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Calderon’s Reproducing Formula for Bessel Wavelet Transforms

C. P. Pandey and Pranami Phukan

ABSTRACT: In this paper the inversion Bessel wavelet transform is investigated, the Calderon reproducing
formula of Bessel wavelet transform is obtained by generalizing the result of [7]. Some applications associated
with Calderon’s reproducing formula of Hankel convolution are given.
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1. Introduction

Calderon’s reproducing formula [7] played an important role to find the inversion formula of wavelet
transform using Fourier convoluton transform. This formula can also be used to obtain several approxi-
mation results related to aforesaid transform.

Hankel convolution and Hankel transform are generalization of many integral transforms. Continuous
Bessel wavelet transform is defined in [10] and found several properties using the result of [10]. Our
main objective of this paper is to investigate the Calderon’s reproducing formula associated with Hankel
transform and Bessel wavelet transform.

Let v be a positive real number. Set

x2Y
do(x) = IO T Y (1.1)
and
@) = Cur,
c, = 27—%r(7+%)

where J, 1 (z) denotes the Bessel function of order 7 — 1.

We define L, ,(0,00),1 < p < o0, as the space of those real measurable functions ¢ on (0, c0) for
which

oo = | [ o@Pas)] <1 <p <o
0
[Plloc,s = esssupo<z<oold(x)| < oo
Theorem 1.1. Let 1) € Ly 5(0,00),9,(t) = a7 (1), for a >0 and f € Ly,,(0,00) then

do(a)
a?’ +1

f(x)=/0m(¢a*¢a*f)
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and the above expression can be converted into the following

r) = / [T Ben s (1Y) T (1.3

where (By f) (y fo O f()do(t) and 1, ,(t) = a1y (L)

Now we restate the definition of Mellin transform and inverse Mellin transform and following theorem,
which is given in [3].

Definition 1.2. Let f(t) be a function defined on the positive real azis 0 < t < oco. The Mellin transfor-
mation M is the operation mapping of the function f into the function F defined on the complex plane
by the relation

M[f:S8]=F(S) = /OOO t5SHf(t)dt (1.4)

The function F(S) is called the Mellin transform of f(t). In general the integral exist only for complex
values of S = a+1b such that a < a; < aa, where a1 and as depend on the function f(t). This introduces
the strip of definition of Mellin transform that will be denoted by S (a1, as).

Definition 1.3. The inverse formula for Mellin transform is given by

Ft) = —— / T s p(s)ds (1.5)

27T] —1i00
where the integration is along a vertical line through Re(S) = a.

Theorem 1.4. Let (M;)(s), which defined in 1. be regular in a strip, o1 < o < o2, where o1 < 0,
o9 > 1 except perhaps for a finite number of simple poles on the imaginary azis and let (M;)(S) be of the

forms:
1)) {ag+0 () b 05 0 {rg +0 () }

for large positive and negaive t,s = o + it respectively, where (Mj,) (s) = I'(s)cosssm is the Mellin
transform of cosx.

Let (M;,) (s) satisfy the condition
(M) (s) (M) (=27 —s) =1

Let z > 0, and let f(t) be in L1 (0, 00) and be of bounded variation near t = x.
Then,

| o) [ it s0dso = 31+ 0)+ 1o - o). (1.6
0 0

Equivalent relations are

3
=
I

B = [ " () f(1)do (1) 7)
(B1)(1) = / " j(at) Fa)do () (1.8)

~
—~

~~
~

where j(x) is called kernel for Hankel transform, 1.7 is called Hankel transform of f(¢) and 1.8 is the
corresponding inversion formula.
From [10], we define the basic function

Dia.y.2) = / " j(at)j(t)i(t)do(t) (1.9)
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The above integral is convergent for all 2,y € (0, 00).
The inversion of 1.9 i given by

/000 D(x,y,z)j(zt)do(z) = j(xt)j(yt);0 < x,y < 00;0 <t < 00 (1.10)

The inversion of ¢t = 0 in 1.10, we obtain

/OOO D@y, 2)do(z) = 1 (1.11)
The Hankel transformation 7, [10] of ¢ is defined by
r (@) = ¥le,y) = Ty / $(2)D(e,y, 2)do(2): 0 < 2,y < 50 (1.12)
Then the convolution [10] of ¢ and ¢ is defined by
@r)@) = [ vanotit) (1.13)
@x0)@) = [ D6 o)i0 <o < o0 (1.14)

Let ¢, € L1,(0,00) and let (¢ *1))(z) be defined by the above equation. Then
B(¢* ) = (Bo)(BY) (1.15)

From [10], Bessel wavelet is define as follows:
Let ¢ € L, »(0,00) be given, for b > 0 and a > 0, we have

bhale) = a2 (2, )
e 1/ e (_ L z> do(2). (1.16)

From [10], we define the Bessel wavelet transform as follows

B(b,a) = (Bw¢)(b a)
t); o (2))
= / O(2) Dy o (2)do ()
R 1/ / b(x (E 3 z> do(2)do(z) (1.17)

provide the integral is convergent.
Now we restate the lemma 2.3 from [10].
Let ¢,% € L1 ,(0,00) and (By¢) (b,a) be the continuous Bessel wavelet transform. Then

(By¢) (b,a) = (6% 1,) () (1.18)
2. Calderon’s formula

In this section we obtain Calderon’s reproducing indentity using the properties of Hankel transform
and Hankel convolution.
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Theorem 2.1. If f € L*(0,00) N L?(0,00) then f can be reconstructed by the formula

1= [ (3.5 o

where Cy, = fooo w2 (W) [2dw > 0 and (By f) (y,a) is Bessel wavelet transform of the function f with
respect to Bessel wavelet 1.

