
Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1–5.
©SPM – E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm doi:10.5269/bspm.63131

Proximity equitability Colouring in graphs

S.Neelakantan, V. Swaminathan, R. Sundareswaran∗ and K. A. Venkatesh

abstract: Let G be a simple, finite, undirected and connected graph. Let S be the set of all vertices of
maximum degree in G. The proximity of a vertex u ∈ V (G) is the shortest distance of u from S. Two vertices
of G are said to be proximity equitable if their proximity difference is at most 1. In this paper, a study of
proximity equitable proper colouring is initiated.
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1. Introduction

W.Meyer [4] introduced the concept of cardinality equitability among colour classes in proper colour-
ing. E.Sampathkumar gave the concept of degree equitability in graphs. Several papers [1,5,6,7,8,9,10,
11,12,13] were published involving the degree equitability of vertices. A graph is said to be a a chordal
graph if every cycle of length four or more has a chord. That is, there is an edge between two non
consecutive vertices of the cycle. In his paper, a new type of equitability called proximity equitability
in connected graphs is introduced. In our society, persons who are some what close to people in power
become highly influential than those who are far from power group. So, the influence of a person can
be measured by his proximity to power group. A graph model can be created to study this situation.
Consider a connected graph. The power of a vertex can be measured either by labels attached to the
vertices or by its degree. Here we consider power measured by degree. A vertex with Maximum degree
is considered to be a powerful vertex. The distance of a vertex from the set of powerful vertices is a
measure the influence of a vertex and this distance is called the proximity to powerful set of vertices.
Two vertices are proximity equitable if the difference between their proximities is less than or equal to
one. In the following proximity equitablity theory is initiated.

2. Equitable Proximity

Definition 2.1 Let G be a connected simple, finite and undirected graph with vertex set V (G) and edge
set E(G). Let S be the set of all vertices of maximum degree of G namely ∆(G).The proximity of a vertex
say u of G , denoted by pr(u), is defined as the shortest distance of u from S. That is, pr(u) = d(u, S).
Two vertices u and v of G sare said to be equitable proximity vertices if |d(u, S)− d(v, S)| ≤ 1.

Remark 2.1 If u and v are adjacent, then pr(u) and pr(v) differ by at most one. Hence if degpr(u)
is defined as the number of neighbours of u whose pr value differ by at most one from pr(u), then
degpr(u) coincides with deg(u). Where as degree equitable domination is different from domination,
proximity equitable domination coincides with domination.
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3. Proximity equitable colouring

Definition 3.1

Let Epr = max{|S| : any two elements of S are proximity equitable}.
epr = min{|S| : any two elements of S are proximity equitable}.
Epri = max{|S| : any two elements of S are proximity equitable and independent and S is maximal}.
epri = min{|S| : any two elements of S are proximity equitable and independent and S is maximal}.

Definition 3.2 Let π = {V1, V2, · · · , Vk} be a partition of V (G) into independent sets such that for any
i, any two vertices of Vi are proximity equitable. Each Vi is called a pre-colour class. The trivial partition
of V (G) into singletons is such a partition. The minimum cardinality of such a partition is called the
proximity equitable independent partition of G and is denoted by χpre(G).

Remark 3.1 Let π = {V1, V2, · · · , Vk} be a χpre(G) proximity equitable independent partition of
V (G). Then in any two distinct pre-classes Vi and Vj , there exist vertices u ∈ Vi and v ∈ Vj such
that either u and v are adjacent or |pr(u)− pr(v)| ≥ 2.

Remark 3.2 Let G be a connected graph. Then 2 ≤ χ(G) ≤ χpre(G) ≤ n.

Proposition 3.1 Let G be a connected graph. Then n
Epri(G) ≤ χpre(G) ≤ n− Epri(G) + 1.

Proof. Let π = {V1, V2, · · · , Vk} be a χpre(G) proximity equitable and independent partition of V (G).

Since |Vi| ≤ Epri(G) for each i, 1 ≤ i ≤ k, n =
k∑

i=1

|Vi| ≤ kEpri(G). Therefore, n
Epri(G) ≤ k = χpre(G).

Let V1 be a Epri-set of G. Let π1 = {V1, V2, · · · , Vt} be a partition of V (G) such that each Vj , 2 ≤ j ≤ t
are the singletons from V (G)−V1 where t = n−|V1| = n−Epri(G). Clearly, π1 is a proximity equitable
and independent partition of G. Therefore, χpre(G) ≤ |π1| = n− Epri(G) + 1.

Example 3.1 Let G be the complete bipartite graph Km,n. Then Epri(G) = max{m,n} and epri(G) =
min{m,n}.

Remark 3.3 For Kn, Epri(Kn) = 1 and hence the bounds given above for χpre(G) are sharp.

Definition 3.3 A connected graph is pre-complete if χpre(G) = n. That is, any two vertices u, v of G
are either adjacent or |pr(u)− pr(v)| ≥ 2.

