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Notions of β-Closure Compatible Topology with an Ideal
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abstract: In this paper, we have defined β-local closure function. Its properties and characterizations are
analyzed. The set operator is defined and its properties are discussed. The notions of β-closure compatible
topology with an ideal I are introduced and investigated. Moreover, -dense set and β

∗∗
-codense ideal are

defined and explored.
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1. Introduction

Ahmad Al-Omari and Takashi Noiri [2] characterized local closure function and investigate its prop-
erties. In this paper, we have introduced and studied the notions of β-closure compatible topology with
an ideal I. Also, we define an operator β

∗∗
(A)(I, τ ) called β-local closure function of A with respect

to I and τ as follows: An ideal on a nonempty set X is a collection of subsets of X which satisfies the
following properties: (i) A ∈ I and B ⊆ A implies B ∈ I (heredity) (ii) A∈ I and B ∈ I implies A ∪ B ∈
I(finite additivity). An ideal topological space is a topological space (X, τ ) with an ideal I on X, and is
denoted by (X, τ , I) . Given a topological space (X, τ ) with an ideal I on X and if P(X) is the set of all
subsets of X, a set operator (.)* : P(X) → P(X), called a local function [16] of A with respect to τ and I

is defined as follows: for A ⊂ X, A∗(I, τ ) = {x ∈ X : U ∩ A /∈ I for every U ∈ τ (x)} where τ (x) = {U ∈
τ : x ∈ U}, when there is no chance for confusion A∗(I, τ ) is denoted by A∗. For every ideal topological
space (X, τ , I) there exists a topology τ* finer than τ , generated by the base β(I, τ ) = {U − K :U ∈ τ
and K ∈ I}. In general, β(I, τ) is not a topology.

A Kuratowski closure operator cl *(.) for the topology τ∗(I, τ ), called the ⋆ -topology finer than
τ is defined by cl *(A)=A ∪ A∗(I, τ) [16]. In an ideal space I is said to be codense [6] if τ ∩ I =
{φ}. If A ⊂ X, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ ) and
cl*(A) and int*(A) will respectively denote the closure and interior of A in (X, τ∗). A subset A of a
space (X, τ) is β-open or semi-pre-open [3] set if A ⊂ cl(int(cl(A)))]. The complement of β-open or
semi-pre-open set is β-closed or semi-pre-closed. The semi pre-closure of a subset A of X, denoted by
spcl(A) or βcl(A), is defined to be the intersection of all semi-pre-closed sets containing A. The semi
pre-interior of a subset A of X, denoted by spint(A) or βint(A), is defined to be the union of all semi-
pre-open sets contained in A We have introduced in [10], a set operator (.)∗∗ : P(X) → P(X), called
a semi-pre local function or β-local function of A with respect to τ and I is defined as follows: for
A ⊂ X, A∗∗ (I, τ) = {x ∈ X : U ∩ A /∈ IforeveryU ∈ βO (x)} where the family of semi-preopen sets
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2 V. BEULAH, JESSIE THEODORE AND D. PREMALATHA

βO (x) = {U ∈ βO (X) : x ∈ U}, when there is no ambiguity, we will write simply A∗∗ for A∗∗ (I, τ ). A
set A is said to be θ-open [17] if every point of A has an open neighborhood whose closure is contained
in A. In [13], Newcomb defines A = B [mod I] if (A\B) ∪ (B\A) ∈ I and observed that “= [mod I]”
is an equivalence relation and denoted the symmetric difference” (A\B) ∪ (B \A) by A△B. In [14], the
topology τ is compatible with the ideal I, denoted τ ∼ I, if the following holds for every A ⊆ X : if for
every x ∈ A there exists a U ∈ N (x) such that U ∩ A ∈ I, then A ∈ I, where N (x) denotes the open
neighborhood system at x.

2. βlocal closure function in ideal topological space

Definition 2.1. A set A is said to be θβ-open if every point of A has a β-open neighborhood whose
closure is contained in A. The θβ-interior of A in X is the union of all θβ-open sets contained in A and is
denoted by intθβ (A). Naturally, the complement of a θβ-open set is said to be θβ-closed. The θβ-closure
of A in X is the intersection of all θβ-closed sets containing A and is denoted by clθβ (A). Equivalently,
clθβ (A) = {x ∈ X : clθβ (U)∩ A 6= φ for every U ∈ τ(x)} and the set Ais θβ-closed if and only if A =
clθβ (A). Note that all θβ-open sets form a topology on X which is coarser than τ , and is denoted by
τθβ and that a space (X, τ ) is β-regular if and only if τ = τ θβ . Also, the θβ-closure of a given set need
not be a θβ-closed set.