Proof. Let g € L'(0,00) N L?(0,00), then by the Parseval formula for the Bessel wavelet transform, we
have

Cylfr9) = /OOO/OOO(Bwf)(y’“)ma_%_lda(a)da(y)
= /Ooo /OO" (By.f) (,a)(g(x), &, o(@))a~ 2" do(a)do(y)

/000 (Byf) (y,a) /OOO g(x)%,ada(x)} a2 "Ldo(a)do(y)
= /0 ) /0 " By o) /0 mﬁ%,ada(@} a~2"do(a)do (y)
J

°°<Bm w.0) | / N

<

I
S~
8

g(@a=>1 (a a)do(x)} a~2""Ldo(a)do (y)
£,2) ) Santa)

<// (Byf) (y,a ym) gﬁz(),g(az» (2.2)

Il
o\g
A
\
\

U:J

<

\

Sf

Therefore o(@)do(y)
Cyflz / / (Byf) (y,a ) ahg (2.3)
If we put f = g in 2.3, then
Cyll I = / / (Buf) (v )2 2220 1)
[

Lemma 2.2. Let ¢ € L%}U(O,oo) be a basic Bessel wavelet which satisfies the following admissibility
condition

Cy - / () Pdo(w) = 1 (2.9

do o — do
/ / (Byf) (y,a ) 24)%2( v) :/0 (f*1g x0,) (x)aT(fz (2.5)
for f € LY(0,00) N L?(0, c0).
Proof. From 1.18, we have

[ [ Benwan (L2) 2 [

Using the symmetry of D(z,y,2) in 2.6, we get

v
[ e et (L) 2 [ () o 2L
fof e o

then

y g) do(a)do(y) (2.6)

a’ a a2

2741 do(a)do(y)
y) a2’y+1
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for (4, %) = ¥a(z,y).

Hence from 1.14, we obtain

[ Benwa (4.2) ST~ [T () 055

Theorem 2.3. Let ¢, € Ly ,,(0,00) and (B¢)(By) € L1, be such that the following admissibility
condition holds:

| Bor B 5~ 27)
Then the following Calderon’s reproducing identit holds
° — do(a)
F@) = [ (T ) @ R Forallf € Ly 0.00) (28)
Proof. If we put ¢ = in 2.2, then we can find the theorem 2.3. O

3. Application

In this section we give some application related to Bessel wavelet transform by using the theory of
Hankel convolution and Mellin transform.

Theorem 3.1. Let ) € Ly (0, 00) be a basic Bessel wavelet and (B f) (y, a) be continuous Bessel wavelet
transform, then

| [ e wan(22) 25 — o, [T i@uimnwis, (3.1)

Proof. From 1.16, we have

/f f Bof) s (4.2) W“
/Ow ,z)da(z))%
v ([ x“) J(22) iiot)) do(o} 22000

a

&l
&
/0“ 0°° . {/omj (%) ( /0 mj(zw)w(z)da(z)> d(,(w)} dola)io(s)
{ )i (%) (Bw)(w)do(w)} dota)ioly)
/OOO/OOOJ ) (BU)@) (BB . a))] () 202

- [ et ()
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Putting (£) = u in the above expression

[ B (1.7) el

/Ooo /OOO j(xu)(BY)(au) [B{(By.f)(y, a)}] (u)
do (u)do(a)

]
| e B B0 )
@ ([~ EHE b)) doa)

= 0 [ senBn i),

(au)* adudo(a)
atr 422731 (y + 3)
u?Vdudo (a)
a2 1273 (y 4 2)

" () (Bu)(aw) B [(By f) (v a)] (u)

J
/.
Ia

Theorem 3.2. Let f € Ly ,(0,00) and ¢ € L1 ,(0,00). Then
(f*¥a) W) = M7 [(f*9,) (=27 = s)(Mj)(s)] (w)
= [ itenB (4 7) Widaty)
where (Mj)(s)(~2y — 5) = L.
Proof. The Bessel wavelet transform 1.17 can be expressed in the following form:

(Buf) (.0) = (F 52) (4) = / " j(wn)B (f * 0y) (w)do(w)

Therefore [0°y*~" (f *1,) (v) =[5~ v~ (Jo~ 3(wy) B (f  ¥,) (w)do(w)) do(y)

From 1.4, we have

M((f %) (1)](s)

I
S—
3
Sy
=N
*
<
N

I
S—
3
oy}
N
*
<
G
Y
0\8 o\
<.
&
s
QVJ
<
no
3
QL
N
~_
QL
2
E

Replacing wy = u, we get

M[(f*4,) (W) = (/000] )vaédﬂ do(w)
2
- ( w 27+2F(7+ )du W o (w)
— - us~ 1 O' —2y—s o(w
ot ([ eo)

=/0 2B (f ) (/ o) ) dofe)
— (M{) ()M [B(f 5 T5) (@)] (27— 9)

Replacing s by —2v — s, we get
M [(f*4q) )] (=27 =) = (M) (=2v = s)M [B(f * ) (w)] (s)



where (Mj)(s)

10.

11.
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Hence
M(B (f *1,) (W)(s) = M [(f*,) ()] (=27 = s)(M3)(s)

_ 1
T (M) (—2v—s)"
Taking inverse Mellin transform in both sides of above expression and from [6], we get

B (f *02))(w) = / (7T Wi y)doy).
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