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Stability Analysis of a Delayed SEIRQ Epidemic Model with Diffusion

E. Anaama, C. Allalou and K. Hilal

abstract: In this paper, we investigate the effect of spatial diffusion and delay on the dynamical behavior
of the SEIRQ epidemic model. The introduction of the delay in this model makes it more realistic and
modelizes the latency period. In addition, the consideration of an SEIRQ model with diffusion aims to better
understand the impact of the spatial heterogeneity of the environment and the movement of individuals on
the persistence and extinction of disease. First, we determined a threshold value R0 of the delayed SEIRQ
model with diffusion. Next, By using the theory of partial functional differential equations, we have shown
that the unique disease-free equilibrium is asymptotically stable , what is proven by the numericals scchema.
Moreover,we search under their condition the endemic equilibrium is asymptotically stable.

Key Words: SEIRQ epidemic model, incidence rate, ordinary differential equations, delayed differ-
ential equations, partial differential equations.
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1. Introduction

The Kermack-McKendrick model is the first one to provide a mathematical description of the kinetic
transmission of an epidemic in an unstructured population [9]. In this model the total population
is assumed to be constant and divided into three classes: susceptible, infected (and infective), and
removed (recovered with permanent immunity) and assuming that the transfers between these classes are
instantaneous. The spread of an infection governed by this simple model that integrates neither diseases
that have a latency period nor the influence of space on the dynamics of this model, has allowed many
scientists to participate in the improvement of this model and to present more realistic models to describe
the evolution of various types of epidemics. Recently, several extensions of the Kermack-McKendrick
model have been proposed and analyzed, trying to take into consideration diseases that have a latency
period. In reality, the transfers between the different classes (susceptible, infected and removed) are
not instantaneous, because many diseases such as influenza and tuberculosis have an incubation period,
that is to say the time elapsing between the moment when a susceptible individual is infected and the
moment when he becomes infectious and can transmit this disease. Motivated by these reasons that
characterize most diseases, Cooke [3] proposed a mathematical model formulated by delay differential
equations (DDEs) to describe the spread of communicable diseases. This delayed model is an extension
of [9] that incorporates a bilinear incidence function. The bilinear incidence is based on the law of
mass action, which is more appropriate for communicable diseases, such as influenza, but not suitable for
sexually transmitted diseases. This prompted researchers to improve the incidence function by considering
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a more general function. Several authors have contributed to this improvement by proposing a delayed
SIR model with a more general incidence function (see, e.g., [2,23] and references cited therein). The
models mentioned above have concentrated only on the temporal dimension with out diffusion. As we
know, in many cases the spatial variation of population plays an important role in the disease spreading
model and the time variation governs the dynamical behavior of the disease spreading, see [12]. Just as
pointed in [12], an infectious case is first found at one location and then the disease spreads to other
areas. However, due to the large mobility of people within a country or even worldwide, spatially uniform
models are not sufficient to give a realistic picture of disease diffusion. For this reason, the spatial effects
cannot be neglected in studying the spread of epidemics. Focusing on the influence of space on the
qualitative behavior of the SIR epidemic model, several improvements are made (see,e.g., [20,21] and
references cited therein).
In this paper, we generalize all the DDE and DDEs models PDE presented in [1,24] by proposing the
following delayed SEIRQ epidemic model with spatial diffusion and bilinear incidence function:

∂S

∂t
(x, t) = d∆S(x, t) + Λ − β S(x,t)(I(x,t)+qE(x,t))

N(x,t) − µS(x, t),

∂E

∂t
(x, t) = d∆E(x, t) + β S(x,t−τ)(I(x,t−τ)+qE(x,t−τ))

N(x,t−τ) − (σ + µ)E(x, t),
∂I
∂t (x, t) = d∆I(x, t) + σE(x, t) − (γ + δq + µ) I(x, t),
∂R

∂t
(x, t) = d∆R(x, t) + γI(x, t) + γqQ(x, t) − µR(x, t),

∂Q

∂t
(x, t) = d∆Q(x, t) + δqI(x, t) −

(

γq + µ
)

Q(x, t),

(1.1)

where ∆ denotes the Laplacian operator, S(x, t), E(x, t), I(x, t), Q(x, t), R(x, t) are the numbers of suscep-
tible, infectious but not yet symptomatic , quarantined (or isolated) infected, and recovered individuals
at location x and time t, respectively. µ is positive constants representing the natural mortality rate
of the population. Λ is the recruitment rate of new individuals into the susceptible class. The positive
constant d indicates the diffusion rate, β is the transmission rate, and q is the fraction of transmission
rate for exposed. The exposed individuals develop symptoms at a rate σ, so 1/σ is the latent period,

as many σE exposed will be infected. The number of exposed increases as many β S(x,t)(I(x,t)+qE(x,t))
N(x,t)

individuals after direct contact between susceptible and exposed or infected.
Likewise the infected symptomatically can be quarantined at rate δq, also they recover at rates γ and
after quarantine (isolation) recover at rate γq.
Throughout this paper, we consider the system (1.1) with initial conditions