Example 2.2. Let X = {a,b,c,d} with the topology τ = {φ, X, {a},{b},{a,b}} and an ideal I =
{φ, {b},{c},{b,c}}. Here A = {c, d} = clθβ (A), B = { a, c, d} = clθβ (B), C = {b, c, d} = clθβ (C) hence
A, B, C are θβ-closed and τ θβ = {{c, d}, {a, c, d}, {b, c, d}, X, φ}.

Definition 2.3. Let (X, τ , I) be an ideal topological space. For a subset A of X, we define the
following operator: β

∗∗
(A) (I, τ ) = {x ∈ X : A ∩ clβ(U)/∈ I for every U ∈ βO(x)}, where βO(x) = {U

∈ βO(X) : x ∈ U } and in case there is no confusion β
∗∗

(A) (I, τ ) is briefly denoted by β
∗∗

(A) and is
called the β-local closure function of A with respect to I and τ .

For example:

1. Let X = {a, b, c} with the topology τ = {φ, X, {a}} and an ideal I = {φ, {b}}. Here,
βO (X) = {{a} , {b} , {a, b} , {a, c} , {b, c} , X, φ}. Also, A = {a}, β

∗∗
(A) = {a}, B = {b}, β

∗∗
(B) =

φ, C = {c} , β
∗∗

(C) = {c} , D = {a, b} , β
∗∗

(D) = {a} , E = {a, c} , β
∗∗

(E) = {a, c} , F =
{b, c} , β

∗∗
(F ) = {c}, G = φ, β

∗∗
(G) = φ, H = X, β

∗∗
(H) = {a, c} .

2. Consider R with the usual topology τu and the ideal I = {φ}. For the set A = [0, 1], int (A) =
(0, 1) , cl (A) =R. Therefore, A = [0, 1]∈βO(X) and clβ (A) = R. Hence, β

∗∗
(A) =R.

3. Consider R with the topology and any ideal I. For the set A = Z
+, int (A) = φ, cl (A) =R.Therefore,

A = Z
+∈βO(X) and clβ (A) = R. Hence, β

∗∗
(A) =R.

Lemma 2.4. Let (X, τ , I) be an ideal topological space. Then A∗∗ ⊆ β
∗∗

(A) for every subset A of X.
Proof: Let x ∈ A∗∗. Then, A ∩ U /∈ I for every U ∈ βO(x). Since A ∩ U ⊆ A ∩ clβ (U) , A ∩ clβ(U)/∈
I. Thus, x ∈ β

∗∗
(A).

Example 2.5. Let X = {a,b,c,d} with the topology τ = {φ, X, {a},{b},{a,b}} and an ideal I =
{φ, {b},{c},{b,c}}. Here βO(X) = {{a}, {b},{a, b},{a, c},{a, d},{b, c},{b, d},{a, b, c}, {a, b, d}, {a, c,
d}, {b, c, d}}. Let A = {a} then β

∗∗
(A) = {a}.

Lemma 2.6. Let (X, τ ) be a topological space and A be a subset of X. Then

1. If A is closed, then cl(A) = clθβ (A),

2. If A is open, then int(A) = intθβ (A)

Theorem 2.7. Let (X, τ ) be a topological space, I1 , I2 be two ideals on X, and let A and B be subsets
of X. Then the following properties hold:

1. If A ⊆ B, then β
∗∗

(A) ⊆ β
∗∗

(B)
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2. If I1 ⊆ I2, then β
∗∗

(A) (I1) ⊇ β
∗∗

(A) (I2) .

3. If A ⊆ X, then β
∗∗

(A) = cl (β
∗∗

(A)) ⊆ clθβ (A) and β
∗∗

(A) is closed.

4. If A ⊆ β
∗∗

(A) and β
∗∗

(A) is open, then β
∗∗

(A) = clθβ (A) .

5. If A ∈ I, then β
∗∗

(A) = φ.

Proof:

1. Suppose that x /∈ β
∗∗

(B). Then there exists U ∈ βO(x) such that B ∩ clβ (U)∈ I. Since A ∩
clβ (U) ⊆ B ∩ clβ (U) implies A ∩ clβ(U)∈ I. Hence x /∈ β

∗∗
(A). Thus X − β

∗∗
(B) ⊆ X − β

∗∗
(A)

that is β
∗∗

(A) ⊆ β
∗∗

(B).

