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Numerical Solution of Non-linear Volterra Integral Equation of the First Kind

Boutheina Tair, Mourad Ghait, Hamza Guebbai, Mohemd Zine Aissaoui

abstract: In this paper, we focus on the numerical solution of a nonlinear Volterra equation of the first
kind. The existence and uniqueness of the exact solution are ensured under a necessary condition which
we present next. We develop a numerical method based on two essential parts which are linearization and
discretization. We start with the discretization of the equations using the concept of Nystrom’s method and for
the linearization we apply Newton’s method. We present theorems that show the convergence of the proposed
method. At the end, numerical examples are provided to show the efficiency of our method.

Key Words: Volterra integral equation, non-linear integral equation, numerical integration, Newton
method.
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1. Introduction

Volterra integral equations are the good choice for scientists to model many evolution problems.
Historically, the emergence of this equation was to express population dynamics through Volterra’s most
famous work, as it constituted a qualitative leap in modeling and applied mathematics [15], and since
then, the use of this type of equations have expanded year after year. In year 1976 [9], it was the best
solution for modeling population evolution, in 1988 it was used to express vibrational motion and was
applied to express the sorption kinetics of mixtures in 1990, then we find it a year 1996 in semi conductor
devices and then to express viscosity in 1999. The above was a slight review of some of the works
presented in the last century and to date it has countless applications like the tumor growth [10,12],
modeling the system related to leukemia [13], birth-death process [11] and relativistic quantum physics
[14].

Because these equations forms varied according to the domain where they are applied, there are
different types and shapes. In this manuscript, we focus on one particular type, which is the non-linear
Volterra equation. This has been presented in many works in the following general form:

∀x ∈ [0, X ],

∫ x

0

K(x, t, u(t)) dt = f(x), X < +∞, (1.1)

where f is a given function in the Banach space C1[0, X ].
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The above equation first appeared in the work of Abel to express the motion of a particle along a series
curve. For our part, we present some of the recent work in order to shed light on its great importance.
The importance of this equation was not limited to a specific field or domain. We find it in engineering
[1,3,4], in physics [6], in artificial neutwork [7], in meteorology to express the amount of precipitation [8],
in medicine, where it has been used recently to study the evolution of the Corona virus or to find the best
model of it [2,5], the population dynamics and spread of epidemics [16]. The equation (1.1) is considered
to be one of the problems that are ill-posed, according to Hadamard’s definition [20]. Therefore, we
find many researches concerned with the development of the regularization methods [21,22]. On the
other side, there are many scientific papers that deal with the search for a numerical solution to this
type of equation, in which many numerical methods have been invented, and we mention among them:
Petryshyn’s fixed point theorem [24], homotopy perturbation [25], discrete operational vector scheme
[25], hp-vertion collocation method [27] and Nyström method [28,29,30,31,32,33]. In this manuscript,
we recall sufficient conditions to prove the existence and uniqueness of the solution in the Banach space
C0[0, X ]. For the method approach, we develop a numerical method based on two principle ideas of
Nyström and Newton procedures. Therefore, we use some concepts of linearization and discretization
that have been applied in the treatment of the nonlinear Fredholm integral equation of the second kind
[34,35,36].

2. Problem Position

In this paper, we are interested in developing a method for finding the best possible approximate
solution. But, we do not deal directly with the equation (1.1) for the aforementioned reason. Instead,
we suggest that the kernel K is derivable with respect to x. So, that we can convert the equation into a
non-linear Volterra equation of second kind:

∀x ∈ [0, X ], K(x, x, u(x)) = f ′(x) −

∫ x

0

∂K

∂x
(x, t, u(t)) dt. (2.1)

In order to make the presentation clearer and easy to read, let C0[0, X ] be a Banach space equipped
with next norm

∀v ∈ C0[0, X ], ||v||C0[0,X] = max
0≤x≤X

|u(x)|.

3. Analytical Study

Since we cannot invent a numerical solution without ensuring the existence and uniqueness of the
exact solution, we assume that the kernel verifies the below hypotheses which are sufficient for ensuring
this.

