(3s.) **v. 2025 (43)** : 1–4. ISSN-0037-8712 doi:10.5269/bspm.63331

A note on 4-self-centered graphs

Arijit Mishra

ABSTRACT: A graph G is said to be 4-self-centered if the eccentricity of each of its vertices is 4. In this paper, we discuss some properties associated to 4-self-centered graphs. We obtain its degree and girth and also the maximum number of triangles in such graphs. We also establish the existence of 8-cycles and 9-cycles in these graphs.

Key Words: Eccentricity, diameter and radius of graphs, cycle, girth and degree of graphs.

Contents

1 Introduction 1

2 Main Results 1

1. Introduction

Let G be a connected simple graph. The eccentricity of G, denoted by e(G), is simply the maximum distance of one vertex from another. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity of the vertices of a graph, while its radius, denoted by Rad(G), is the minimum eccentricity of the vertices of the graph. A graph G having equal diameter and radius is called a self-centered graph. If diam(G) = Rad(G) = k, then G is said to be a k-self-centered graph. Properties associated to edgeminimal 2-self centered graphs were first studied by Shekarriz and Mirzavaziri [7], while Stanic [9] dealt with minimal self-centered graphs. One can find literature on self-centered graphs in [1-9].

The *centre* of a graph G is the collection of all those vertices of G whose eccentricity is minimum. Here the eccentricity of G is equal to the radius of G. Two vertices u and v of a graph G are said to be *adjacent* if uv is an edge in G. The *open neighborhood* a vertex u, denoted by N(u), is the set of all those vertices which are adjacent to u. The neighborhood of u that also contains u is called the *closed neighborhood* of u and is denoted by N[u].

The girth of a graph G, denoted by gr(G) is the length of the smallest cycle in G. If the graph G does not contain any cycle, then $gr(G) = \infty$. The degree of a vertex u of a graph G is the number edges of G that are incident to u. Symbolically, it is denoted by deg(u). A non-empty subset S of the set of all the vertices S of a graph is called a dominating set if every vertex in S is adjacent to at least one vertex in S. The domination number S of a graph S is defined to be the minimum cardinality of a dominating set in S and the corresponding dominating set is called a S-set of S.

Our emphasis through the entire length of this paper has been on connected simple graphs.

2. Main Results

This section shall introduce us to some of the basic properties of 4-self-centred graphs.

Theorem 2.1 For any 4-self-centered connected graph G of order n and $u \in V(G)$, $2 \le deq(u) \le n - 6$.

Proof:

If possible, let deg(u) = 1 and let $v \in N(u)$. Then for each $w \in V(G)$ such that d(u, w) = 4, we have d(v, w) = 3. Consequently $Rad(G) \le 3$, a contradiction. Therefore $deg(u) \ge 2$, $\forall u \in V(G)$. For the second part, for some $z \in V(G)$, if deg(z) = n - 1, then Rad(G) = 1, a contradiction. Let deg(z) = n - 2 and let $u \notin N(z)$. Then for some $x \in V(G)$, there exists a 2-path z - x - u in G. Consequently $Rad(G) \le 2$, a contradiction. Let deg(z) = n - 3 and let $u, v \notin N(z)$. If d(z, u) = d(z, v) = 2, then

Submitted April 22, 2022. Published July 12, 2025 2010 Mathematics Subject Classification: $05C07,\,05C12$, $05C38,\,05C69$.

A. Mishra

 $Rad(G) \leq 2$, a contradiction. If d(z,u) = 2 and d(z,v) = 3, then d(z,v) = 3. Consequently $Rad(G) \leq 3$, a contradiction. Let deg(z) = n - 4 and let $u, v, w \notin N(z)$. If d(u,w) = 2, then for some $x \in V(G)$, there exists a 4-path z - x - u - v - w in G. But since $deg(w) \geq 2$, \exists some $t \in V(G)$ which is adjacent to w. If t = u, then d(u,w) = 1, a contradiction. If t is adjacent to any other vertex s, then d(w,s) < 4, a contradiction. Let deg(G) = n - 5 and let $a_1, a_2, a_3, a_4 \notin N(z)$. If $d(a_1, a_4) = 3$, then $d(z, a_1) > 4$, a contradiction. If $d(a_1, a_4) = 1$, then $d(z, a_1) = 3$, contradiction. Let $deg(a_4) \geq 2$, a_4 must be adjacent to another vertex except z. But for each $w \neq z \in V(G)$, $d(a_4, w) < 4$, a contradiction. This establishes the result.