S(x, t) = ψ1(x, t) ≥ 0,

E(x, t) = ψ2(x, t) ≥ 0,

I(x, t) = ψ3(x, t) ≥ 0,

Q(x, t) = ψ4(x, t) ≥ 0,

R(x, t) = ψ5(x, t) ≥ 0,

for (x, t) ∈ Ω̄ × [−τ , 0], (1.2)

and zero-flux boundary conditions

∂S

∂v
=
∂E

∂v
=
∂I

∂v
=
∂Q

∂v
=
∂R

∂v
= 0, t ≥ 0, x ∈ ∂Ω, (1.3)

where Ω is a bounded domain in R
n with a smooth boundary ∂Ω and ∂

∂v represents the outside normal
derivative on ∂Ω. The boundary condition in (1.3) implies that susceptible,exposed, infectious, quaran-
tined and recovered individuals do not across the boundary ∂Ω.
The paper is organized as follows. In next section, we study the well-posedness for model (1.1). Section
3 is devoted to investigate to the local stability of the disease-free equilibrium and the endemic through
the study of associated characteristic equations. equilibrium. In Sect. 5, to support our theoretical
predictions, some numerical simulations are given. Finally, a brief conclusion is given to conclude this
work.
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2. The well-posedness

In this section, we focus on the well-posedness of solutions for (1.1) by establishing the global existence,
uniqueness, nonnegativity and boundedness of solutions. In the following, we need some notations. Let
X = C

(

Ω,R5
)

be the Banach space of continuous functions from Ω into R
5, and CX = C([−τ , 0],X)

denotes the Banach space of continuous X -valued functions on [−τ, 0] equipped with the supremum
norm. For any real numbers a ≤ b, t ∈ [a, b] and any continuous function u : [a − τ , b] → X, ut is the
element of CX given by ut(θ) = u(t+ θ) for θ ∈ [−τ, 0]. Moreover, we identify any element ψ ∈ CX as a
function from Ω × [−τ , 0] in R

5 defined by ψ(x, t) = ψ(t)(x) The next theorem gives us the existence and
uniqueness of the global positive solution.

Theorem 2.1. For any given initial condition ψ ∈ CX satisfying (1.2), the system (1.1)-(1.3) admits a

unique nonnegative solution. Moreover, this solution is global and remains nonnegative.

Proof: Let ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ CX and x ∈ Ω. We define f = (f1, f2, f3, f4, f5) : CX → X by

f1(ψ)(x) = A− µψ1(x, 0) − βψ1(x,0)(ψ3(x,0)+qψ2(x,0)
N(x,0) ,

f2(ψ)(x) = β exp(−µτ)ψ1(x,−τ)(ψ3(x,−τ)+qψ2(x,−τ))
N(x,−τ) − (µ+ σ)ψ2(x, 0),

f3(ψ)(x) = σψ2(x, 0) − (µ+ δq + γ)ψ3(x, 0),
f4(ψ)(x) = γψ3(x, 0) + γqψ5(x, 0) − µψ4(x, 0),
f5(ψ)(x) = δqψ3(x, 0) − (µ+ γq)ψ5(x, 0).

Then the system (1.1)-(1.3) can be rewritten as an abstract differential equation in the phase space CX

in the form
{

u̇ = Bu+ f (ut) , t ≥ 0
u(0) = ψ ∈ CX,

(2.1)

where u(t) = (S(., t), E(., t), I(., t), R(., t), Q(., t))⊤, ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) and Bu = (d∆S, d∆E, d∆I,
d∆R, d∆Q). We can easily show that f is locally Lipschitz in CX. According to [5,10,11,18,22] , we deduce
that the system (2.1) admits a unique local solution on its maximal interval of existence [0, tmax).
Since 0 = (0, 0, 0, 0, 0) is a lower-solution of the problem (1.1)-(1.3), we have S(x, t) ≥ 0, E(x, t) ≥ 0,
I(x, t) ≥ 0, R(x, t) ≥ 0 and Q(x, t) ≥ 0.
In the following, our goal is to show that the maximum solution of the problem (1.1)-(1.3), is global.
Let’s first consider the first equation of the system (1.1), then we have







∂S(x,t)
∂t − d∆S(x, t) ≤ A− µS(x, t),

∂S
∂v = 0,
S(x, 0) = ψ1(x, 0) ≥ 0.

(2.2)

By the comparison principle [17], we have S(x, t) ≤ S̃(t), where S̃(t) = S̃(0)e−µt + A
µ (1 − e−µt) is the

solution of the following ordinary equation:

{

dS̃
dt = A− µS̃,
S̃(0) = maxx∈Ω(ψ1(x, 0)).

(2.3)

Hence,

S(x, t) ≤ max

{

A

µ
,max
x∈Ω

(ψ1(x, 0))

}

, ∀(x, t) ∈ Ω × [0.tmax) ,

this implies that S is bounded.
Let L(x, t) = e−µτS(x, t− τ) + E(x, t) + I(x, t) +R(x, t) +Q(x, t),
thus,

∂L(x, t)

∂t
= e−µτd∆S(x, t− τ ) + d∆E(x, t) + d∆I(x, t) + d∆R(x, t) + d∆Q(x, t) + e−µτA− µL(x, t).
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Then, we have







∂L(x,t)
∂t − d∆L(x, t) ≤ e−µτA− µL(x, t),

∂L
∂v = 0,
L(x, 0) = e−µτψ1(x,−τ ) + ψ2(x, 0) + ψ3(x, 0) + ψ4(x, 0) + ψ5(x, 0).