(H1)

(1) f(0) = 0,

(2) f and f ′ in C0[0, X ],

(3) K and
∂K

∂x
∈ C0

(

[0, X ]2 × R

)

,

(4) ∃ M > 0, max
0≤x,t≤X

(

|K(x, t, v)|,

∣

∣

∣

∣

∂K

∂x
(x, t, v)

∣

∣

∣

∣

)

≤ M ,

(5) ∃ L > 0, ∀ x, t ∈ [0, X ], ∀v, v̄ ∈ R:

∣

∣

∣

∣

∂K

∂x
(x, t, v) −

∂K

∂x
(x, t, v̄)

∣

∣

∣

∣

≤ L |v − v̄|,

(6) ∀ y ∈ R, ∃ ! v : K(x, x, v) = y,

(7) ∃ θ > 0, ∀ x, t, ∀v, v̄ ∈ R : |K(x, t, v) − K(x, t, v̄) ≥ θ |v − v̄|.
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Let us apply the successive approximation method or Picard’s method [16] to equation (2.1).This
consists in the construction of sequences {un}n∈N and {ψn}n∈N which are defined by















u0(x) = f ′(x),

K(x, x, un(x)) = f ′(x) −

∫ x

0

∂K

∂x
(x, t, un−1, (t)) dt, ∀n ≥ 1,

(3.1)

and






ψ0(x) = f ′(x),

ψn(x) = un(x) − un−1(x), ∀n ≥ 1.
(3.2)

Theorem 3.1. Under the hypotheses (H1), the equation (2.1) has a unique solution in C0[0, X ].

Proof. Details can be found in [16]. �

4. Numerical Study

In the search for a numerical solution of the equation (1.1), we follow two essential steps: The first
one is to discretize our problem (1.1) by replacing the integral sign by a numerical integration, whereas
the second step is the linearization of the new approximate problem using Newton’s method. In order to
estimate the numerical error, we use the continuity module κ0(., h) by

∀ v ∈ C0[0, X ], κ0(v, h) = sup
|x−y|≤h

|v(x) − v(y)|.

4.1. Discretization

We define ∆n, n ≥ 1 the uniform discretization of the interval [0, X ] as:

∆n =

{

n ≥ 1, 0 = x0 < x1 < · · · < xn−1 < xn = X, h = xj+1 − xj , 0 ≤ j ≤ n

}

. (4.1)

By choosing the collocation points x = xi, we obtain

K(xi, xi, u(xi)) +

∫ xi

0

∂K

∂x
(xi, t, u(t)) dt = f(xi), 0 ≤ i ≤ n. (4.2)

Our main goal is searching ui as an approximation of u(xi). So, we replace the integral sign in (4.2) by
the following numerical Gaussian scheme:

∀v ∈ C0[0, X ],

∫ xi

0

v(x) dx ≈ h

i
∑

j=0

ωjv(xj), 0 ≤ i ≤ n,

such that {ωi}0≤i≤n is called the weights and verify:

∃ W > 0, sup
0≤i≤n

|ωi| ≤ W < +∞, n ≥ 1.

We get the following discrete problem: For all i fixed, find ui solution of the equation:

K(xi, xi, ui) + h

i
∑

j=0

ωj

∂K

∂x
(xi, xj , uj) = f ′(xi), (4.3)

which is equivalent for all i = 0, . . . n and n ≥ 1, to non-linear equation:


















K(xi, xi, ui) + hwi

∂K

∂x
(xi, xi, ui) = Si,

Si = f ′(xi) − h
i−1
∑

j=0

ωj

∂K

∂x
(xi, xj , uj).

(4.4)
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Before studying the convergence of approximate solution, we need to show that the system (4.4) has a
unique solution.

Theorem 4.1. For h sufficiently small, the system (4.4) has a unique solution.

Proof. For in ≥ 1 fixed, suppose that {ui}0≤i≤n are known. Now, we present two sequences: the first is
{up

i }p∈N and verifies the problem











K(xi, xi, u
p+1
i ) = Si − hwi

∂K

∂x
(xi, xi, u

p
i ), p ≥ 1,

u0
i = ui−1,

(4.5)

and the second is {φp
i }p∈N and is defined by

{

φ
p
i = u

p
i − u

p−1
i , p ≥ 1,

φ0
i = ui−1.

