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Statistically Convergent A? Difference Triple Sequence Spaces on a Seminormed Space
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ABSTRACT: In this paper we define and study the difference triple sequence spaces £3_ (A3,q), c3(A3,q),
SB(A3,q), 3R(A3,q) and 3BR(A3,q) defined over a seminormed space (X,q), seminormed by ¢q. Some
algebraic and topological properties of these classes of sequences are established and certain inclusion results
have been obtained. Several examples are also provided to support the results and notions introduced.
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1. Introduction

Throughout the article N, R and C denote the set of natural, real and complex numbers, respectively.
A triple sequence in a seminormed space (X, q), seminormed by ¢ is a function x : N X N x N — X.
In this article a triple sequence x will be denoted by x = (Zimn)i,m,nen (shortly x = (Zymy)). Different
types of triple sequences were introduced and investigated in the literature available. Sahiner et al. [24],
studied this type of sequences at the initial stage and then many authors investigated convergence of
such sequences ( Savag and Esi [25], Debnath et al. [16],[17] are a few to be named).

Savag and Esi [25], have introduced statistical convergence of triple sequences on probabilistic normed
space. Debnath et al. [16],[17], generalized these concepts by using the difference operator and regular
matrix transformation, respectively.

In this paper we study triple sequence spaces over a semi-normed space (X,q). Throughout w3(q)
denotes the class of all triple sequences on (X, q).

Further, £3,_,(q), §_q(a), (), (), §%%i(a), ci(a), ci(a), c3f(a) and cPR(q) denote
the following subclasses of w3(q): statistically bounded, statistically null (in Pringsheim’s sense), bounded
statistically null (in Pringsheim’s sense), regularly statistically null, bounded regularly statistically null,
statistically convergent (in Pringsheim’s sense), bounded statistically convergent in Pringsheim’s sense,
regularly statistically convergent, and bounded regularly statistically convergent triple sequence spaces,
respectively.

The statistical convergence was introduced independently by Fast [19], and Steinhaus [26], as a
generalization of ordinary convergence of real sequences (although the idea of statistical convergence
appeared initially as almost convergence, in 1935 in the first edition of Zygmund’s monograph [30], The
notion of statical convergence of sequences is based on the notion of asymptotic or natural density of a
set A C N (see, for example, [22].). Statistical convergence has been developed by many authors in several
directions (for instance, see [18],[21],[27],[27]).

A subset A of N x N x N is said to have the (triple) natural density d3(A) if the limit

. 1
(53(14) = lim fnglzqgmzranA(pa(Lr)

l,m,n—o0 [N
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exists [24]. Here x 4 is the characteristic function of A.
A triple sequence (2, ) is said to be statistically convergent to L (in Pringshiem’s sense) if for every
e >0,
d5({(l,m,n) e NX N X N: |xjm, — L| > e}) =0.

We denote this fact by st — limy . n—oo Timn = L.

A statistically convergent sequence (2., ) is said to be regularly statistically convergent if the following
limits exist:

1. st —limy 00 f(|Z1mn — Lim|) =0, (I,m € N);

2. st — im0 f(|Zimn — Lin]) =0, (I,n € N);

3. st — limy_yo0 f(|Ztmn — Lmn|) =0, (m,n € N).

The idea of difference sequence spaces was introduced by Kizmaz [20] as follows:
Z(A)={x=(z,) €w: (Az,) € Z}

for Z = ¢, ¢y, fw, the spaces of convergent, null, and bounded single sequences, respectively, where
Ax, = x, — x,41 for all n € N. He proved that these spaces are Banach spaces normed by

[[#]] = |21] + sup |Azy|.
neN

Tripathy and Sarma [29] introduced difference double sequence spaces on a seminormed space and
difference double sequence spaces as follows:

Z(A) = {(2mn) €W : (Azpy) € Z}
for Z = c2, 3, (2., the spaces of convergent, null, and bounded double sequences, respectively, where

AJj'mn = Tmn — Tm(n+1) — L(m+1)n + L(m+1)(n+1), M, N eN.

Another approach to difference double sequence spaces was proposed in [16] by using a matrix transfor-
mation.
Debnath and Das [14] introduced p'” order difference triple sequence spaces in the following way:

Z(Ap) = {(xlmn) € W3 : (Apxlmn) S Z}
for Z =c3, ¢, £3,, 3B, 3R, the spaces of convergent, null, bounded, bounded convergent and regularly

convergent triple sequences respectively, where ApTimn = Timn — Tim(nap) — Ti(m+p)n T Ti(m+p)(ntp) —
T(i+p)ymn + Ta+p)m(ntp) T L(4+p)(mtp)n — L(l4p)(mtp)(ntp) Tor all ,m,n € N.