(2.4)

Applying the comparison principle to the system (2.4) we obtain

L(x, t) ≤ max

{

e−µτA

µ
,max
x∈Ω

L(x, 0)

}

, ∀(x, t) ∈ Ω × [0.tmax) .

Therefore, E, I,R and Q are bounded. So, we proved that S,E, I, R and Q are bounded on Ω× [0, tmax) .
By the standard theory for semilinear parabolic systems [7], we deduce that tmax = +∞. This completes
the proof. �

3. Basic reproduction number and existence of equilibirum

In this section we determine the equilibrium of the SEIRQ models, for that we solve the following
system























Λ − β S
N (I + qE) − µS = 0,

βe−µτ S
N (I + qE) − (σ + µ)E = 0,

σE − (γ + δq + µ) I = 0,
γI + γqQ− µR = 0,
δqI −

(

γq + µ
)

Q = 0.

Then the disease-free equilibrium is given by

P0 =
(

S0, E0, I0, R0, Q0
)

where E0 = I0 = R0 = Q0 = 0 and S0 = Λ
µ .

Furthermore, the system (1.1) has a unique endemic equilibirum

P
∗ = (S∗, E∗, I∗, R∗, Q∗) ,

where







































S∗ =
(σ+µ)(γ+δq+µ)N

e−µτ (qβ(γ+δq+µ)+σβ) ,

E∗ = Λe−µτ

σ+µ −
µN(γ+δq+µ)

qβ(γ+δq+µ)+βσ ,

I∗ = σ
γ+δq+µE

∗,

R∗ =
σγ(γq+µ)+σδqγqµ

µ(γq+µ)(γ+δq+µ)
E∗,

Q∗ =
δqσ

(γq+µ)(γ+δq+µ)
E∗.

(3.1)

Now let’s determine the expression of basic reproduction number denoted by R0, by using the method
presented in [19], using the same notations, the matrix F and V are given by

F =





qβe−µτS0

N0

βe−µτS0

N0 0
0 0 0
0 0 0



 , and V =





σ + µ 0 0
−σ γ + δq + µ 0
0 −δq γq + µ



 .

Thus

FV −1 =





A B 0
0 0 0
0 0 0




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where

A =
qβe−µτ (γ + δq + µ) + βe−µτσ

(σ + µ) (γ + δq + µ)
, and B =

βe−µτ

γ + δq + µ
.

If ρ is the spectral radius of FV −1, then the expression of the basic reproduction number is as follows

R0 = ρ
(

FV −1
)

=
e−µτ (qβ (γ + δq + µ) + βσ)

(σ + µ) (γ + δq + µ)
.

So, we can rewrite (3.1) as follows







































S∗ =
(σ+µ)(γ+δq+µ)N

e−µτ (qβ(γ+δq+µ)+σβ) ,

E∗ = e−µτ (R0Λ−µN)
R0(σ+µ) ,

I∗ = σ
γ+δq+µE

∗,

R∗ =
σγ(γq+µ)+σδqγqµ

µ(γq+µ)(γ+δq+µ)
E∗,

Q∗ =
δqσ

(γq+µ)(γ+δq+µ)
E∗.

(3.2)

Then, P∗ = (S∗, E∗, I∗, R∗, Q∗) exist if R0 >
µN
Λ .

4. Local stability of the equilibria for the SEIRQ models

Let S̃ = S − S∗, Ẽ = E −E∗, Ĩ = I − I∗, R̃ = R−R∗ and Q̃ = Q−Q∗, where (S∗, E∗, I∗R∗, Q∗)
⊤

is
an arbitrary equilibrium point, and drop bars for simplicity. Then the system (1.1) can be transformed
into the following form



























∂S
∂t (x, t) = d∆S(x, t) + Λ − β (S(x,t)+S∗)((I(x,t)+I∗)+q(E(x,t)+E∗))

N(x,t) − µ(S(x, t) + S∗),
∂E
∂t (x, t) = d∆E(x, t) + e−µτβ (S(x,t−τ)+S∗)((I(x,t−τ)+I∗)+q(E(x,t−τ)+E∗))

N(x,t−τ) − (σ + µ)(E(x, t) + E∗),
∂I
∂t (x, t) = d∆I(x, t) + σ(E(x, t) + E∗) − (γ + δq + µ) (I(x, t) + I∗),
∂R
∂t (x, t) = d∆R(x, t) + γ(I(x, t) + I∗) + γq(Q(x, t) +Q∗) − µ(R(x, t) +R∗),
∂Q
∂t (x, t) = d∆Q(x, t) + δq(I(x, t) + I∗) −

(

γq + µ
)

(Q(x, t) +Q∗).
(4.1)

Thus, the arbitrary equilibrium point P∗ = (S∗, E∗, I∗, R∗, Q∗)⊤ of the system (1.1) is transformed into
the zero equilibrium point (0, 0, 0, 0, 0)⊤ of the system (4.1).