2. Suppose that x /∈ β
∗∗

(A) (I1). There exists U ∈ βO(X)) such that A ∩ clβ(U) ∈ I1. Since I1 ⊆ I2,
A ∩ clβ (U) ∈ I2 and x /∈ β

∗∗
(A) (I2). Hence β

∗∗
(A) (I2) ⊆ β

∗∗
(A) (I1).

3. We have β
∗∗

(A) ⊆ cl (β
∗∗

(A)). Suppose that x ∈ cl (β
∗∗

(A)). Then β
∗∗

(A) ∩ U 6= φ for every
U ∈ βO(X). Therefore, there exists some y ∈ β

∗∗
(A) ∩ U and U ∈ βO(y). Since y ∈ β

∗∗
(A) ,

A ∩ clβ (U) /∈ I and hence x ∈ β
∗∗

(A). Therefore, we have cl (β
∗∗

(A)) ⊆ β
∗∗

(A) and hence
β

∗∗
(A) = cl (β

∗∗
(A)). Now, let x ∈ clβ (β

∗∗
(A)) = β

∗∗
(A) , then A ∩ clβ (U) /∈ I for every U ∈

βO(x) and it implies that A ∩ clβ (U) 6= φ for every U ∈ βO(x)). Therefore, x ∈ clθβ (A). Thus,
β

∗∗
(A) = cl (β

∗∗
(A)) ⊆ clθβ (A) .

4. For any subset A of X, by (3) we have β
∗∗

(A) = cl (β
∗∗

(A)) ⊆ clθβ (A). Since A ⊆ β
∗∗

(A) and
β

∗∗
(A) is open, then clθβ (A) ⊆ clθβ (β

∗∗
(A)) = cl (β

∗∗
(A)) = β

∗∗
(A) ⊆ clθβ (A) , by Lemma 2.6,

and hence β
∗∗

(A) = clθβ (A) .

5. Suppose that x ∈ β
∗∗

(A) . Then for any U ∈ βO(x), A ∩ clβ (U) /∈ I. Since A ∈ I, then A ∩ clβ (U)
∈ I for every U ∈ βO(x). This is contradiction. Hence β

∗∗
(A) = φ.

Lemma 2.8. Let (X, τ , I) be an ideal topological space. If U ∈ τ θβ , then U∩ β
∗∗

(A) = U ∩β
∗∗

(U ∩ A) ⊆
β

∗∗
(U ∩ A) for any subset A of X.

Proof: Suppose that U ∈ τθβ and x ∈ U∩β
∗∗

(A) . Then x ∈ U and x ∈ β
∗∗

(A) . Since U ∈ τθβ , then
there exists G ∈ βO(x) such that x ∈ G ⊆ cl(G) ⊆ U. Let H be any β-open set containing x. Then H∩G
∈ βO(x) and clβ (H ∩ G) ∩ A /∈ I and hence clβ (H) ∩ (U ∩ A) /∈ I. This implies that x ∈ β

∗∗
(U ∩ A)

and hence we obtain U ∩ β
∗∗

(A) ⊆ β
∗∗

(U ∩ A). Also, U ∩ β
∗∗

(A) ⊆ U ∩ β
∗∗

(U ∩ A) and by Theorem
2.7, β

∗∗
(U ∩ A) ⊆ β

∗∗
(A) and U ∩ β

∗∗
(U ∩ A) ⊆ U ∩ β

∗∗
(A) . Thus, U ∩ β

∗∗
(A) = U ∩ β

∗∗
(U ∩ A) .

Theorem 2.9. Let (X, τ , I) be an ideal topological space and A, B any subsets of X. Then the following
properties hold:

1. β
∗∗

(φ) = φ

2. β
∗∗

(A) ∪ β
∗∗

(B) = β
∗∗

(A ∪ B).

Proof:

1. The proof is obvious.

2. It follows from Theorem 2.7 that β
∗∗

(A ∪ B) ⊇ β
∗∗

(A) ∪β
∗∗

(B). Let x /∈ β
∗∗

(A) ∪β
∗∗

(B) . Then
x belongs neither to β

∗∗
(A) nor to β

∗∗
(B) and there exist Ux,Vx∈ βO(x) such that A ∩ clβ (Ux)∈

I and B ∩ clβ (Vx) ∈ I. Since I is additive, [A ∩ clβ (Ux)] ∪ [B ∩ clβ (Vx)] ∈ I. Also, by hereditary
[A ∩ clβ (Ux)] ∪ [B ∩ clβ (Vx)] = [(A ∩ clβ (Ux)) ∪ B] ∩ [(A ∩ clβ (Ux)) ∪ clβ (Vx)] = [(A ∪ B) ∩
(clβ (Ux) ∪ B)] ∩ [(A ∪ clβ (Vx)) ∩ (clβ (Ux) ∪ clβ (Vx))] ⊇ clβ (Ux ∩ Vx) ∩ (A ∪ B) and clβ (Ux ∩ Vx)
∩ (A ∪ B) ∈ I. Since Ux ∩ Vx ∈ βO(x), x /∈ β

