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Statistically Convergent ∆3 Difference Triple Sequence Spaces on a Seminormed Space

Bimal Chandra Das and Binod Chandra Tripathy∗

abstract: In this paper we define and study the difference triple sequence spaces ℓ3∞st(∆
3, q), c3st(∆

3, q),
c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) defined over a seminormed space (X, q), seminormed by q. Some

algebraic and topological properties of these classes of sequences are established and certain inclusion results
have been obtained. Several examples are also provided to support the results and notions introduced.
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1. Introduction

Throughout the article N, R and C denote the set of natural, real and complex numbers, respectively.
A triple sequence in a seminormed space (X, q), seminormed by q is a function x : N × N × N −→ X.
In this article a triple sequence x will be denoted by x = (xlmn)l,m,n∈N (shortly x = (xlmn)). Different
types of triple sequences were introduced and investigated in the literature available. Sahiner et al. [24],
studied this type of sequences at the initial stage and then many authors investigated convergence of
such sequences ( Savaş and Esi [25], Debnath et al. [16], [17] are a few to be named).

Savaş and Esi [25], have introduced statistical convergence of triple sequences on probabilistic normed
space. Debnath et al. [16], [17], generalized these concepts by using the difference operator and regular
matrix transformation, respectively.

In this paper we study triple sequence spaces over a semi-normed space (X, q). Throughout w3(q)
denotes the class of all triple sequences on (X, q).

Further, ℓ3∞−st(q), c30−st(q), c3B0−st(q), c3R0−st(q), c3BR0−st(q), c3st(q), c3Bst (q), c3Rst (q) and c3BRst (q) denote
the following subclasses of w3(q): statistically bounded, statistically null (in Pringsheim’s sense), bounded
statistically null (in Pringsheim’s sense), regularly statistically null, bounded regularly statistically null,
statistically convergent (in Pringsheim’s sense), bounded statistically convergent in Pringsheim’s sense,
regularly statistically convergent, and bounded regularly statistically convergent triple sequence spaces,
respectively.

The statistical convergence was introduced independently by Fast [19], and Steinhaus [26], as a
generalization of ordinary convergence of real sequences (although the idea of statistical convergence
appeared initially as almost convergence, in 1935 in the first edition of Zygmund’s monograph [30], The
notion of statical convergence of sequences is based on the notion of asymptotic or natural density of a
set A ⊂ N (see, for example, [22].). Statistical convergence has been developed by many authors in several
directions (for instance, see [18], [21], [27], [27]).

A subset A of N× N× N is said to have the (triple) natural density δ3(A) if the limit

δ3(A) := lim
l,m,n→∞

1

lmn
Σp≤lΣq≤mΣr≤nχA(p, q, r)
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exists [24]. Here χA is the characteristic function of A.
A triple sequence (xlmn) is said to be statistically convergent to L (in Pringshiem’s sense) if for every

ε > 0,
δ3({(l,m, n) ∈ N× N× N : |xlmn − L| ≥ ε}) = 0.

We denote this fact by st− liml,m,n→∞ xlmn = L.
A statistically convergent sequence (xlmn) is said to be regularly statistically convergent if the following

limits exist:
1. st− limn→∞ f(|xlmn − Llm|) = 0, (l,m ∈ N);
2. st− limm→∞ f(|xlmn − Lln|) = 0, (l, n ∈ N);
3. st− liml→∞ f(|xlmn − Lmn|) = 0, (m,n ∈ N).

The idea of difference sequence spaces was introduced by Kizmaz [20] as follows:

Z(∆) = {x = (xn) ∈ w : (∆xn) ∈ Z}

for Z = c, c0, ℓ∞, the spaces of convergent, null, and bounded single sequences, respectively, where
∆xn = xn − xn+1 for all n ∈ N. He proved that these spaces are Banach spaces normed by

∥x∥ = |x1|+ sup
n∈N

|∆xn|.

Tripathy and Sarma [29] introduced difference double sequence spaces on a seminormed space and
difference double sequence spaces as follows:

Z(∆) = {(xmn) ∈ w2 : (∆xmn) ∈ Z}

for Z = c2, c20, ℓ2∞, the spaces of convergent, null, and bounded double sequences, respectively, where

∆xmn = xmn − xm(n+1) − x(m+1)n + x(m+1)(n+1), m, n ∈ N.