In the following, we will analyze stability of the zero equilibrium point of the system (4.1). Denote
u(t) = (S(., t), E(., t), I(., t), R(., t), Q(., t))⊤ and ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ CX, then the system (4.1)
can be rewritten as an abstract differential equation in the phase space CX of the form

u̇(t) = D∆u(t) + L (ut) + g (ut) , (4.2)

where D = diag{d, d, d, d, d}, L : CX → X and g : Cχ → X are given, respectively, by

L(ψ)(x) =















−
(

µ+ β(I∗+qE∗)
N

)

ψ1(x, 0) −
βS∗(ψ3(x,0)+qψ2(x,0))

N

βe−µτ (I∗+qE∗)
N ψ1(x,−τ ) + βe−µτS∗(ψ3(x,−τ)+qψ2(x,−τ))

N − (µ+ σ)ψ2(x, 0)
σψ2(x, 0) − (µ+ δq + γ)ψ3(x, 0)
γψ3(x, 0) + γqψ5(x, 0) − µψ4(x, 0)
δqψ3(x, 0) − (µ+ γq)ψ5(x, 0)















, (4.3)

and

g(ψ)(x) =













g1(ψ)(x)
g2(ψ)(x)
g3(ψ)(x)
g4(ψ)(x)
g5(ψ)(x)













,
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where














































































g1(ψ)(x) =
β (I∗ + qE∗)

N
ψ1(x, 0) +

βS∗ (ψ3(x, 0) + qψ2(x, 0))

N

+ Λ −
β (ψ1(x, 0) + S∗) ((ψ3(x, 0) + I∗) + q (ψ2(x, 0) + E∗))

N
− µS∗,

g2(ψ)(x) = −
βe−µτ (I∗ + qE∗)

N
ψ1(x, 0) −

βe−µτS∗ (ψ3(x, 0) + qψ2(x, 0))

N

+
βe−µτ (ψ1(x, 0) + S∗) ((ψ3(x, 0) + I∗) + q (ψ2(x, 0) + E∗))

N
− (µ+ σ)E∗,

g3(ψ)(x) =σE∗ − (µ+ γ + δq)I
∗,

g4(ψ)(x) =γI∗ + γqQ
∗ − µR∗,

g5(ψ)(x) =δqI
∗ − (µ+ γq)Q

∗.

(4.4)

For ψ = ut, ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)
⊤

∈ C×, the linearized system of (4.2) at the zero equilibrium point
is

u̇ = D∆u(t) + L (ut) ,

and its characteristic equation is
λω −D∆ω − L

(

eλ·ω
)

= 0, (4.5)

where ω ∈ dom(∆), and ω 6= 0, dom(∆) ⊂ X.
Let 0 = η0 < η1 < · · · be the sequence of eigenvalues for the elliptic operator −∆ subject to the Neumann
boundary condition on Ω, and E (ηi) be the eigenspace corresponding to ηi in L2(Ω).
Let

{

φij , j = 1, . . . ,dimE (ηi)
}

be an orthonormal basis of E (ηi) , and Yij =
{

aφij , a ∈ R
}

.
Then

L2(Ω) =

+∞
⊕

i=0

Yi and Vi =

dimE(ηi)
⊕

j=1

Yij .

Moreover, we put






























































β1
ij =













φij
0
0
0
0













, β2
ij =













0
φij
0
0
0













, β3
ij =













0
0
φij
0
0













, β4
ij =













0
0
0
φij
0













,

and β5
ij =













0
0
0
0
φij













, i = 0, 1, 2, . . . , j = 1, 2, . . . ,dimE (ηi) .

(4.6)

Clearly, the family
(

β1
ij , β

2
ij , β

3
ij , β

4
ij , β

5
ij

)

is a basis of
(

L2(Ω)
)5
. Therefore, any element ω of X can be

written in the in the following form

ω = (ω1, ω2, ω3, ω4, ω5)

=
+∞
∑

i=0

dimE(ηi)
∑

j=1

〈

ω1, φij
〉

β1
ij +

〈

ω2, φij
〉

β2
ij +

〈

ω3, φij
〉

β3
ij +

〈

ω4, φij
〉

β4
ij +

〈

ω5, φij
〉

β5
ij .

(4.7)

Next, from a straightforward analysis and using (4.6) and (4.7) we show that (4.5) is equivalent to

(λI5 + ηiD −M)













〈

ω1, φij
〉

〈

ω2, φij
〉

〈

ω3, φij
〉

〈

ω4, φij
〉

〈

ω5, φij
〉













=













0
0
0
0
0













, i = 0, 1, 2, . . . , j = 1, 2, . . . ,dimE (ηi) , (4.8)
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where M is given by

M =













−µ− β(I∗+qE∗)
N −βqS∗

N −βS∗

N 0 0
β(I∗+qE∗)

N e−µτe−λτ − (µ+ σ) + βqS∗

N e−µτe−λτ βS∗

N e−µτe−λτ 0 0
0 σ −(µ+ γ + δq) 0 0
0 0 γ −µ γq
0 0 δq 0 −(µ+ γq)













.

Thus the characteristic equation is

(λ+ dηi + µ+ δq) (λ+ dηi + µ)
(

λ3 + aλ2 + bλ+ c+ (xλ2 + yλ+ z)e−λτ
)

= 0, i = 0, 1, . . . , (4.9)

where

a = 3(ηid+ µ) + σ + γ + δq + β(I∗+qE∗)
N ,

b = (ηid+ µ+ σ)(ηid+ µ+ β(I∗+qE∗)
N ) + (ηid+ µ+ γ + δq)(2(ηid+ µ) + σ + β(I∗+qE∗)

N ),

c = (ηid+ µ+ γ + δq)(ηid+ µ+ σ)(ηid+ µ+ β(I∗+qE∗)
N ),

x = (−qβS∗)
N e−µτ ,

y = (−qβS∗)
N e−µτ (2(ηid+ µ) + γ + δq + σ

q ),

z = −qβ(ηid+µ)S∗

N e−µτ (ηid+ µ+ γ + δq + σ
q ).