∗∗
(A ∪ B). Hence (X −β

∗∗
(A)) ∩ (X − β

∗∗
(B)) ⊆

X − β
∗∗

(A ∪ B) or β
∗∗

(A ∪ B) ⊆ β
∗∗

(A) ∪ β
∗∗

(B). Thus, β
∗∗

(A) ∪ β
∗∗

(B) = β
∗∗

(A ∪ B).
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Lemma 2.10. Let (X, τ , I) be an ideal topological space and A, B any subsets of X. Then β∗∗ (A) −
β∗∗ (B) = β∗∗ (A − B) − β∗∗ (B).
Proof: Let A, B ⊆ X then by Theorem 2.9, β∗∗(A) = β∗∗[(A − B) ∪ (A ∩ B)] = β∗∗(A − B) ∪ β∗∗(A ∩
B) ⊆ β∗∗(A − B) ∪ β∗∗(B). Thus, β∗∗(A) − β∗∗(B) ⊆ β∗∗(A − B) − β∗∗(B). By Theorem 2.7, β∗∗(A −
B) ⊆ β∗∗(A) and hence β∗∗(A − B) − β∗∗(B) ⊆ β∗∗(A) − β∗∗ (B). Hence, β∗∗ (A) − β∗∗(B) = β∗∗(A
− B) − β∗∗ (B).
Corollary 2.11. Let (X, τ , I) be an ideal topological space and A, B be any subsets of X with B ∈ I.
Then β∗∗ (A ∪ B) = β∗∗ (A) = β∗∗ (A − B).
Proof: Since B ∈ I, by Theorem 2.7, β∗∗ (B) = φ. By Lemma 2.10, β∗∗ (A) = β∗∗ (A − B) and by
Theorem 2.9, β∗∗ (A ∪ B) = β∗∗ (A) ∪ β∗∗ (B) = β∗∗ (A).

Theorem 2.12. Let (X, τ , I) be an ideal topological space. Then β∗∗ (A) ⊇ A − ∪ {U ⊆ X : U ∈ I}
for all A ⊆ X.
Proof: Let B = ∪{U ⊆ X : U ∈ I} and x ∈ A − B. Then x /∈ B implies that x /∈ U for all U∈ I, so that
{x} = {x}∩ A /∈ I, because x ∈ A. For every V ∈ βO(x), we have {x}∩ A ⊆ clβ (V )∩ A /∈ I, by heredity
and hence x ∈ β∗∗ (A).

Theorem 2.13. Let (X, τ ) be a topological space with ideals I1 and I2 on X and A ⊆ X , then
β

∗∗
(A) (I1 ∩ I2) ⊆ β

∗∗
(A) (I1) ∩ β

∗∗
(A) (I2) .Moreover, β

∗∗
(A) (I1 ∩ I2) ⊆ β

∗∗
(A) (I1) ∪ β

∗∗
(A) (I2)

Proof: Let x ∈ β
∗∗

(A) (I1 ∩ I2). Then clβ (U) ∩A /∈ I1 and clβ (U) ∩A /∈ I2 for every U ∈
βO(x). Hence, x ∈ β

∗∗
(A) (I1) and x ∈ β

∗∗
(A) (I2) implies x ∈ β

∗∗
(A) (I1) ∩ β

∗∗
(A) (I2). Thus x

∈ β
∗∗

(A) (I1) ∪ β
∗∗

(A) (I2) .

3. Ψβ
∗∗

operator in ideal topological space

Definition 3.1. Let (X, τ , I) be an ideal topological space. An operator Ψβ
∗∗

: P(X) → τ is defined as
follows: for every A ⊆ X, Ψβ

∗∗

(A) = {x ∈ X : there exists U ∈ βO(x) such that clβ (U) − A ∈ I} and
observe that Ψβ

∗∗

(A) = X − β∗∗ (X − A).