Another approach to difference double sequence spaces was proposed in [16] by using a matrix transfor-
mation.

Debnath and Das [14] introduced pth order difference triple sequence spaces in the following way:

Z(∆p) = {(xlmn) ∈ w3 : (∆pxlmn) ∈ Z}

for Z = c3, c30, ℓ3∞, c3B, c3R, the spaces of convergent, null, bounded, bounded convergent and regularly
convergent triple sequences respectively, where ∆pxlmn = xlmn − xlm(n+p) − xl(m+p)n + xl(m+p)(n+p) −
x(l+p)mn + x(l+p)m(n+p) + x(l+p)(m+p)n − x(l+p)(m+p)(n+p) for all l,m, n ∈ N.

Recently for the above mentioned spaces, 2nd order difference triple sequence spaces was introduced
by Debnath and Das [15] as follows:

Z(∆2) = {(xlmn) ∈ w3 : (∆2xlmn) ∈ Z},

where ∆2xlmn was defined in the following way:

∆2xlmn = xlmn − 2x(l+1)mn + x(l+2)mn − 2xl(m+1)n + 4x(l+1)(m+1)n

− 2x(l+2)(m+1)n + xl(m+2)n − 2x(l+1)(m+2)n + x(l+2)(m+2)n

− 2xlm(n+1) + 4x(l+1)m(n+1) − 2x(l+2)m(n+1) + 4xl(m+1)(n+1)

− 8x(l+1)(m+1)(n+1) + 4x(l+2)(m+1)(n+1) − 2xl(m+2)(n+1)

+ 4x(l+1)(m+2)(n+1) − 2x(l+2)(m+2)(n+1) + xlm(n+2)

− 2x(l+1)m(n+2) + x(l+2)m(n+2) − 2xl(m+1)(n+2)

+ 4x(l+1)(m+1)(n+2) − 2x(l+2)(m+1)(n+2) + xl(m+2)(n+2)

− 2x(l+1)(m+2)(n+2) + x(l+2)(m+2)(n+2)
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2. Definitions and Preliminaries

In 1900, Pringsheim [23] introduced convergence of double sequences. Following this idea one obtains
the following definition.

Definition 2.1 A real or complex triple sequence (xlmn) is said to be convergent to L (in the Pring-
sheim sense) if for every ε > 0, there exists n0 = n0(ε) ∈ N such that |xlmn − L| < ε, whenever
l ≥ n0, m ≥ n0, n ≥ n0. In this case we write liml,m,n→∞ xlmn = L.

Note. A triple sequence convergent in Pringsheim’s sense may not be bounded [24]..

The statistical version of this definition for triple sequences in a semi-normed space (X, q) is:

Definition 2.2 A triple sequence (xlmn) in a semi-normed space (X, q) is said to be statistically
convergent to L (in the Pringsheim sense) if for every ε > 0 we have

δ3
(
{(l,m, n) ∈ N3 : q(xlmn − L) ≥ ε}

)
= 0.

In this case we write st−liml,m,n→∞ xlmn = L.

Definition 2.3 A triple sequence (xlmn) in a semi-normed space (X, q) is said to be statistically
bounded if there exists M > 0 such that δ3({(l,m, n) ∈ N× N× N : q(xlmn) > M}) = 0.

Let E be a triple sequence space and let K = {(li,mi, ni) : i ∈ N; l1 < l2 < . . . ;m1 < m2 < . . . ;n1 <
n2 < . . .} ⊂ E. A K-step space of E is a sequence space λK(E) = {(xlimini

) ∈ w3 : (xlmn) ∈ E}.
A canonical pre-image of a sequence (xlimini

) ∈ λK(E) is a sequence (ylmn) ∈ E defined as follows:

ylmn =

{
xlmn, if (l,m, n) ∈ K,
0, otherwise.

Definition 2.4 A triple sequence space E is said to be:

1. solid (or normal) if (αlmn · xlmn) ∈ E whenever (xlmn) ∈ E and (αlmn) is a triple sequence of
scalars with |αlmn| ≤ 1 for all l,m, n ∈ N;

2. monotone if it contains the canonical pre-images of all its step spaces;

3. symmetric if (xlmn) ∈ E implies (xσ(l,m,n)) ∈ E, for any permutation σ of N× N× N;

4. a sequence algebra if (xlmn) ⋆ (ylmn) = (xlmn · ylmn) ∈ E , whenever (xlmn) ∈ E and ylmn ∈ E.