(4.6)

It is clear that
p

∑

q=0
φ

q
i = u

p
i . Then, we prove that up

i converge to ui. For all p ≥ 1, by using (H1), 5

|K(xi, xi, u
p
i ) − K(xi, xi, u

p−1
i )| ≤ h|ωi| |

∂K

∂x
(xi, xi, u

p−1)
i ) −

∂K

∂x
(xi, xi, u

p−2
i )|,

≤ LhW |up−1
i − u

p−2
i |. (4.7)

On the other hand, under the assumption (H) (7), we have

|K(xi, xi, u
p
i ) − K(xi, xi, u

p−1
i )| ≥ θ|up

i − u
p−1
i |. (4.8)

According to equalities (4.7) and (4.8), we obtain

|up
i − u

p−1
i | ≤

LhW

θ
|up−1

i − u
p−2
i |, (4.9)

which gives

|φp
i | ≤

LhW

θ
|φp−1

i |. (4.10)

By induction, we can prove that

|φp
i | ≤

(

LhW

θ

)p

|φ0
i−1|. (4.11)

Finally, we get
p

∑

q=0

|φq
i | =

p
∑

q=0

(

LhW

θ

)q

|u0
i |.

Assuming that h is small enough so that
LhW

θ
< 1, we can show that

∑

q≥1

(

LhW

θ

)q

is convergent.

Therefore,
p

∑

q=0
φ

q
i is convergent. So, lim

p→+∞
u

p
i = ui. It remains to check whether this limit satisfies the

required our equation.
Recalling (4.5)

K(xi, xi, u
p+1
i ) = Si − hwi

∂K

∂x
(xi, xi, u

p
i ), p ≥ 1.
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Then,

lim
p→+∞

K(xi, xi, u
p+1
i ) = Si − hwi lim

p→+∞

∂K

∂x
(xi, xi, u

p
i ),

since, K and
∂K

∂x
∈ C0([a, b]2 × R). This leads

K(xi, xi, ui) = Si − hwi

∂K

∂x
(xi, xi, ui),

which gives the result.
It remains to show the existence of the solution. Let {ui}0≤i≤n and {vi}0≤i≤n be solutions of system
(4.7) and (4.8) respectively. Then, for all i ≥ 1 fixed

|K(xi, xi, ui) − K(xi, xi, v)| ≥ θ|ui − vi|. (4.12)

On the other hand, we have

|K(xi, xi, ui) − K(xi, xi, v)| ≤ hw|
∂K

∂
(xi, xi, ui) −

∂K

∂
(xi, xi, vi)|,

≤ hWL|ui − vi|. (4.13)

Next, from (4.12) and (4.13) it follows that

|ui − vi| ≤
hWL

θ
|ui − vi|. (4.14)

Since
hWL

θ
< 1, we get ui = vi. This proves the uniqueness of the solution of the system (4.4) and

completes the proof of Theorem 4.1. �

4.1.1. Approximate solution convergence of discrete problem. First, we define the local consistency error
as

δn(h, xi) =

∫ xi

0

K(xi, t, u(t)) dt− h

i
∑

j=0

ωj

∂K

∂x
(xi, xj , u(xj)).

We say the numerical method is consistent if

lim
h→0

(

max
0≤i≤n

|δn(h, xi)|

)

= 0.

Now, we establish the convergence of the approximate solution ui.

Theorem 4.2. If the approximation method is consistent, then

lim
h→0

(

max
0≤i≤n

|ui − u(xi)|

)

= 0.

Proof. For n large enough and i = 0, 1, . . . n, we have

|K(xi, xi, ui) − K(xi, xi, u(xi)| ≤ h

i
∑

j=0

|ωj | |
∂K

∂x
(xi, xj , uj) −

∂K

∂x
(xi, xj , u(xj))| + |δn(h, xi)|,

≤ Lh|ωi||ui − u(xi)| + Lh

i−1
∑

j=0

|ωj | |uj − u(xj)| + |δn(h, xi)|.

But, using H)1, 7 we get

θ |ui − u(xi)| ≤ |K(xi, xi, ui) − K(xi, xi, u(xi)|.
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Then, we obtain

θ|ui − u(xi)| ≤ Lh|ωi| |ui − u(xi)| + Lh

i−1
∑

j=0

|ωj | |uj − u(xj)| + |δn(h, xi)|.