Theorem 2.2 Any connected 4-self-centered graph contains either an 8-cycle or a 9-cycle.

Proof: For any 4-self-centered graph G and $u \in V(G)$, let $v \in N(u)$. Since G is 4-self-centered, \exists some $x \in V(G)$ such that d(u,x) = 4. From theorem 2.1, since $deg(u) \geq 2$, let $w \in N(u)$ such that $w \neq v$. Since G is 4-self-centered, \exists some $y \in V(G)$ such that d(u,y) = 4. If y = x, then we get an 8-cycle. Let $y \neq x$. Since $deg(y) \geq 2$, y must be adjacent to another vertex of G. This vertex is x. This gives us a cycle of length 9. This completes the proof.

Theorem 2.3 For any connected 4-self-centered graph G, $3 \le gr(G) \le 9$.

Proof: Since the graph G is connected and $deg(u) \ge 2 \ \forall \ u \in G, G$ contains a cycle. Clearly $gr(G) \ge 3$ (Since a triangle is the smallest cycle). We now show that $gr(G) \le 8$. If possible, let gr(G) > 9. Then for each vertex u in an m-cycle of G, where m > 9, \exists another vertex v such that d(u,v) > 4, a contradiction. Hence $3 \le gr(G) \le 9$.

Theorem 2.4 The only 4-self-centered graph of order 8 is the cycle C_8 .

Proof: The fact that C_8 is a 4-self-centered graph is obvious. To establish its uniqueness, let $\{v_1, v_2, ..., v_8\}$ be the vertex set of the 4-self-centered graph G. Then \exists a 4-path $v_1 - v_2, v_3 - v_4, v_5$ in G. Since G is 4-self-centered, there exists another vertex, say v_6 such that v_5 is adjacent to v_6 . If v_6 is adjacent to v_1 , then then $d(v_1, v_5) < 4$, a contradiction. G being 4-self-centered, there exists another vertex, say v_7 such that v_6 is adjacent to v_7 . If v_7 is adjacent to v_1 , then again $d(v_1, v_5) < 4$, a contradiction. So there exists another vertex, say v_8 such that v_7 is adjacent to v_8 . Since $deg(v_1) \ge 2$, so v_1 must be adjacent to some vertex besides v_2 . This vertex is v_8 . Consequently the vertex set forms the cycle C_8 .

Theorem 2.5 The only 4-self-centered cycles are C_8 and C_9 .

Proof: The fact that C_8 and C_9 are 4-self-centered cycles can be easily seen from Figure 1 and Figure 2. The uniqueness of C_8 as a 4-self-centered graph can be seen from theorem 2.4. Now let G be a 4-self-centered cycle of order greater than 9 and let $\{v_1, v_2, ..., v_k\}$ be the vertex set of G, where k > 9. Then $d(v_1, v_{\lfloor \frac{k}{2} \rfloor}) = 4$, but $d(v_{\lfloor \frac{k}{2} \rfloor + 1}, v_1) > 4$, $\forall k > 9$, a contradiction. This establishes the result.

Theorem 2.6 For any connected 4-self-centered graph of order n such that $n \ge 8$, the maximum number of triangles in G is $\frac{(n-3)(n-7)(n-8)}{6}$.

Proof: We first partition the vertex set of G into two subsets:

 $A = \{v_1, v_2, ..., v_7\}$ and $B = \{v_8, v_9, ..., v_n\}$.

Let the vertices of A form the path $v_1-v_2-v_3-\ldots-v_7$ and that of B form the complete graph K_{n-7} . Also let v_1 and v_7 be adjacent to all the vertices of B. Then $d(v_i,v_{i+1})=4, \, \forall \, i=1,2,3,4$ and $d(x,y)\leq 4$, for each $x\in A$ and $y\in B$. Clearly the eccentricity of each vertices of G is 4. Since v_1 is not adjacent to v_7 , so the number of triangles in G are ${n-5\choose 3}-(n-7), i.e.$ ${(n-3)(n-7)(n-8)\over 6}$. Since the existence of any other triangle in G would contradict theorem 2.2, this is the maximum number of possible triangles in G.

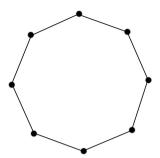


Figure 1: This is the only 4-self-centered graph on 8 vertices

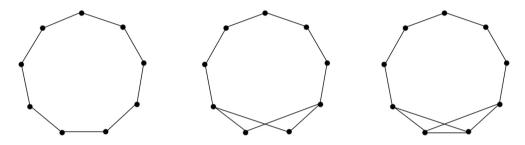


Figure 2: 4-self-centered graphs on 9 vertices

Theorem 2.7 For any connected 4-self-centred graph G, $\gamma(G) = 3$.