Remark 2.1 If a triple sequence space is solid, then it is monotone.

Now we introduce the following difference operator on triple sequence spaces, over a seminormed space
(X, q) by

Z(∆3, q) = {(xlmn) ∈ w3(q) : (∆3xlmn) ∈ Z(q)}
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for Z = ℓ3∞−st, c30−st, c3B0−st, c3R0−st, c3BR0−st, c3st, c3Bst , c3Rst and c3BRst , where

∆3xlmn = xlmn − 3xlm(n+1) + 3xlm(n+2) − xlm(n+3) − 3xl(m+1)n + 9xl(m+1)(n+1)

− 9xl(m+1)(n+2) + 3xl(m+1)(n+3) + 3xl(m+2)n − 9xl(m+2)(n+1)

+ 9xl(m+2)(n+2) − 3xl(m+2)(n+3) − xl(m+3)n + 3xl(m+3)(n+1)

− 3xl(m+3)(n+2) + xl(m+3)(n+3) − 3x(l+1)mn + 9x(l+1)m(n+1)

− 9x(l+1)m(n+2) + 3x(l+1)m(n+3) + 9x(l+1)(m+1)n − 27x(l+1)(m+1)(n+1)

+ 27x(l+1)(m+1)(n+2) − 9x(l+1)(m+1)(n+3) − 9x(l+1)(m+2)n

+ 27x(l+1)(m+2)(n+1) − 27x(l+1)(m+2)(n+2) + 9x(l+1)(m+2)(n+3)

+ 3x(l+1)(m+3)n − 9x(l+1)(m+3)(n+1) + 9x(l+1)(m+3)(n+2)

− 3x(l+1)(m+3)(n+3) + 3x(l+2)mn − 9x(l+2)m(n+1) + 9x(l+2)m(n+2)

− 3x(l+2)m(n+3) − 9x(l+2)(m+1)n + 27x(l+2)(m+1)(n+1) − 27x(l+2)(m+1)(n+2)

+ 9x(l+2)(m+1)(n+3) + 9x(l+2)(m+2)n − 27x(l+2)(m+2)(n+1)

+ 27x(l+2)(m+2)(n+2) − 9x(l+2)(m+2)(n+3) − 3x(l+2)(m+3)n

+ 9x(l+2)(m+3)(n+1) − 9x(l+2)(m+3)(n+2) + 3x(l+2)(m+3)(n+3)

− x(l+3)mn + 3x(l+3)m(n+1) − 3x(l+3)m(n+2) + x(l+3)m(n+3)

+ 3x(l+3)(m+1)n − 9x(l+3)(m+1)(n+1) + 9x(l+3)(m+1)(n+2)

− 3x(l+3)(m+1)(n+3) − 3x(l+3)(m+2)n + 9x(l+3)(m+2)(n+1)

− 9x(l+3)(m+2)(n+2) + 3x(l+3)(m+2)(n+3) + x(l+3)(m+3)n

− 3x(l+3)(m+3)(n+1) + 3x(l+3)(m+3)(n+2) − x(l+3)(m+3)(n+3), ...................(1)

for all l,m, n ∈ N (see [1]).

Remark 2.2 If a triple sequence is convergent in Pringsheim’s sense then it is statistically convergent
but the converse is not necessarily true (see [24]).

Example 2.1 We define a triple sequence

xlmn = l +m+ n− 2, for all l,m, n ∈ N,

It can be express as follows:

xlmn =



1 2 3 4 ... ...
2 3 4 5 ... ...
3 4 5 6 ... ...
4 5 6 7 ... ...
... ... ... ... ... ...
2 3 4 5 ... ...
3 4 5 6 ... ...
4 5 6 7 ... ...
5 6 7 8 ... ...
... ... ... ... ... ...
3 4 5 6 ... ...
4 5 6 7 ... ...
5 6 7 8 ... ...
6 7 8 9 ... ...
... ... ... ... ... ...
4 5 6 7 ... ...
5 6 7 8 ... ...
6 7 8 9 ... ...
7 8 9 10 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