Recently for the above mentioned spaces, 2"¢ order difference triple sequence spaces was introduced
by Debnath and Das [15] as follows:

Z(A?) = {(Ztmn) €W : (A%2p0n) € Z},

where A2z, was defined in the following way:

A’Zpn = Timn — 22014 1)mn + Ta42)mn — 2Tm+1)n + A0+ 1) (mt 1)n
= 22 42)(mt)n T Lim+2)n — 224 1) (mt2)n T T(@42)(m+2)n
= 2% (nt1) T A1) mnt1) — 22 (42)min+1) T AL mt1) (n41)
= 8Z(141) (m+1)(nt1) T AT (142)(m+1)(n41) — 2T1(m+2)(n+1)

T 4L (141) (m42)(n+1) — 2T(142)(m42)(n+1) T Lim(nt2)

= 22(41)m(n+2) T T+2)mn+2) — 2Ti(m+1)(n+2)

T AL (141) (A1) (n4+2) — 2T (142)(m+1) (n42) T Li(m+2)(n+2)
= 22314 1) (m+2) (n+2) T T(142)(m+2)(n+2)
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2. Definitions and Preliminaries

In 1900, Pringsheim [23] introduced convergence of double sequences. Following this idea one obtains
the following definition.

Definition 2.1 A real or complex triple sequence () is said to be convergent to L (in the Pring-
sheim sense) if for every e > 0, there exists ng = no(¢) € N such that |2, — L| < &, whenever
1 > ng, m > ng, n > ng. In this case we write limy ,,.n— 00 Timn = L.

Note. A triple sequence convergent in Pringsheim’s sense may not be bounded [24]..

The statistical version of this definition for triple sequences in a semi-normed space (X, q) is:

Definition 2.2 A triple sequence (xj,,) in a semi-normed space (X,q) is said to be statistically
convergent to L (in the Pringsheim sense) if for every £ > 0 we have

03 ({(l,m,n) e N*: g(xpmn — L) > 5}) =0.

In this case we write st —limy m n—so00 Timn = L.

Definition 2.3 A triple sequence (xj,,) in a semi-normed space (X,q) is said to be statistically
bounded if there exists M > 0 such that d3({(l,m,n) € N x N x N: q(zimn) > M}) =0.

Let E be a triple sequence space and let K = {(I;,m;,n;) :i € Nj Il <la < ...;m3 <mg <...;n1 <
ng < ...} C E. A K-step space of E is a sequence space A\i(E) = {(z1,m,n,;) € W : (Zimn) € E}.

A canonical pre-image of a sequence (Zy,m;n,) € Ak (F) is a sequence (Yimn) € E defined as follows:

| xmn, it (,m,n) € K,
Yimn =1 0, otherwise.

Definition 2.4 A triple sequence space F is said to be:
1. solid (or normal) if (Qmn - Timn) € E whenever (Zym,y,) € E and (qymy) is a triple sequence of
scalars with |mn| < 1 for all [,m,n € N;
2. monotone if it contains the canonical pre-images of all its step spaces;
3. symmetric if (Tym,) € E implies (25(,m,n)) € F, for any permutation o of N x N x N;

4. a sequence algebm if (xlmn)*(ylmn) = (xlmn ylmn) er ; whenever (xlmn) € E and Yimn € E.

Remark 2.1 If a triple sequence space is solid, then it is monotone.

Now we introduce the following difference operator on triple sequence spaces, over a seminormed space
(X,q) by

Z(A?’,q) = {(%imn) € wg(Q) : (ABxlmn) € Z(q)}
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— p3 3 3B 3R 3BR 3 3B 3R 3BR
for Z =03 st Co-str sty Coostr Coostr Cstr Car» Cor and g™, where

A Tinn = Timn — 3Tim(n+1) + 3Tim(n+2) — Tim(n+3) — 3Tim+1)n + ITi(m41)(n+1)

= 9Ty (m+1)(n+2) + 3Ti(m+1)(n+3) T 3Tum+2)n — ITU(m+2)(n+1)