Proof: From theorem 2.6, the vertex set $\{v_1, v_4, v_7\}$ is a dominating set of G and, thus, $\gamma(G) \leq 3$. Let $\gamma(G) = 2$ and let $\{u, v\}$ be a dominating set of G. Let $\{u_1, u_2, ..., u_k\} \in N(u)$ and $\{v_1, v_2, ..., v_k \in N(v)\}$. If $u_i = v_j$ for some $i, j \in \mathbb{N}$, then $d(u, v) \leq 3$. Let $u_i \neq v_j$ for all $i, j \in \mathbb{N}$. Then d(u, v) = 3. Also for each $x, y \in N(u)$ and $z, w \in N(v)$, d(x, y) = d(z, w) = 2. In each of these cases, $Rad(G) \leq 3$, a contradiction. Again, if $\gamma(G) = 1$, then Rad(G) = 1, a contradiction. Therefore $\gamma(G) = 3$.

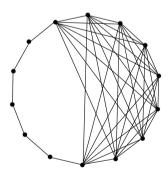


Figure 3: A 4-self-centered graph on 14 vertices containing 77 triangles

For the following results, we shall use the notation $N_1(u)$ to denote the neighbors of a vertex u of G, the notation $N_2(u)$ to denote the neighbors of $N_1(u)$, the notation $N_3(u)$ to denote the neighbors of $N_2(u)$ and so on.

Theorem 2.8 Let G be a connected k-regular 4-self-centered graph with gr(G) = 8. Then $|V(G)| = (k-1)(2k^2 - 2k + 1) + k + 1$.

4 A. Mishra

Proof: Let $u \in V(G)$. Since G is k-regular so $|N_1(u)| = k$, $|N_2(u)| = k(k-1)$, $|N_3(u)| = k(k-1)^2$ and $|N_4(u)| = k(k-1)^3$. Let $w \in N_2(u)$. Since gr(G) = 8, therefore $|N_3(w) \cap N_4(u)| = (k-1)^3$. So the total number of vertices of G are $(k-1)^3 + k(k-1)^2 + k(k-1) + k + 1$, i.e $(k-1)(2k^2 - 2k + 1) + k + 1$. \square

Theorem 2.9 For any connected k-regular 4-self-centered graph G with gr(G) = 9, $|V(G)| = k(k-1)(k^2-k+1)+k+1$.

Proof: For any $u \in V(G)$, since G is k-regular so $|N_1(u)| = k$, $|N_2(u)| = k(k-1)$, $|N_3(u)| = k(k-1)^2$ and $|N_4(u)| = k(k-1)^3$. Let $w \in N_2(u)$. Since gr(G) = 9, so $|N_3(w) \cap N_4(u)| = k(k-1)^3$. So the total number of vertices of G are $k(k-1)^3 + k(k-1)^2 + k(k-1) + k + 1$, i.e $k(k-1)(k^2 - k + 1) + k + 1$. \square

Acknowledgments

I thank the referees for their valuable suggestions.

References

- 1. Akiyama J., Ando K. and Avis D., *Miscellaneous properties of equi-eccentric graphs*. convexity and Graph Theory (1981).
- 2. Buckley F., Self-centred graphs. Graph Theory and its Applications: East and West 7, 554-589, 71-78 (1989).
- 3. Buckley F., Miller Z. and Slater P.J., On graphs containing a given graph as center. J. Graph Theory 5, 427-434 (1981).
- 4. Chang G.J., Centers of chordal graphs. Graphs. Combin. 7, 83-92 (1991).
- 5. Imani E. and Mirzavaziri M., Self-Centred graphs with diameter 3, Khayyam J. Math. 8, no.1, 17-24 (2022).
- Klavzar S., Narayankar K.P. and Walikar H.B., Almost self-centred graphs. Acta Maths. Sin. (Engl. Ser.) 27, 2343-2350 (2011).
- Shekarriz M.H., Mirzavaziri M., Mirzavaziri K., A characterization for 2-self-centred graphs. discuss. Math. Graph Theory 38, 27-37 (2018).
- 8. Stanic Z., Some notes on minimal self-centred graphs. AKCE J. Graphs. Comb. 7, 97-102 (2010).

Arijit Mishra,
Department of Mathematics,
NEF College,
India.

 $E ext{-}mail\ address: mishraarijit1012@gmail.com}$