For example: Let X = {a, b, c} with the topology τ = {φ, X, {a}} and an ideal I = {φ, {b}}. Here
βO (X) = {{a} , {b} , {a, b} , {a, c} , {b, c} , X, φ}. For the set A = {a}, β

∗∗
(A) = {a} and β

∗∗
(X − A) =

β
∗∗

({b, c}) = X. Then, Ψβ
∗∗

(A) = X −β
∗∗

(X − A) = X − X = φ.
Theorem 3.2. Let (X, τ , I) be an ideal topological space. Then the following properties hold:

1. If A ⊆ X, then Ψβ
∗∗

(A) is β-open.

2. If A ⊆ B, then Ψβ
∗∗

(A) ⊆ Ψβ
∗∗

(B)

3. If A, B ∈ P(X), then Ψβ
∗∗

(A ∩ B) = Ψβ
∗∗

(A) ∩ Ψβ
∗∗

(B).

4. If A ⊆ X, then Ψβ
∗∗

(A) = Ψβ
∗∗

(

Ψβ
∗∗

(A)
)

if and only if β∗∗(X − A) = β∗∗(β∗∗ (X − A)).

5. If A ∈ I, then Ψβ
∗∗

(A) = X − β
∗∗

(X) .

6. If A ⊆ X, I ∈ I, then Ψβ
∗∗

(A − I) = Ψβ
∗∗

(A).

7. If A ⊆ X, I ∈ I, then Ψβ
∗∗

(A ∪ I) = Ψβ
∗∗

(A) .

8. If (A − B) ∪ (B − A) ∈ I,then Ψβ
∗∗

(A) = Ψβ
∗∗

(B).

Proof:

1. Obvious by Definition.

2. Let A ⊆ B and x ∈ Ψβ
∗∗

(A) then there exists U ∈ βO(x) such that clβ (U) − A ∈ I. Since A ⊆ B
then clβ (U) − B ∈ I, for U ∈ βO(x). Hence x ∈ Ψβ

∗∗

(B).
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3. Let A, B ∈ P(X). Ψβ
∗∗

(A ∩ B) = X − β∗∗ (X − (A ∩ B)) = X − β∗∗ [(X − A) ∪ (X − B)] = [X
− β∗∗ (X −A)] ∩ [X − β∗∗ (X − B)] = Ψβ

∗∗

(A) ∩ Ψβ
∗∗

(B).

4. Let A ⊆ X and β∗∗ (X −A) = β∗∗ (β∗∗ (X − A)). Then Ψβ
∗∗

(A) = X − β∗∗ (X − A). Now,
Ψβ

∗∗

(

Ψβ
∗∗

(A)
)

= X − β∗∗ [(X − (X − β∗∗ (X − A))] = X − β∗∗(β∗∗(X − A)) = X − β∗∗(X −

A) = Ψβ
∗∗

(A) . Conversely, assume that Ψβ
∗∗

(A) = Ψβ
∗∗

(

Ψβ
∗∗

(A)
)

. Then X − β∗∗ (X − A) =
X − β∗∗ [(X − (X − β∗∗ (X − A))]. Hence, β∗∗(X − X) = β∗∗(β∗∗(X − A)).

5. IfA ∈ I, then Ψβ
∗∗

(A) = X − β∗∗(X − A) = X − β∗∗ (X) by Corollary 2.11.

6. If A ⊆ X and I ∈ I, then Ψβ
∗∗

(A − I) = X − β∗∗[X − (A − I)] = X − β∗∗[(X − A) ∪ I] = X −
[β∗∗(X− A) ∪ β∗∗ (I)] = X − [β∗∗(X − A) ∪ φ] = X − β∗∗(X − A) = Ψβ

∗∗

(A) by Theorem 2.7
(5).

7. If A ⊆ X, I ∈ I, then Ψβ
∗∗

(A ∪ I) = X − β∗∗ [X − (A ∪ I)] = X − β∗∗[(X − A) − I] = X − β∗∗ (X
− A) = Ψβ

∗∗

(A) , by Corollary 2.11.

8. Assume that (A − B) ∪ (B − A) ∈ I. Let A − B = I and B − A = J. Observe that I, J ∈ I by
heredity. Also, B = (A − I ) ∪ J. Thus Ψβ

∗∗

(A) = Ψβ
∗∗

(A − I) = Ψβ
∗∗

[(A − I) ∪ J ] = Ψβ
∗∗

(B),
by Corollary 2.11.