4.1. Stability of disease-free equilibirum P

Using the above analysis, in this part, we take (S∗, E∗, I∗, R∗, Q∗) = P =
(

A
µ , 0, 0, 0, 0

)

. Thus, the

characteristic equation (4.9) becomes for i = 0, 1, . . .

(λ+ dηi + µ)
2

(λ+ dηi + µ+ δq)
[

λ2 + λ(C +B) +BC − qβe−µτe−λτ (λ+ C + σ/q)
]

= 0, (4.10)

where
{

B = dηi + µ+ σ,
C = dηi + µ+ δq + γ.

Theorem 4.1. If R0 ≤ 1, then the disease-free equilibrium P is locally asymptotically stable for all τ ≥ 0.

Proof: For τ = 0, the Eq. (4.10) is equivalent to the following cubic equation

(λ+ dηi + µ)
2

(λ+ dηi + µ+ δq)
[

λ2 + λ(C + B − qβ) +BC − (qβC + βσ)
]

= 0, i = 0, 1, . . . (4.11)

where
{

B = dηi + µ+ σ,
C = dηi + µ+ δq + γ.

As R0 ≤ 1, we have

C +B − qβ = C + dηi +
q(µ+ σ)(µ + δq + γ)(1 − R0) + (µ+ σ)σ

q(µ+ δq + γ) + σ
> 0,

and

CB − (qβC + βσ) = (dηi)
2

+ dηi

[

µ+ γ + δq +
q(µ+ σ)(µ+ δq + γ)(1 − R0) + (µ+ σ)σ

q(µ+ δq + γ) + σ

]

+ (µ+ σ)(µ+ γ + δq)(1 − R0) > 0.

According to the Routh-Hurwitz criteria, all the roots of equation (4.11) have negative real parts. There-
fore, when τ = 0, the disease-free equilibrium point P is locally asymptotically stable.
Next, Since all the roots of equation (4.11) have negative real parts for τ = 0. it follows that if instability
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occurs for a particular value of the delay τ , a characteristic root of (4.10) must intersect the imaginary
axis. If (4.10) has a purely imaginary root iω, with ω > 0, then, by separating real and imaginary parts
in (4.10), we have











qωβe−µτ sin(ωτ ) − qβ(C +
σ

q
)e−µτ cos(ωτ ) = ω2 −BC,

qωβe−µτ cos(ωτ ) + qβ(C +
σ

q
)e−µτ sin(ωτ ) =ω(C +B).

(4.12)

Taking square on both sides of the equations of (4.12) and summing them up, we obtain

ω4 +
(

C2 + B2 − (βe−µτ )2
)

ω2 + (BC)2 − (qβe−µτ (qC + σ))2 = 0. (4.13)

It is easy to see that BC − qβ(C + σ
q ) > 0 and as R0 ≤ 1, we deduce that

(BC)2 − (βe−µτ (qC + σ))2 > 0.

Moreover, as R0 ≤ 1, we have

C2 +B2 − (qβe−µτ )2 = C2 +
(

B + (qβe−µτ )
) (

B − (qβe−µτ )
)

= C2 +
(

B + (qβe−µτ )
)

(

dηi +
q(µ+ σ)(µ+ δq + γ)(1 − R0) + (µ+ σ)σ

q(µ+ δq + γ) + σ

)

≥ 0.

Therefore, Eq. (4.12) has no positive roots and characteristic equation (4.10) does not admit any purely
imaginary root for all τ . Since P is asymptotically stable for τ = 0, it remains asymptotically stable for
all τ ≥ 0. �

4.2. Stability of endemic equilibirum P*

In this part, we will discuss the local stability of the endemic equilibrium P ∗. First, we take
(S∗, E∗, I∗, R∗, Q∗) = P ∗. Thus, the characteristic equation (4.9) becomes

(λ+ dηi + µ+ δq) (λ+ dηi + µ)
(

λ3 + aλ2 + bλ+ c+ (xλ2 + yλ+ z)e−λτ
)

= 0, i = 0, 1, . . . (4.14)

where

a = 3(ηid+ µ) + σ + γ + δq +
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ,

b = (ηid+ µ+ σ)(ηid+ µ+
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ) + (ηid+ µ+ γ + δq)(2(ηid+ µ) + σ +
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ),

c = (ηid+ µ+ γ + δq)(ηid+ µ+ σ)(ηid+ µ+
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ),

x = (−qβ)
R0

e−µτ ,

y = (−qβ)
R0

e−µτ (2(ηid+ µ) + γ + δq + σ
q ),

z = −qβ(ηid+µ)
R0

e−µτ (ηid+ µ+ γ + δq + σ
q ).

Theorem 4.2. If R0 ≥ max
(

2qβ
ηid

, qβσ

)

then the endemic equilibrium P ∗ is locally asymptotically stable

for all τ ≥ 0.