Thus

θ|ui − u(xi)| ≤ LhW |ui − u(xi)| + LhW

i−1
∑

j=0

|uj − u(xj)| + |δn(h, xi)|,

so that

|ui − u(xi)| ≤
LhW

θ − LhW

i−1
∑

j=0

|uj − u(xj)| +

max
0≤i≤n

|δn(h, xi)|

θ − LhW
.

Applying Gronwel’s lemma [16], we obtain

|ui − u(xi)| ≤
1

θ − LhW

(

1 +
LhW

θ − LhW

)i−1(

max
0≤i≤n

|δn(h, xi)| + LhW |u0 − u(x0)|

)

.

Moreover, we have
(

1 +
LhW

θ − LhW

)i−1

≤

(

1 +
LhW

θ − LhW

)n

,

and

lim
n→∞

(

1 +
LhW

θ − LhW

)n

< +∞.

This means that there is a constant µ > 0 such that

∀n ≥ 1, max
0≤i≤n

1

θ − LhW

(

1 +
LhW

θ − LhW

)i−1

≤ µ.

This implies that

max
0≤i≤n

|ui − u(xi)| ≤ µ

(

max
0≤i≤n

|δn(h, xi)| + LhW |u0 − u(x0)|

)

,

and when h converges to 0, we get convergence of n to ∞. The desired result follows. �

4.2. Linearization

We start by presenting the process of Newton’s method. Let us recalling that en general, Newton’s
method is applied to solve many problems of applied mathematics which have the general form:







Find the solution v ∈ R of

g(v) = 0,
(4.15)

where g is a non linear function. For i ≥ 1 fixed, we define the non-linear functional ψi as:

ψi : R −→ R

υ 7−→ ψi(v) = K(xi, xi, υ) + hwi

∂K

∂x
(xi, xi, υ) − Si. (4.16)

Assume that
∂K

∂x
verifies the following hypotheses

(H2)
∂2

K

∂v∂x
∈ C0([0, X ]2 × R,R)
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Then, we get ψi ∈ C2(R,R).
The system to solve has the following form:







Find the solution ui ∈ R of

ψi(ui) = 0.
(4.17)

Applying Newton’s method, we obtain the following system:















u0
i ∈ R,

uk+1
i = uk

i −
ψi(u

k
i )

ψ′
i(u

k
i )
.

(4.18)

Theorem 4.3. For i fixed, let ψi be a non-linear function defined by (4.16) of class C2. Let R > 0, Ji,R

be closed ball such that Ji,R = [ui −R, ui +R] ⊆ Ii and C =
max |ψ′′

i (v)|

2 min |ψ′
i(v)|

. If CR < 1 and if the starting

approximation u0
i in Ji,R, then for all uk

i in Ji,R and

|uk+1
i − ui| ≤ C|uk

i − ui|
2,

where

C|uk
i − ui|

2 ≤

(

C|u0
i − ui|

)2k

≤ (CR)2k.

Proof. See [37] and [38]. �

Theorem 4.4. Let u(xi) be a solution of (4.2) and uk
i is an approxiamate solution of the the iterative

system (4.18), then

lim
n→+∞

lim
k→+∞

(

max
0≤i≤n

|u(xi) − uk
i |

)

= 0.

Proof. For n and k large enough, we have

max
0≤i≤n

|u(xi) − uk
i | ≤ max

0≤i≤n
|u(xi) − ui| + max

0≤i≤n
|ui − uk

i |.

Theorem 4.2 gives

max
0≤i≤n

|ui − u(xi)| ≤ µ

(

max
0≤i≤n

|δn(h, xi)| + LhW |u0 − u(x0)|

)

,

and from Theorem 4.3 we get

max
0≤i≤n

|ui − uk
i | ≤

(CR)2k

C
.

Then,

max
0≤i≤n

|u(xi) − uk
i | ≤ µ

(

max
0≤i≤n

|δn(h, xi)| + LhW |u0 − u(x0)|

)

+
(CR)2k

C
.