+ 9%y (m+2)(n+2) = 3Ti(m+2)(n+3) — Ti(m+3)n T STi(m+3)(n+1)

= 3Ti(m+3)(n+2) T Ti(m+3)(n+3) — 3L(U+1)mn T IT(U+1)m(n+1)

= 9% (14 1ym(n+2) 3T 1)m(nt3) 9T (mr1)n = 2TTA41)(m41) (n41)

+ 272 141) (m4+1) (n+2) — IZ+1) (m+1) (n4+3) — IT(U+1)(m+2)n

272 141y (m+2) (n+1) = 27T (141) (m+2)(n+2) T 9T (141) (m+2) (n+3)

3L (141) (m43)n — 9L (141) (m+3) (n+1) T IT(@41)(m43)(n+2)

= 32141 (m+3) (n+3) T 3T 42)mn — IT(@42)mn+1) T 9L (11 2)m(n+2)

= 3T (142)m(n+3) — IT(42)(mt1)n + 2742y (mt1)(n+1) — 2TT(142) (mt 1) (n+2)

92 (142) (m41) (n+3) T IT(+2) (m42)n = 2T (142) (m+2) (n+1)

+ 272 (112) (m+2) (n+2) — IT(+2)(m+2)(n+3) — 3T(+2)(m+3)n

T 92 (142) (m43) (n+1) — IT(+2)(m43) (n+2) T 3T(142)(m+3)(n+3)

= Z43)ymn T 3TU43)m(n+1) — STU+3)m(n+2) T T(U+3)m(n+3)

+ 32 143) (m+1)n — ITA+3)(m+1)(n+1) T IT(U+3)(m+1)(n+2)

= 3T(143) (mA1) (n43) — 3T(43)(m+2)n T IT(A43)(m+2) (n+1)

= 92 (143) (m+2) (n+2) + 3T(U+3)(m+2)(n+3) T T(1+3)(m+3)n

= 3T (143) (m+3) (n+1) T 3T(U4+3) (m+3)(n+2) — T(U+3)(mA3) (nF3)s weereererseemees (1)
for all I, m,n € N (see [1]).

Remark 2.2 If a triple sequence is convergent in Pringsheim’s sense then it is statistically convergent
but the converse is not necessarily true (see [2/]).

Example 2.1 We define a triple sequence
Timn =1 +m+n—2, foralll,m,neN,

It can be express as follows:

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
Timn = 3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9
4 5 6 7
5 6 7 8
6 7 8 9
7T 8 9 10
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Here the sequence is neither statistically bounded mor statistically convergent, so this sequence is mot
convergent also. Now we calculate the triple difference sequence for Tymn =1+ m + n — 2, using result
(1) in the following way:

Azpn = (+m+n—2)=31+m+n—1)+31+m+n)—(+m+n+1)
—3l+m+n—-1)+9(l+m+n)—9(l4+m+n+1)+3(+m+n+2)
+3(l+m+n)—9(l+m+n+1)+9(0+m+n+2)—-3(1+m+n-23)
—(l4+m+n+1)+3l+m+n+2)=31l+m+n+3)+{(+m+n+4)
=3l+m+n—-1)+9(l+m+n)—9(l4+m+n+1)+3(+m+n+2)
+9(l+m+n)=27(l+m+n+1)+27(1l+m+n+2) -9 +m+n+3)
—9(l4+m+n+1)+27(l+m+n+2)—27(1+m+n+3)+9(+m+n+4)
+3l+m+n+2) -9l +m+n+3)+9(l+m+n+4) -3(1+m+n+5)
+30l+m+n)—9(l+m+n+1)+9(l+m+n+2)—-31l+m+n+3)
—9(l4+m+n+1)+27(l+m+n+2)—27(1l+m+n+3)+9(+m+n+4)
+9(l+m+n+2)=27(l+m+n+3)+27(l+m+n+4) -9 +m+n+5)
=30l4+m+n+3)+9(l+m+n+4)—9(+m+n+5+31+m+n+6)
—(l+m+n+1)+3(l4+m+n+2)=31+m+n+3)+(+m+n+4)
+3(l+m+n+2)—-9l+m+n+3)+9(l+m+n+4) —3(+m+n+5)
=304+m+n+3)+9(l+m+n+4)—9(+m+n+5+31+m+n+6)
+({l+m4+n+4)-31l+m+n+5)+3l+m+n+6)—(I+m+n+7)=0

This result can be expressed in triple sequence notation as follows:

0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
A3 pn = 0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O

Which is statistically convergent to zero i.e. st —limy ,m pn—yoo A3% 1 = 0 as well as bounded.