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Here the sequence is neither statistically bounded nor statistically convergent, so this sequence is not
convergent also. Now we calculate the triple difference sequence for xlmn = l +m + n − 2, using result
(1) in the following way:

∆3xlmn = (l +m+ n− 2)− 3(l +m+ n− 1) + 3(l +m+ n)− (l +m+ n+ 1)

− 3(l +m+ n− 1) + 9(l +m+ n)− 9(l +m+ n+ 1) + 3(l +m+ n+ 2)

+ 3(l +m+ n)− 9(l +m+ n+ 1) + 9(l +m+ n+ 2)− 3(l +m+ n− 3)

− (l +m+ n+ 1) + 3(l +m+ n+ 2)− 3(l +m+ n+ 3) + (l +m+ n+ 4)

− 3(l +m+ n− 1) + 9(l +m+ n)− 9(l +m+ n+ 1) + 3(l +m+ n+ 2)

+ 9(l +m+ n)− 27(l +m+ n+ 1) + 27(l +m+ n+ 2)− 9(l +m+ n+ 3)

− 9(l +m+ n+ 1) + 27(l +m+ n+ 2)− 27(l +m+ n+ 3) + 9(l +m+ n+ 4)

+ 3(l +m+ n+ 2)− 9(l +m+ n+ 3) + 9(l +m+ n+ 4)− 3(l +m+ n+ 5)

+ 3(l +m+ n)− 9(l +m+ n+ 1) + 9(l +m+ n+ 2)− 3(l +m+ n+ 3)

− 9(l +m+ n+ 1) + 27(l +m+ n+ 2)− 27(l +m+ n+ 3) + 9(l +m+ n+ 4)

+ 9(l +m+ n+ 2)− 27(l +m+ n+ 3) + 27(l +m+ n+ 4)− 9(l +m+ n+ 5)

− 3(l +m+ n+ 3) + 9(l +m+ n+ 4)− 9(l +m+ n+ 5) + 3(l +m+ n+ 6)

− (l +m+ n+ 1) + 3(l +m+ n+ 2)− 3(l +m+ n+ 3) + (l +m+ n+ 4)

+ 3(l +m+ n+ 2)− 9(l +m+ n+ 3) + 9(l +m+ n+ 4)− 3(l +m+ n+ 5)

− 3(l +m+ n+ 3) + 9(l +m+ n+ 4)− 9(l +m+ n+ 5) + 3(l +m+ n+ 6)

+ (l +m+ n+ 4)− 3(l +m+ n+ 5) + 3(l +m+ n+ 6)− (l +m+ n+ 7) = 0

This result can be expressed in triple sequence notation as follows:

∆3xlmn =



0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


Which is statistically convergent to zero i.e. st− liml,m,n→∞ ∆3xlmn = 0 as well as bounded.

Example 2.2 Let

xlmn =

{
n, when m = 1, l ∈ N;
2, otherwise.
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Then st− liml,m,n→∞ xlmn = 2, but st− liml,m,n→∞ ∆3xlmn = 0.

Example 2.3 Let

xlmn =

{
2, when l,m, n are even;
−2, otherwise.

It can be express in triple sequence notation as follows:

xlmn =



−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
... ... ... ... ... ...
−2 −2 −2 −2 ... ...
−2 2 −2 2 ... ...
−2 −2 −2 −2 ... ...
−2 2 −2 2 ... ...
... ... ... ... ... ...
−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
−2 −2 −2 −2 ... ...
... ... ... ... ... ...
−2 −2 −2 −2 ... ...
−2 2 −2 2 ... ...
−2 −2 −2 −2 ... ...
−2 2 −2 2 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


Here the sequence (xlmn) is not statistically convergent and after taking difference operator on this se-
quence using equation (1) we obtain the following triple sequence representation:

∆3xlmn =



−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
... ... ... ... ... ...

−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
... ... ... ... ... ...

−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
... ... ... ... ... ...

−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
−256 256 −256 256 ... ...
256 −256 256 −256 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


This sequence (∆3xlmn) is not statiscally convergent but bounded.
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3. Main Results

Theorem 3.1 The triple sequence spaces ℓ3∞−st(∆
3, q), c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q),
c3BR0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are all linear spaces over C.

