n K (y;) ; K(yj) s ’ :| ; K(y;) s !
4(n —4)ea A3 V(AK)(ys) 2c1A2A; 0G(yi, ;)
+ [ Z : . }51‘

n K(yl) gy _K'(yj)nT_4 ox;
+ 30 2akiy 00U, — 13, (e06.6.6) = OUSF + I + I+ (4.20)
i K(yj) 8 Oz

Lastly, using (4.15), (4.16) and (4.18), we see that (E,,) is equivalent to
DK (yi)é; = Vi, (£, 8, ¢, €) = O + B8] + [¢* + [€%). (4.21)

We remark that V,, V), and V;, are smooth functions. This system may be written as

B=V(e5,C.E). 422
L(6,€) = W(e.5.6.6),

where L is a fixed linear operator on R%"+1) defined by (4.20) and (4.21) and V, W are smooth functions
satisfying

V(e,8,¢,€) = O(EV2+ (B2 + ¢17),
W(e, 8,¢,€) = O(eV2+ B2 + ¢ + [¢?).



10 K. OuLp Boun

Moreover, a simple computation shows that the determinant of L is not equal to zero. Hence L is
invertible, and Brouwer’s fixed point theorem shows that (4.22) has a solution (5%,(%, &%) for e small
enough, such that

|Be|:O(€1/2); |C€|:O(€1/2); |£€|:O(€1/2).

Hence, we have constructed m® = (a®, A°, z%) such that u. := >, afg(xfﬁ,\g) + e, satisfies (4.2)-(4.6).
Therefore, by Proposition 4.1, u. is a critical point of I., i.e., u. satisfies (u.). Hence, the proof of
Theorem 1.1 is thereby completed.
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