Example 2.2 Let

- | mn, whenm=11€eN;
tmn 2,  otherwise.
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Then st — limy m n—oo Timn = 2, but st — limy m n—oo A3 = 0.

Example 2.3 Let

. |2, when l,m,n are even;
tmn —2,  otherwise.

It can be express in triple sequence notation as follows:

-2 -2 -2 =2
-2 -2 -2 =2
-2 -2 -2 =2
-2 -2 -2 =2

-2 -2 -2 =2

-2 2 -2 2
—2 -2 -2 -2
—2 2 -2 2
T = | -2 -2 -2 -2

-2 -2 -2 =2
-2 -2 -2 =2
-2 -2 -2 =2

-2 -2 -2 =2
-2 2 =2 2
-2 -2 -2 =2
-2 2 =2 2

Here the sequence (ximn) s not statistically convergent and after taking difference operator on this se-
quence using equation (1) we obtain the following triple sequence representation:

—256 256 —256 256
256 —256 256 —256
—256 266 —256 256
256 —256 256 —256
—256 256 —256 256
256 —256 256 —256
—256 266 —256 256
256 —256 256 —256
A2pn = | —256 256  —256 256
256 —256 256 —256
—256 266 —256 256
256 —256 266 —256
—256 256 —256 256
256 —256 256 —256

—256 256 —256 256
256 —256 256 —256

This sequence (A3xlmn) s not statiscally convergent but bounded.
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3. Main Results

Theorem 3.1 The triple sequence spaces B G(A3q), 3 (A% q), 3B, (A% q), 3R, (A3q),
c3BR(A3,q), 3(A3,q), B(A3q), SR(A3,q) and CBR(A3,q) are all linear spaces over C.

Proof: The proof is easy, so omitted. O

Theorem 3.2 For the triple sequence spaces above we have:
(1) (D% q) & ci(A%q);
(2) PCa(D%9) & (A% q);
(3) 3R«(A%.q) & (A%, q);
(4) PR(A%,0) G Poo—st(D®,q);
(5) &R(A%,q) G Poc—s(D®q);
(6) c3(A%.q) & c&(A%,q);
(7) (8% a) G Pa(D%,q) G Fooat(D’,q);

(8) (%) G PP (D%.q) & Foa(D’q).

Proof: (1) Let X = C with the usual norm ¢(z) = |z|. Consider the sequence (Z,,) defined by

- 1, if I,m,n are prime numbers,
imn mmn, otherwise.

Then (2p,) € c3.(A3

A3, q) but the sequence (Zimn) ¢ c3_ (A3, q).
Hence ¢_(A3,q) & c3

Cst(A3,q)' O

Proof: (2) Let X = C with the usual norm ¢(x) = |z|. Consider the sequence () defined by

. | 2, ifl,m,n are square,
tmn 5, otherwise.

Then (z1mn) € c3B(A3,q) but the sequence (Timn) ¢ 32, (A3, q).
Similarly the others. ]

Theorem 3.3 The classes of sequences 0B L (A3,q), R, (A3q), 3BR
(A3q), S(A3q), B(A3,q), 3R(A3,q) and 3BR(A3,q) are seminormed spaces with the seminorm
defined by

P(Timn) = sup 4(w111) +8UP(21m1) + sUp (x110) + sup 4(A°@m).-

l,m,n

Proof: We prove the theorem for the space c2BR(A3, q); the proofs for other cases are similar.

Since ¢ is a seminorm, we have ¢(Zjm,) > 0 for each (zym,) € cSBR(A3,q). Consider the zero triple
sequence denoted by 6°. Clearly w(*) = 0. Also, by the definition of w it follows @(A(Zimn)) =
[N (Zimn) for each (zym, € SBR(A3,q) and any scalar \.
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Let (Zimn) and (Ymn) be two sequences in ¢3BR(A3,q). Then

e((Timn) + (Yimn)) = Slllp q(xi1 + Y1) +sup ¢(T1m1 + Yim1) +sup q(z11n
m n

+ ylln) + sup q(Asxlmn + ASylmn)

l,m,n
< (suprq(x111) + supmq(Tim1) + supnq(iin)
+ Supl,m,nq(Alemn)) + (Sup q(ylll) + sup q(ylml)
m

+ Sup Q(ylln) + sup q(A ylmn)) = Qo(xlmn) + (P(ylmn)

l,m,n

Therefore, ¢ is a seminorm. O

Theorem 3.4 Let (X, q) be a complete seminormed space. Then the spaces (3. _«(A3,q), c3_i(A3,q),

A3 A3 3BR A3 3 A3 3B A3 3R A3 d 3BR A3 1
C0 st( 7Q) CO st( 7q) Co— st( 7Q), Cst( aq)z Cst( 7q)7 Cst( ’q) ana Cg ( 7q) are
complete under the seminorm .