Proof: The proof is easy, so omitted. 2

Theorem 3.2 For the triple sequence spaces above we have:

(1) c30−st(∆
3, q) ⫋ c3st(∆

3, q);

(2) c3B0−st(∆
3, q) ⫋ c3Bst (∆

3, q);

(3) c3R0−st(∆
3, q) ⫋ c3Rst (∆

3, q);

(4) c3BR0−st(∆
3, q) ⫋ ℓ3∞−st(∆

3, q);

(5) c3BRst (∆3, q) ⫋ ℓ3∞−st(∆
3, q);

(6) c3Rst (∆
3, q) ⫋ c3st(∆

3, q);

(7) c3R0−st(∆
3, q) ⫋ c3B0−st(∆

3, q) ⫋ ℓ3∞−st(∆
3, q);

(8) c3Rst (∆
3, q) ⫋ c3Bst (∆

3, q) ⫋ ℓ3∞−st(∆
3, q).

Proof: (1) Let X = C with the usual norm q(x) = |x|. Consider the sequence (xlmn) defined by

xlmn =

{
1, if l,m, n are prime numbers,
mn, otherwise.

Then (xlmn) ∈ c3st(∆
3, q) but the sequence (xlmn) /∈ c30−st(∆

3, q).

Hence c30−st(∆
3, q) ⫋ c3st(∆

3, q). 2

Proof: (2) Let X = C with the usual norm q(x) = |x|. Consider the sequence (xlmn) defined by

xlmn =

{
2, if l,m, n are square,
5, otherwise.

Then (xlmn) ∈ c3Bst (∆
3, q) but the sequence (xlmn) /∈ c3B0−st(∆

3, q).

Similarly the others. 2

Theorem 3.3 The classes of sequences ℓ3∞−stc
3B
0−st(∆

3, q), c3R0−st(∆
3, q), c3BR0−st

(∆3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are seminormed spaces with the seminorm φ

defined by

φ(xlmn) = sup
l

q(xl11) + sup
m

q(x1m1) + sup
n

q(x11n) + sup
l,m,n

q(∆3xlmn).

Proof: We prove the theorem for the space c3BRst (∆3, q); the proofs for other cases are similar.

Since q is a seminorm, we have φ(xlmn) ≥ 0 for each (xlmn) ∈ c3BRst (∆3, q). Consider the zero triple
sequence denoted by θ3. Clearly ϖ(θ3) = 0. Also, by the definition of ϖ it follows φ(λ(xlmn)) =
|λ|φ(xlmn) for each (xlmn ∈ c3BRst (∆3, q) and any scalar λ.
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Let (xlmn) and (ylmn) be two sequences in c3BRst (∆3, q). Then

φ((xlmn) + (ylmn)) = sup
l

q(xl11 + yl11) + sup
m

q(x1m1 + y1m1) + sup
n

q(x11n

+ y11n) + sup
l,m,n

q(∆3xlmn +∆3ylmn)

≤ (suplq(xl11) + supmq(x1m1) + supnq(x11n)

+ supl,m,nq(∆
3xlmn)) + (sup

l
q(yl11) + sup

m
q(y1m1)

+ sup
n

q(y11n) + sup
l,m,n

q(∆3ylmn)) = φ(xlmn) + φ(ylmn).

Therefore, φ is a seminorm. 2

Theorem 3.4 Let (X, q) be a complete seminormed space. Then the spaces ℓ3∞−st(∆
3, q), c30−st(∆

3, q),
c3B0−st(∆

3, q), c3R0−st(∆
3, q), c3BR0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are all

complete under the seminorm φ.

Proof: We establish the result for the sequence space c3Rst (∆
3, q); the other cases can be established

similarly.

Let (xi
lmn) be a Cauchy sequence in c3Rst (∆

3, q).

Let ε > 0, then there exist n0 such that φ(xi
lmn − xj

lmn) < ε for all i, j ≥ n0. Hence we have

supl,m,n q(x
i
lmn − xj

lmn) < ε for all i, j ≥ n0 ⇒ xi
lmn is a Cauchy sequence in (X, q), (X, q) being

complete, so is convergent in (X, q). let limi→∞ xi
l11 = xl11 for l ∈ N , say. Similarly we find x1m1 such

that limi→∞ xi
1m1 = x1m1 and limi→∞ xi

11n = x11n. Also we can find xlmn for l,m, n > 1 such that
limi→∞ xi

lmn = xlmn. Thus we have (xlmn) such that limi→∞ xi
lmn = xlmn ∈ X. Hence xi

lmn − xlmn ∈
c3Rst (∆

3, q), for all i ≥ n0. Further, xlmn = xi
lmn − (xi

lmn − xlmn) ∈ c3Rst (∆
3, q), by the linearity of the

space. Hence c3Rst (∆
3, q) is complete. 2

Result 3.5. The triple sequence spaces ℓ3∞−st(∆
3, q), c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q),
c3BR0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are not solid in general. It follows from

the following example.