So, when n → +∞ and k → +∞, we get the desired result. �
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5. Numerical Examples

In this section, we give two numerical examples to illustrate the efficiency and accuracy of proposed
method. In the following examples, we calculate ui according the scheme (4.18), and we define the
discrete error as:

errn = max
0≤i≤n

|u(xi) − uk
i |.

Let us start with the equation:

∀x ∈ [0, 1],

∫ x

0

1

x+ t+ 9 + exp(u(t))
dx =

1

2
log

(

3x+ 10

x+ 10

)

, (5.1)

where the exact solution is u(x) = log(x+1). Table 1 shows the error magnitudes between the approximate
and exact solutions. The results we present in the table were obtained using the MATLAB program.

n
k

10 20 30 50

10 9.6047e-04 7.799171 9.6047e-04 10.994035 9.6047e-04 14.677863 9.6047e-04 25.032011

50 2.0446e-04 27.800183 2.0446e-04 69.370806 2.0446e-04 71.267143 2.0446e-04 273.740221
100 1.0290e-04 48.720499 1.0290e-04 91.716690 1.0290e-04 158.136187 1.0290e-04 5526.485901

500 7.9802e-04 225.026614 1.0705e-04 429.065173 1.8603e-05 2.0682e-05 7.3098e-06 3082.171232

1000 4.0433e-04 840.972380 5.3099e-05 1400.235219 8.2444e-06 1562.552823 1.8275e-06 4724.151322

Table 1: Errors of exact and approximate solutions.

In the table 1, in each row, we choose n and then change the value of k. We notice that when n is
equal to 10 and 50, the error does not change. But, after having chosen a large n, the more the number
of iterations k increases, the less the error becomes. So the approximate solution converges to the exact
solution. In the next figure, we plot the approximate and exact solutions to observe the difference between
them.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Exact Solution
Approximate Solution

Figure 1: Approximate and exact solutions with h = 0.1 of equation (5.1).
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We give another equation

∀x ∈ [0, 3],

∫ x

0

exp(x)t2 + 1

cos(t)2 + 1 + u(t)2
dt =

x

2
+
x3 exp(x)

6
, (5.2)

and the exact solution u(x) = sin(x). Let introduce this table, which explain the error between the
numerical and exact solution in all points xi. What we are going to present in the table are calculated
using MATLAB.

n
k

10 time(s) 20 time(s) 30 time(s) 50 time(s)

10 0.0260 11.175920 0.0176 22.756830 0.0176 26.460829 0.0176 37.429666

50 0.0068 38.840905 0.0013 87.966106 7.3009e-04 109.458969 7.3009e-04 158.506082
100 0.0037 59.144494 5.7459e-04 119.415460 1.8268e-04 174.320379 1.8268e-04 231.792491

500 7.9802e-04 249.483759 1.0705e-04 597.724081 1.8603e-05 5109.798293 7.3098e-06 1204.280340

1000 4.0433e-04 1003.764503 5.3099e-05 3112.587714 8.2444e-06 23388.40 1.8275e-06 2560.750899

Table 2: Errors of exact and approximate solutions.

In each row of the table 2, we will set n to a certain value and then change to k until we get the best
possible error. From one row to the next, we increase the value of n, we notice that the error decreases
each time. Our goal through the two tables 1 and 2 is to specify everywhere the number of divisions n
of the interval [a, b] the larger. We obtain an error close to zero. Thus, we guarantee the convergence of
the numerical solution to the exact solution.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

Exact Solution
Approximate Solution

Figure 2: Approximate and exact solution with h = 0.1 of equation (5.2).

6. Conclusion

In this paper, we are interested in the analytical and numerical study of non-linear Volterra integral
equation of the first kind. A sufficient condition has been introduced in order to prove the existence and
uniqueness of the analytical solution. Then, for the numerical approach, we started with the discretization
of our problem by applying the principle of Nyström’s method. Next, we obtained at each iteration i a
non-linear equation to solve. For this reason, we applied the principle of Newton’s method to reformulate
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the discrete nonlinear equation to a linear equation. We have presented two convergence theorems: the
first one for the convergence of the discrete solution ui to u(xi) and the second one for the convergence
of the iterative solution uk

i to the discrete solution ui. At the end, we have given two numerical examples
to illustrate the efficiency of the proposed numerical method.
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