Proof: We establish the result for the sequence space c3R(A3,q); the other cases can be established
similarly.

Let (2!, ) be a Cauchy sequence in cX(A3,q).

Let ¢ > 0, then there exist ng such that o(
SUD; 1y (T — x{mn) < e forall i,j > ng = i, is a Cauchy sequence in (X,q), (X,q) being
complete, so is convergent in (X, q). let hmz—>oo zi, = 11 for | € N, say. Similarly we find z1,,,1 such
that hmi_>OO xlml = Tim1 and lim; o 244, = Z11n. Also we can find xpp, for I,m,n > 1 such that
lim; o0 &7,,,,, = Timn. Thus we have (Zimy) such that lim;_, xlmn = xlmn e X. Hence xlmn Timn €
c3R(A3,q), for all i > no. Further, zym, = i, — (2. — Timn) € F1(A3,q), by the linearity of the
space. Hence c3R(A3,q) is complete. O

zi - zfmn) < ¢ for all 4,5 > ng. Hence we have

Result 3.5. The triple sequence spaces 3. _«(A3,q), 3 (A3, q), 3B (A3 q), 3R.(A3q),
cSBR (A3q), S(A3,q), SB(A3,q), SR(A3q) and 3BR(A3,q) are not solid in general. It follows from
the following example.

Example 3.1 Let X = C with the usual norm q(x) = |z|. Consider the sequence (Zimy) defined by

. | 3 ifl,m,n are cubes,
tmn 0, otherwise.

Then the direct calculation gives A3z, = 0 for all I,m,n € R, Consider the triple sequence of
scalars defined by

Qmn = (=)™ for all I, m,n € N,

Then the sequence (Qumn * Timn) takes the following form

o 3(=1)HmEn if I m,n are cubes,
tmn = 0, otherwise.

Clearly
(xlmn) € Cg—st(A37Q> CO st(A37q> CO st(ASaQ) chLﬁ(ASaq)a

but (almn : l’lmn) g Cg—st(A37q) C0 st(A37q) C0 at(A37Q) CgBﬁ
(A3, q), hence the mentioned spaces are not solid in general.
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Example 3.2 Let X = C and consider the sequence (Zymn) defined by

. [ ifm=1 foradll, I,n €N;
tmn mn, otherwise.

Consider the triple sequence of scalars defined by
Qmn = (—1)l+", for alll,m,n € N.
Then the sequence (Qmn - Timn) takes the following form:

B2(-1)"" ifm=1 foralll,n €N,

Qmn * Tlmn = .
tmn * Hlmn {mn(l)””, otherwise.

Hence it follows that
(xlmn) € lgost(ASa Q)7 Cgt(A37q)a CitB(A3’ q)7 CEE(A ,CI) 3BR(A 7q)

, but
(almn ! zlm") ¢ lzost(ABa Q)7 Cgt(A 7Q) (Aga Q) 3R(A3 )7 CgtBR(A37 Q)

Therefore, the spaces I3, (A2,q), 3, (A3,q), 3 (A3,q), AR(A3,q), 3BE(A3,q) are not solid in
general.

Result 3.7. The trlple sequence spaces I3 (A% q), ci_ (A% q), 3B, (A3 q), B, (A3 q),
ABE(A3,q), c2,(A3,q), 3B(A3,q), (A3, q) and c2PR(A3, q) are not symmetric in general. This follows
from the following example.

Example 3.3 Let X = C and q(x) = |z|. We consider the sequence (Zimy) defined by
Timn =N, for alll,m,n € N.
Consider a rearranged sequence (Yimn) of (Ximn) defined by

n+2, ifn =1 andm is odd,

Yimn =1 n—2, ifn=101+2 and m is odd,
n, otherwise.
Clearly,
(xlmn) € Cgfst(A 7Q) COBst(A 7q) CORSt(A 7C]) COBQ(A?)vq)
but

(ylmn) é Cg st(A37Q) Cngt(AB q)a CgRst(Agzq) C%Bﬁ(A37q).