Proof: For τ = 0, the characteristic equation (3.15) is transformed into the following form

(λ+ dηi + µ+ δq) (λ+ dηi + µ)
(

λ3 + (a+ x)λ2 + (b+ y)λ+ c+ z
)

= 0, i = 0, 1, . . . (4.15)

where

a = 3(ηid+ µ) + σ + γ + δq +
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ,

b = (ηid+ µ+ σ)(ηid+ µ+
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ) + (ηid+ µ+ γ + δq)(2(ηid+ µ) + σ +
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ),

c = (ηid+ µ+ γ + δq)(ηid+ µ+ σ)(ηid+ µ+
βE∗(σ+q(µ+γ+δq))

N(µ+γ+δq) ),

x = (−qβ)
R0

,

y = (−qβ)
R0

(2(ηid+ µ) + γ + δq + σ
q ),

z = −qβ(ηid+µ)
R0

(ηid+ µ+ γ + δq + σ
q ).



Stability Analysis of a Delayed SEIRQ 9

As R0 > max
(

2qβ
ηid

, qβσ

)

, we deduce that

a+ x = 2ηid+ 3µ+ σ + γ + δq +
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)
+

(

ηid−
qβ

R0

)

> 0,

b+ y =3(ηid)2 + 2ηid(µ+ γ + δq + u+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)
)

+ (µ+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)
)(µ+ γ + δq)

+ 2ηid(σ −
qβ

R0
) + µ(2ηid−

qβ

R0
) > 0,

c+ z =

(

ηid+ µ+
E∗

N
R0 (µ+ σ)

)

(

(ηid)2 + ηid(µ+ σ + µ+ γ + δq)
)

+ (µ+ σ)2 (µ+ γ + δq)
E∗

N
R0 > 0,

and

(a+ x)(b + y) − (c+ z) = (ηid+ µ+ σ)

(

ηid+ µ+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)

)

[(ηid+ µ+ σ) + (ηid+ µ

+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)
)

]

+ (ηid+ µ)

(

qβηi
R0

+ (ηid+ µ+ σ) × (ηid+ µ+ γ + δq)

)

+

(

ηid+ µ+ σ + ηid+ µ+ γ + δq + ηid+ µ+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)

)

× [

ηid

(

ηid−
2qβ

R0

)

+ µ

(

ηid−
qβ

R0

)

+ (µ+ γ + δq)

(

ηid+ µ+
R0E

∗ (σ + µ)

N

)

+ηid×
R0E

∗ (σ + µ)

N

]

> 0.

According to the Routh-Hurwitz criteria, all the roots of equation (4.15) have negative real parts. There-
fore, when τ = 0, the endemic equilibrium point P ∗ is locally asymptotically stable.
Next, Since all the roots of equation (4.15) have negative real parts for τ = 0. it follows that if instability
occurs for a particular value of the delay τ , a characteristic root of (4.14) must intersect the imaginary
axis. If (4.14) has a purely imaginary root iω, with ω > 0, then, by separating real and imaginary parts
in (4.14), we have

{

−yω sin(ωτ) + (z − xω2) cos(ωτ) = bω − ω3,

yω cos(ωτ ) + (z − xω2) sin(ωτ) = aω2 − c.
(4.16)

Taking square on both sides of the equations of (4.16) and summing them up, we obtain

ω6 +
(

a2 − 2b− x2
)

ω4 + (b2 − 2ac− y2 + 2xz)ω2 + c2 − z2 = 0. (4.17)

It is easy to see that c− z > 0, we deduce that c2 − z2 > 0. Moreover, we have

a2 − 2b− x2 =

(

ηid+ µ+ σ −
qβ

R0

) (

ηid+ µ+ σ +
qβ

R0

)

+

(

ηid+ µ+
βE∗ (σ + q(µ+ γ + δq))

N(µ+ γ + δq)

)2

+ (ηid+ µ+ γ + δq)
2 + 2 > 0,
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b2
− 2ac − y2 + 2xz =

(

(ηid + µ + σ)2 (ηid + µ + γ + δq)2
− 2 (ηid + µ + σ) (ηid + µ + γ + δq)

+

(

ηid + µ + σ

)2(

ηid + µ +

βE∗

(

σ + q(µ + γ + δq)

)

N(µ + γ + δq)

)2

− 2

(

ηid + µ + σ

)(

ηid + µ +

βE∗

(

σ + q(µ + γ + δq)

)

N(µ + γ + δq)

)

+ (ηid + µ + γ + δq)2

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)2

− 2 (ηid + µ + γ + δq)

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)

+2

(

(−qβ)

R0

e−µτ

)2

(ηid + µ + γ + δq +
σ

q
) −

(

(−qβ)

R0

e−µτ (2(ηid + µ) + γ + δq +
σ

q
)

)2
)

> 0,

(a2
− 2b−x2)

(

b2
− 2ac − y2 + 2xz

)

− c2 + z2

=

((

ηid + µ + σ +
qβ

R0

)(

ηid + µ + σ −

qβ

R0

)

+ (ηid + µ + γ + δq)2

+

(

−qβ (ηid + µ)

R0

(ηid + µ + γ + δq +
σ

q
)

)2

+ 2

)

+

((

ηid + µ + σ −

(qβ)

R0

e−µτ

)(

ηid + µ + σ +
(qβ)

R0

e−µτ

)

+ (ηid + µ + γ + δq)2 +

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)2

+ 2

)

+
(

(ηid + µ + σ)2 (ηid + µ + γ + δq)2

−2 (ηid + µ + σ) (ηid + µ + γ + δq) + (ηid + µ + σ)2

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)2

−2 (ηid + µ + σ)

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)

+ (ηid + µ + γ + δq)2

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)

2

−2 (ηid + µ + γ + δq)

(

ηid + µ +
βE∗ (σ + q(µ + γ + δq))

N(µ + γ + δq)

)

+2

(

(−qβ)

R0

e−µτ

)2

(ηid + µ + γ + δq +
σ

q
) −

(

(−qβ)

R0

e−µτ (2(ηid + µ) + γ + δq +
σ

q
)

)2
)

> 0.