Example 3.1 Let X = C with the usual norm q(x) = |x|. Consider the sequence (xlmn) defined by

xlmn =

{
3 if l,m, n are cubes,
0, otherwise.

Then the direct calculation gives ∆3xlmn = 0 for all l,m, n ∈ R, Consider the triple sequence of
scalars defined by

αlmn = (−1)l+m+n for all l,m, n ∈ N.

Then the sequence (αlmn · xlmn) takes the following form

xlmn =

{
3(−1)l+m+n, if l,m, n are cubes,
0, otherwise.

Clearly

(xlmn) ∈ c30−st(∆
3, q), c3B0−st(∆

3, q), c3R0−st(∆
3, q), c3BR

0−st(∆
3, q),

but (αlmn · xlmn) /∈ c30−st(∆
3, q), c3B0−st(∆

3, q), c3R0−st(∆
3, q), c3BR

0−st

(∆3, q), hence the mentioned spaces are not solid in general.
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Example 3.2 Let X = C and consider the sequence (xlmn) defined by

xlmn =

{
l2, if m = 1 for all, l, n ∈ N;
mn, otherwise.

Consider the triple sequence of scalars defined by

αlmn = (−1)l+n, for all l,m, n ∈ N.

Then the sequence (αlmn · xlmn) takes the following form:

αlmn · xlmn =

{
l2(−1)l+n, if m = 1 for all l, n ∈ N;
mn(−1)l+n, otherwise.

Hence it follows that

(xlmn) ∈ l3∞st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q), c3BR
st (∆3, q)

, but
(αlmn · xlmn) /∈ l3∞st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q), c3BR

st (∆3, q).

Therefore, the spaces l3∞st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q), c3BR
st (∆3, q) are not solid in

general.

Result 3.7. The triple sequence spaces l3∞−st(∆
3, q), c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q),
c3BR
0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BR

st (∆3, q) are not symmetric in general. This follows
from the following example.

Example 3.3 Let X = C and q(x) = |x|. We consider the sequence (xlmn) defined by

xlmn = n, for all l,m, n ∈ N.

Consider a rearranged sequence (ylmn) of (xlmn) defined by

ylmn =

 n+ 2, if n = l and m is odd;
n− 2, if n = l + 2 and m is odd;
n, otherwise.

Clearly,
(xlmn) ∈ c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q), c3BR
0−st(∆

3, q)

but
(ylmn) /∈ c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q), c3BR
0−st(∆

3, q).

Hence the spaces c30−st(∆
3, q), c3B0−st(∆

3, q), c3R0−st(∆
3, q), c3BR

0−st(∆
3, q) are not symmetric in general.

Example 3.4 Let X = C and consider the sequence (xlmn) defined by

xlmn = lmn, for all l,m, n ∈ N,

and a rearranged sequence (ylmn) of (xlmn) defined by

ylmn =

 m+ 2, if m = l and n is even;
m− 2, if m = l + 2 and n is even;
m, otherwise.

It is easy to see that

(xlmn) ∈ l3∞−st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q), c3BR
st (∆3, q)

but
(ylmn) /∈ l3∞st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q), c3BR

st (∆3, q).

Hence the spaces l3∞st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q), c3BR
st (∆3, q) need not be symmetric.
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Proposition 3.1 The inclusion relation Z(q) ⫋ Z(∆3, q) holds for the following triple sequence spaces:

(1) Z = l3∞−st;

(2) c30−st, c
3B
0−st;

(3) c3R0−st, c
3BR
0−st,

(4) c3st, c
3B
st ;

(5) c3Rst and c3BR
st .

Theorem 3.5 The triple sequence spaces ℓ3∞−st(∆
3, q), c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q),
c3BR0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are not monotone in general.

Proof: The proof follow from the following Example.