Theorem 3.1 χpre(G) = n if and only if G is complete.

Proof. If G is complete, then χpre(G) = n.
Conversely, let χpre(G) = n. Let u, v be any two vertices of G. Then either u and v are adjacent or

|pr(u) − pr(v)| ≥ 2. Suppose u and v are not adjacent. Then |pr(u) − pr(v)| ≥ 2. Let S be the set of
all maximum degree vertices of G. Since any two vertices of S have equal proximity namely zero, S is a
clique. Let u ∈ V (G) − S. Then u does not have maximum degree. Let pr(u) = k. If k = 1, then u is
adjacent with some vertex of S. If S has a unique vertex say v, then u and v are adjacent. If there exists
no other vertex then G = K2. Since v is the unique vertex of maximum degree, any vertex adjacent
to v has degree less than that of v. All adjacent vertices of v are mutually adjacent since otherwise,
there are two non-adjacent vertices in N(v) such that their proximity difference is 0, a contradiction.
Therefore, N [v] is complete. Since v is the unique vertex of maximum degree, there can not be two or
more adjacent vertices for v since otherwise, there will be more than one vertex of maximum degree.
Also, no neighbour of v can have a neighbour different from v since otherwise v can not be a maximum
degree vertex. Hence G = K2. If S has more than one vertex, then uis adjacent with every vertex of S
since otherwise, there exists a vertex v ∈ S such that u and v are non-adjacent and |pr(u)− pr(v)| = 1,
a contradiction. Therefore, S ∪ {u} is a clique. Hence, all the neighbours of S together with S form a
clique. Hence u has maximum degree in G, a contradiction since u is not in S. If k ≥ 2, then there exists
a vertex w ∈ V (G) − S such that prox(w) = 1 and this leads to contradiction. Hence S = V (G). That
is all vertices of V have maximum degree and belong to S. Since S is a clique, G is complete.
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Remark 3.4 Degree equitable complete graphs are defined in [1]. In these graphs, any two vertices
are either adjacent or their degree difference is at most one. For example, K4 with a pendent vertex
attached with exactly one vertex of K4 is degree equitable complete but not proximity complete.

Proposition 3.2 Given a positive integer k, there exists a connected graph G such that χpre(G)−χ(G) =
k.

Proof. Consider the subdivision graph G of a star with degree of the centre at least three. Then
χpre(G) = 3 and χ(G) = 2. Let H be the graph obtained from K1,3 by subdividing each edge exactly k
times. Then χpre(H) = k + 2 and χ(H) = 2.

Proximity sequence in a connected graph: Let G be a simple, finite, undirected and connected graph.
Just like degree sequence, one can define proximity sequence. The proximity of a vertex, being the
distance of the vertex from the set of maximum degree vertices enables to introduce proximity sequence.
The vertices of maximum degree have proximity zero. The neighbours of maximum degree vertices have
proximity one etc. For example, in a regular connected graph, the proximity sequence is {0n}.(that is,
all the n vertices have proximity 0). In K1,n , the proximity sequence is {0, 1n}.

Proposition 3.3 Let G be a connected simple graph with proximity sequence {0n0, · · · , (k − 1)n(k−1)}.
Then χpre(G) ≤ kχ(G).

Proof. Let Vi = {v ∈ V (G) : pr(v) = i}. Then χpre(G) ≤
k−1∑
i=0

χ(Vi) ≤
k−1∑
i=0

χ(G) = kχ(G).

Corollary 3.1 If G is a connected planar graph , then χ(G) ≤ 4. Hence, if G has k distinct proximity
levels, χpreG) ≤ 4k.

Corollary 3.2 If G is a connected chordal graph with k distinct proximity levels and clique number ω(G),
then χpre(G) ≤ kω(G) ( since in a chordal graph, χ(G) = ω(G)).

Proposition 3.4 Given any positive integer k, there exists a connected graph G with k distinct proximity
levels such that χpre(G) = kχ(G).

Proof. Let G be the graph obtained from a path P2k−1 by attaching t pendent vertices at the initial
vertex of the path where t ≥ 3. Then, χpre(G) = 2k and χ(G) = 2. Hence, χpre(G) = kχ(G).

Remark 3.5 Let G be a caterpillar whose spine is a path of length 2k − 1 with the degree of the
initial vertex, strictly greater than the degree of any subsequent vertex on the path. The degree of
the initial vertex is strictly greater than the degree of any subsequent vertex on the path. Then,
χpre(G) = kχ(G). Note that G is also planar and connected. Another example is as follows: Let G
be the unicyclic graph obtained from C4 with a diagonal by attaching a path of length 3k− 1 to the
vertex of degree 3 in C4 with a diagonal. Then χpre(G) = 3k and χ(G) = 3. Also ω(G) = 3 and so,
χpre(G) = kω(G). Clearly G is a chordal graph.

Theorem 3.2 [3] If G is a graph of order n, then (i) 2
√
n ≤ χ(G)+χ(G) ≤ n+1 (ii) n ≤ χ(G)χ(G) ≤

(n+1)
2

2
.