Therefore, Eq. (4.17) has no positive roots and characteristic equation (4.14) does not admit any purely
imaginary root for all ηi. Since P ∗ is asymptotically stable for τ = 0, it remains asymptotically stable
for all τ ≥ 0. �

5. Numerical

In this section, we perform some numerical simulations to illustrate the theoretical results. For the
sake of simplicity, we consider a one-dimensional bounded spatial domain Ω = [0, 1]. Thus, we propose
system (1.1) with Neumann boundary conditions

∂S

∂v
=
∂E

∂v
=
∂I

∂v
=
∂R

∂v
=
∂Q

∂v
= 0, t ≥ 0, x = 0, 1

and initial conditions

S(x, t) = | cos(3πx)| ≥ 0, E(x, t) = | cos(3πx)| ≥ 0, I(x, t) = | sin(2πx)| ≥ 0,
R(x, t) = | sin(2πx)| ≥ 0, Q(x, t) = | cos(3πx)| ≥ 0, (x, t) ∈ [0, 1] × [−τ , 0].

Moreover, to solve system (1.1) using a numerical algorithm, we must discretize each equation of system
(1.1) as a finite difference equation. The Crank-Nicolson method [4] is a finite difference method used
for numerically solving a partial differential equation. It is a second-order method in time and space,
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and is numerically stable. Thereafter, a brief description of the Crank-Nicolson method applied to our
problem will be provided below. We first start by partitioning the spatial interval [0, 1] and temporal
interval [0, tf ] into respective finite grids as follows.

{

xi = (i − 1)∆x, i = 1, 2, . . . , Nx + 1 where ∆x := 1
Nx
,

tj = (j − 1)∆t, j = 1, 2, . . . , Nt + 1 where ∆t :=
tf
Nt
.

Therefore, using discretization, we can describe
S(x, t) as Si,j (i = 1, . . . , Nx + 1, j = 1, . . . , Nt + 1), E(x, t) as Ei,j (i = 1, . . . , Nx + 1, j = 1, . . . , Nt + 1),
I(x, t) as Ii,j (i = 1, . . . , Nx + 1, j = 1, . . . , Nt+ 1), Q(x, t) as Qi,j (i = 1, . . . , Nx + 1, j = 1, . . . , Nt + 1)
and R(x, t) as Ri,j (i = 1, . . . , Nx + 1, j = 1, . . . , Nt + 1).
In addition, we can discretize the system (1.1) as follows:















































































































































Si,j+1 − Si,j
∆t

=
d

2

(

Si+1,j+1 − 2Si,j+1 + Si−1,j+1

∆x2
+
Si+1,j − 2Si,j + Si−1,j

∆x2

)

+A− µSi,j −
βSi,j(Ii,j + qEi,j)

Ni,j
,

Ei,j+1 − Ei,j
∆t

=
d

2

(

Ei+1,j+1 − 2Ei,j+1 + Si−1,j+1

∆x2
+
Ei+1,j − 2Ei,j + Ei−1,j

∆x2

)

+
e−µτβSi,j−τ/∆t(Ii,j−τ/∆t + qEi,j−τ/∆t)

Ni,j−τ/∆t
− (µ+ σ)Ei,j ,

Ii,j+1 − Ii,j
∆t

=
d

2

(

Ii+1,j+1 − 2Ii,j+1 + Ii−1,j+1

∆x2
+
Ii+1,j − 2Ii,j + Ii−1,j

∆x2

)

+ σEi,j − (γ + µ+ δq)Ii,j ,

Ri,j+1 −Ri,j
∆t

=
d

2

(

Ri+1,j+1 − 2Ri,j+1 +Ri−1,j+1

∆x2
+
Ri+1,j − 2Ri,j +Ri−1,j

∆x2

)

+ γIi,j + γqQi,j − µRi,j ,

Qi,j+1 −Qi,j
∆t

=
d

2

(

Qi+1,j+1 − 2Qi,j+1 +Qi−1,j+1

∆x2
+
Qi+1,j − 2Qi,j +Qi−1,j

∆x2

)

+ δqIi,j − (γq + µ)Qi,j .

(5.1)

Applying the central difference formula to approximate the Neumann boundary condition (1.3), we see
that (5.1) yields the following system:































MSj+1 = NSj + Uj

MEj+1 = NEj + Vj

MIj+1 = NIj +Wj

MRj+1 = NRj + Yj

MQj+1 = NQj + Zj ,

(5.2)

where

Sj =















S1,j

S2,j

...
SNx,j

SNx+1,j















, Ej =















E1,j

E2,j

...
ENx,j

ENx+1,j















, Ij =















I1,j

I2,j

...
INx,j

INx+1,j















, Rj =















R1,j

R2,j

...
RNx,j

RNx+1,j















, Qj =















Q1,j

Q2,j

...
QNx,j

QNx+1,j















,
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Uj = 2∆t ·



















A− µS1,j −
βS1,j(I1,j+qE1,j )

N1,j

A− µS2,j −
βS2,j(I2,j+qE2,j )

N2,j

...