Example 3.5 Let X = C and q(xi) = |x|. Consider the sequence (xlmn) defined by

xlmn = l, for all l,m, n ∈ N

It can be express as follows:

xlmn =



1 1 1 1 ... ...
1 1 1 1 ... ...
1 1 1 1 ... ...
1 1 1 1 ... ...
... ... ... ... ... ...
2 2 2 2 ... ...
2 2 2 2 ... ...
2 2 2 2 ... ...
2 2 2 2 ... ...
... ... ... ... ... ...
3 3 3 3 ... ...
3 3 3 3 ... ...
3 3 3 3 ... ...
3 3 3 3 ... ...
... ... ... ... ... ...
4 4 4 4 ... ...
4 4 4 4 ... ...
4 4 4 4 ... ...
4 4 4 4 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


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Taking difference operator on this sequence using result (1) we obtain the following result:

∆3xlmn =



0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
0 0 0 0 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


Here (xlmn) ∈ c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q), c3BR0−st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q),
, c3BRst (∆3, q).

Now we consider the sequence (ylmn) in the pre-image space defined by

ylmn =

{
xlmn, if l +m+ n is odd;
0, otherwise.

It can be express in triple sequence notation as follows:

ylmn =



1 0 1 0 ... ...
0 1 0 1 ... ...
1 0 1 0 ... ...
0 1 0 1 ... ...
... ... ... ... ... ...
0 2 0 2 ... ...
2 0 2 0 ... ...
0 2 0 2 ... ...
2 0 2 0 ... ...
... ... ... ... ... ...
3 0 3 0 ... ...
0 3 0 3 ... ...
3 0 3 0 ... ...
0 3 0 3 ... ...
... ... ... ... ... ...
0 4 0 4 ... ...
4 0 4 0 ... ...
0 4 0 4 ... ...
4 0 4 0 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


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Now we applying the difference operator using equation (1) in (ylmn) we get the following result:

∆3ylmn =



640 −640 640 −640 ... ...
−640 640 −640 640 ... ...
640 −640 640 −640 ... ...
−640 640 −640 640 ... ...
... ... ... ... ... ...

−896 896 −896 896 ... ...
896 −896 896 −896 ... ...
−896 896 −896 896 ... ...
896 −896 896 −896 ... ...
... ... ... ... ... ...

1152 −1152 1152 −1152 ... ...
−1152 1152 −1152 1152 ... ...
1152 −1152 1152 −1152 ... ...
−1152 1152 −1152 1152 ... ...
... ... ... ... ... ...

−1408 1408 −1408 1408 ... ...
1408 −1408 1408 −1408 ... ...
−1408 1408 −1408 1408 ... ...
1408 −1408 1408 −1408 ... ...
... ... ... ... ... ...
... ... ... ... ... ...


Here (ylmn) /∈ c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q), c3BR0−st(∆
3, q), c3st(∆

3, q), c3Bst (∆
3, q), c3Rst (∆

3, q),
, c3BRst (∆3, q). Thus none of these classes of spaces is monotone in general.

Example 3.6 Let X = C. Consider the sequence (xlmn) defined by

xlmn = lmn, for all l,m, n ∈ N

and the sequence (ylmn) in the pre-image space defined by

ylmn =

{
xlmn, if l +m+ n is even;
0, otherwise.

Clearly,
(xlmn) ∈ ℓ3∞st(∆

3, q),

but
(ylmn) /∈ ℓ3∞st(∆

3, q),

which shows that the space ℓ3∞st(∆
3, q) is not monotone in general.

2

We state the following result without proof, since it can be easily established.

Theorem 3.6 The triple sequence spaces ℓ3∞−st(∆
3, q), c30−st(∆

3, q), c3B0−st(∆
3, q), c3R0−st(∆

3, q),
c3BR0−st(∆

3, q), c3st(∆
3, q), c3Bst (∆

3, q), c3Rst (∆
3, q) and c3BRst (∆3, q) are sequence algebra.

4. Conclusion

In this article, we have established martingale difference sequence in possibility theory using hybrid fil-
tration. Also convergence relational analysis based strategy under the possibility environment. Besides,
we have validated our proposed hybrid possibility Martingale strategy by real life numerical example.
Further, it is hoped that the proposed hybrid possibility martingale be the potential topic for the future
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research.
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