Theorem 3.3 For any graph G with G and G connected and with the same number of proximity level

k, (i) 2
√
n ≤ χpre(G) + χpre(G) ≤ k(n+ 1) (ii) n ≤ χpre(G)χpre(G) ≤ k2 (n+1)

2

2
.

Proof. Since χ(G) ≤ χpre(G) ≤ kχ(G), the above result follow from the above Theorem.

Remark 3.6 Let G = P4. Then G = P4.χpre(G) = 2 = χpre(G).k = 1. Hence, the left inequalities
in (i) and (ii) are sharp. Let G = C5. Then G = C5.χpre(G) = 3 = χpre(G).k = 1. So, the right
inequalities in (i) and (ii) are sharp.

Theorem 3.4 [2] For any fixed integer k ≥ 3, k-colourability is NP- complete.



4 S. Neelakantan, V. Swaminathan , R. Sundareswaran and K. A. Venkatesh

Theorem 3.5 Given a positive integer k ≥ 3, the problem of deciding whether χpre(G) ≥ k is NP-
complete for any graph G with χ(G) ≥ 3.

Proof. Let G be a connected graph with χ(G) ≥ 3. Let G1 be the graph obtained from G by attaching
suitable number of pendent vertices at each vertex so that degree of any vertex of G in G1 is ∆(G) + 1.
(see Theorem 2.18 [1]). Clearly χpre(G) = χ(G) + 1. Hence the result follows from the above Theorem.

Theorem 3.6 Let G be a connected unicyclic graph with cycle Cn. Let Pt be the longest path attached
at any vertex of Cn. Then χpre(G) = max{s, t} where s is the maximum proximity value of any vertex
on Cn.

Proof. Let G a connected unicyclic graph with cycle Pn. Let Pt be the longest path attached at any
vertex say u of Cn. Then, the pair of vertices adjacent to you have proximity value 0 or 1. They can
be combined with the adjacent point of u in the attached path so as to form an independent proximity
equitable set. To this set, vertices on Cn with degree equal to that of u as well as the first vertex on
each path attached to the vertices of Cn can be added. Again, those vertices at distance 2 from a vertex
of maximum degree can be combined with the distance 2 vertices on the paths attached to the vertices
of Cn. The vertices at a distance t on any path Pt as well as those on the cycle with proximity value t
on the cycle can be put together. Suppose, there is a unique vertex say u on the cycle with maximum
degree. Then there are pairs of vertices on either side of u at with proximity value from 1 to ⌈n+1

2 ⌉. If
t ≤ ⌈n+1

2 ⌉ , then χpre(G) = ⌈n+1
2 ⌉. Otherwise, χpre(G) = t. Suppose there are more than one vertex

on Cn with maximum degree. Let s be the maximum proximity value of any vertex on Cn. Then,
χpre(G) = max{s, t}.

Example 3.2 Let G be obtained from C11 by attaching a path of length 6 at exactly one vertex of C11.
⌈n+1

2 ⌉ = 6.t = 7. Hence χpre(G) = 7.If P4 is attached at a unique vertex of C11, then χpre(G) = 6.
Suppose, P4 is attached at u1, u2, u5, u7 and u9. Then s = 2. t = 4. Hence χpre(G) = 4.

Definition 3.4 Let G be a connected graph. G is called pre-bipartite if χpre(G) = 2.

Theorem 3.7 A connected graph is pre- bipartite if and only if G is bipartite and any non- maximum
degree vertex is adjacent with a maximum degree vertex.

Proof. Let G be a connected graph which is pre-bipartite V (G). Then, there are only two proximity
values namely 0 for maximum degree vertices and 1 for non-maximum degree vertices. Hence any non-
maximum degree vertex is adjacent with a maximum degree vertex. If any non-maximum degree vertex
is not adjacent with any maximum degree vertex, then proximity value of that vertex is great than or
equal to 2, a contradiction. Hence the theorem.

Example 3.3 (i) Consider G obtained from C4 by attaching a pendent vertex at exactly one vertex of
C4. Then G is bipartite and there exists a vertex which is not adjacent with a maximum degree vertex.
Here,χpre(G) = 3.

(ii) Let G be the graph which is obtained from K3 by attaching a pendent vertex at exactly one vertex
of K3. Then there are only two proximity levels 0 and 1. Every non maximum degree vertex is adjacent
to a maximum degree vertex. Yet χpre(G) = 3. It is because G is not bipartite.

Remark 3.7 Any tree can be obtained from a unicyclic graph by removing an edge in the cycle.
Hence χpre(T ) can be obtained from χpre of the corresponding unicyclic graph.

Open problems:

1. Edge removal or edge addition and its effect on χpre(G).

2. Dominator and colour class domination in independent and proximity equitable partition.

3. Secure independent proximity equitable partition.

4. Colourful dominating set from independent proximity equitable partition.
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