A− µSi,j −
βSNx,j(INx,j+qENx,j)

NNx,j

A− µSNx+1,j −
βSNx+1,j(INx+1,j+qENx+1,j)

NNx+1,j



















,

Vj = 2∆t ·























βe−µτS1,j−τ/∆t(I1,j−τ /∆t+qE1,j−τ/∆t)

N1,j−τ/∆t
− (µ+ σ)E1,j

βe−µτS2,j−τ/∆t(I2,j−τ /∆t+qE2,j−τ/∆t)

N2,j−τ/∆t
− (µ+ σ)E2,j

...
βe−µτSNx,j−τ/∆t(INx,j−τ/∆t+qENx,j−τ/∆t)

NNx,j−τ/∆t
− (µ+ σ)ENx,j

βe−µτSNx+1,j−τ/∆t(INx+1,j−τ/∆t+qENx+1,j−τ/∆t)

NNx+1,j−τ/∆t
− (µ+ σ)ENx+1,j























,

Wj = 2∆t ·















σE1,j − (γ + µ+ δq)I1,j

σE2,j − (γ + µ+ δq)I2,j

...
σENx,j − (γ + µ+ δq)INx,j

σENx+1,j − (γ + µ+ δq)INx+1,j















, Yj = 2∆t ·















γI1,j + γqQ1,j − µR1,j

γI2,j + γqQ2,j − µR1,j

...
γINx,j + γqQNx,j − µRNx,j

γINx+1,j + γqQNx+1,j − µRNx+1,j















,

and

Zj = 2∆t ·















δqI1,j − (γq + µ)Q1,j

δqI2,j − (γq + µ)Q2,j

...
δqINx,j − (γq + µ)QNx,j

δqINx+1,j − (γq + µ)QNx+1,j















,

and we take r := d ∆t
∆x2 , then the tridiagonal matrices M and N are given by:

M =

























2 + 2r −2r 0 0 · · · 0

−r 2 + 2r −r 0
. . .

...

0 −r
. . .

. . .
. . . 0

0
. . .

. . .
. . . −r 0

...
. . . 0 −r 2 + 2r −r

0 · · · 0 0 −2r 2 + 2r

























, N =

























2 − 2r 2r 0 0 · · · 0

r 2 − 2r r 0
. . .

...

0 r
. . .

. . .
. . . 0

0
. . .

. . .
. . . r 0

...
. . . 0 r 2 − 2r r

0 · · · 0 0 2r 2 − 2r

























.

Consequently, it follows from (5.2) that



































Sj+1 = M−1 {NSj + Uj} ,

Ej+1 = M−1 {NEj + Vj} ,

Ij+1 = M−1 {NIj +Wj} ,

Rj+1 = M−1 {NRj + Zj} ,

Qj+1 = M−1 {NQj + Yj} .

Therefore, we get a recursive schema, with is numerically stable. The parameters employed in the nu-
merical simulations are summarized in Table 1 .
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Table 1: List of parameters and their values used in numerical simulations

Parameter Description Value

Λ Recruitment rate of the population Varied
µ Natural death of the population 0.004
δq isolation Rate of infected 0.1547
σ Rate of exposed individuals to the infected 0.0714
β Transmission rate 0.081
q the fraction of transmission rate for exposed 0.007
γ Recovery rate 0.0714
γq Recovery rate of isolated infected 0.0573
d Rate of diffusion 0.00008
τ Time incubation 8

Now, if we choose the values from table 1 , then we have R0 = 0.3301. By Theorem (4.1), the disease-
free equilibrium P (3.2522, 0, 0, 0, 0) is locally asymptotically stable. This means that the disease dies out
(see Fig. 1).

Figure 1: Spatiotemporal solution found by numerical integration of system (1.1) under conditions (1.2)
and (1.3) when R0 = 0.3301
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To better understand figure 1 we propose figure 2 where we present the curve of S in the case of x =
1

2

and x =
1

4
.

Figure 2: the curve of S in the case of x =
1

2
and x =

1

4
.

6. Conclusion

By comparing the results in Theorems , and 4.1 with the propositions 1, 2 of [8] and the proposition
2 of [1], we affirm that we have obtained the same results, but for a more general class of population
models. In reality, we have extended these results to contain our model of reaction-diffusion epidemic.
Firstly, by analyzing the corresponding characteristic equations, we discussed the local stability of the
disease-free equilibrium P and the endemic equilibrium P ∗ of system (1.1) under homogeneous Neumann
boundary conditions. Since R0 has no relation to the diffusion coefficient d, we have shown in Theorem
(4.1) and Theorem (4.2) that spatial diffusion has no effect on the local stability of the steady states of
our SEIQR model. Which indicates that, whatever the choice of the diffusion coefficient d, the stability
of the equilibrium points remains invariant when the system passes from the dynamics governed by the
ordinary differential equations ODE [1] to that governed by the partial differential equations PDE.
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