,q), caBE(A3 q) are not symmetric in general.

Hence the spaces c¢§_ ., (A3,q), 3B, (A3, q), 3B, (A3
Example 3.4 Let X = C and consider the sequence (Timn) defined by
Timn = Imn, for alllym,n € N,

and a rearranged sequence (Yimn) of (Timn) defined by

m+2, ifm=1 andn is even;
Ylmn = m—2, ifm=10+2 andn is even,
m, otherwise.

It is easy to see that
(xlmn) € lgofst(A?:q)v Cgt(A37q)a Cg’tB(A 7q> 3R(A 7q) BBR(A37q)

but
(Yimn) & Bost (A%, 0), (A% ), 2P (A%, q), cFH(A®, q), PH(A%, ).
Hence the spaces 12, (A3, q), 3,(A3,q), 2B(A3,q), 2E(A3,q), 2BR (A3, q) need not be symmetric.
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Proposition 3.1 The inclusion relation Z(q) & Z(A3,q) holds for the following triple sequence spaces:

1) z=13

oco—st?

(2) Cg—st ’ Cg§st 5

(3) Cgl—%stv ngﬁ ’

(4) Cg’tv CitB;

(5) 3E and 3BE.

Theorem 3.5 The triple sequence spaces (3, (A3,q), c3_(A3,q), 3B, (A% q), 3R (A3 q),

oco—st

c3BR (A3,q), 3(A3,q), CB(A3,q), 3R(A3,q) and SBR(A3,q) are not monotone in general.

Proof: The proof follow from the following Example.

Example 3.5 Let X = C and q(2%) = |x|. Consider the sequence (zymy) defined by
Timn =1, for alll,m,n € N

It can be express as follows:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
Timn = 3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4
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Taking difference operator on this sequence using result (1) we obtain the following result:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 O
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Azyn=]1 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Here (zimn) € &§_(D°,0), 324 (A%,q), SR (A%, q), §BF(A%,q), &(A%q), P(A%q), GR(A%,q),
LR (D%, q).
Now we consider the sequence (Yimn) in the pre-image space defined by

| zimn, I+ m4n is odd
Yimn =9 0, otherwise.

It can be express in triple sequence notation as follows:

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0
Yimn = 3 0 3 0
0 3 0 3
3 0 3 0
0 3 0 3
0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0
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Now we applying the difference operator using equation (1) in (Yimn) we get the following result:

640 —640 640 —640
—640 640 —640 640

640 —640 640 —640
—640 640 —640 640
—896 896 —896 896

896 —896 896 —896

—896 896 —896 896
896 —896 896 —896

APy = | 1152 —1152 1152 —1152
~1152 1152 —1152 1152
1152 —1152 1152 —1152
1152 1152 —1152 1152
—1408 1408 —1408 1408
1408 —1408 1408 —1408

—1408 1408 —1408 1408
1408 —1408 1408 —1408

Here (Yimn) ¢C875t(A3’q) C0 st(A37q) C0 st(A3aq) chft(A3,q), Cgt(A3vq)7 C3B(A Ne) e (A3,q),

,c3BR(A3,q). Thus none of these classes of spaces is monotone in general.

Example 3.6 Let X = C. Consider the sequence (Zimyn) defined by
Timn = Imn, for alll,m,n € N
and the sequence (Yumn) in the pre-image space defined by

| Zimn, fl+m+n is even;
Yimn = 0, otherwise.

Clearly,
(xlmn) € giost(A:sa q)a

but
(ylmn) ¢ giost(A37 q)v

which shows that the space (3_, (A3, q) is not monotone in general.

We state the following result without proof, since it can be easily established.

Theorem 3.6 The triple sequence spaces B G(A3q), 3 (A3q), 3B (A3 q), 3R, (A3 q),
cSBR(A3,q), cS(A3,q), 3B(A3,q), SR(A3,q) and SBR(A3,q) are sequence algebra.

4. Conclusion

In this article, we have established martingale difference sequence in possibility theory using hybrid fil-
tration. Also convergence relational analysis based strategy under the possibility environment. Besides,
we have validated our proposed hybrid possibility Martingale strategy by real life numerical example.
Further, it is hoped that the proposed hybrid possibility martingale be the potential topic for the future
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