Corollary 3.3. Let (X, τ , I) be an ideal topological space. Then A ⊆ Ψβ
∗∗

(A) for every θβ-open set
A ⊆ X.
Proof: We know that Ψβ

∗∗

(A) = X − β∗∗ (X − A). Now, β∗∗ (X − A) ⊆ clθβ (X − A) = X − A, since

X − A is θβ-closed. Therefore, A = X − (X − A) ⊆ X − β∗∗ (X − A) = Ψβ
∗∗

(A).

The converse of this statement is not true by the following example.

Example 3.4. Let X = {a,b,c,d} with the topology τ = {φ, X, {a}, {b}, {a,b}} and the ideal I = {φ, {b},
{c},{b,c}}. Here βO(X) = {{a},{b},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},X,φ}.
Let A = {a}. Then Ψβ

∗∗

(A) = X − β∗∗ (X − A) = X − β∗∗ (X − {a}) = X − β∗∗({b,c,d}) = X − {d}

= {a,b,c}, since β∗∗({b,c,d}) = {d}. Hence, A ⊆ Ψβ
∗∗

(A) but A is not θβ-open.
Theorem 3.5. Let (X, τ , I) be an ideal topological space and A ⊆ X. Then the following properties hold:

1. Ψβ
∗∗

(A) =
⋃

{U ∈ βO(X) : clβ (U) − A ∈ I}

2. Ψβ
∗∗

(A) ⊇
⋃

{U ∈ βO(X) : (clβ (U) − A) ∪ (A − clβ (U)) ∈ I}.

Proof: (a) This follows immediately from the definition of Ψβ
∗∗

-operator.
(b) Since I is heredity, it is obvious that

⋃

{U ∈ βO(X) : (clβ (U) − A) ∪ (A − clβ (U)) ∈ I} ⊆
⋃

{U ∈
βO(X) : clβ (U) − A ∈ I} = Ψβ

∗∗

(A) for every A ⊆ X.

Theorem 3.6. Let (X, τ , I) be an ideal topological space. If µ = {A ⊆ X : A ⊆ Ψβ
∗∗

(A)}. Then µ is
a topology for X.
Proof: Let µ = {A ⊆ X : A ⊆ Ψβ

∗∗

(A)}. Since φ ∈ I, by Theorem 2.6 (5), β∗∗(φ) = φ and Ψβ
∗∗

(X)
= X − β∗∗(X − X) = X − β∗∗(φ) = X. Also, Ψβ

∗∗

(φ) = X − β∗∗ (X − φ) = X − X = φ. Therefore, we
obtain that φ ⊆ Ψβ

∗∗

(φ) and X ⊆ Ψβ
∗∗

(X) = X implies φ and X ∈ µ. Now if A, B ∈ µ, then by Theorem
3.2, A ∩ B ⊆ Ψβ

∗∗

(A) ∩ Ψβ
∗∗

(B) = Ψβ
∗∗

(A ∩ B) which implies that A ∩ B ∈ µ. If {Aα : α ∈ ∆} ⊆ µ, then
Aα ⊆ Ψβ

∗∗

(Aα) ⊆ Ψβ
∗∗

(∪ Aα) for every α and hence ∪Aα ⊆ Ψβ
∗∗

(∪Aα). This shows that µ is a topology.

Lemma 3.7. If either A ∈ βO(X) or B ∈ βO(X), then int(cl(A ∩ B)) = int(cl(A)) ∩ int(cl(B)).
Theorem 3.8. Let µ0 = {A ⊆ X : A ⊆ int(cl(Ψβ

∗∗

(A)))}, then µ0 is a topology for X.
Proof: For any subset A of X, Ψβ

∗∗

(A) is open and µ ⊂ µ0 by Theorem 3.2. Hence φ, X ∈ µ0.
Let A, B ∈ µ0. Then A∩B ⊂ int(cl(Ψβ

∗∗

(A))) ∩ int(cl(Ψβ
∗∗

(B))) = int(cl(Ψβ
∗∗

(A) ∩ Ψβ
∗∗

(B))) =
int(cl(Ψβ

∗∗

(A∩B))), by Lemma 3.7 and Theorem 3.2. Hence A ∩ B ∈ µ0. Let Aα ∈ µ0 for each α
∈ J. By Theorem 3.2, for each α ∈ J, Aα ⊆ int(cl(Ψβ

∗∗

(Aα))) ⊆ int(cl(Ψβ
∗∗

(∪Aα))) implies ∪Aα ⊂
int(cl(Ψβ

∗∗

(∪Aα))). Hence ∪Aα ∈ µ0. Thus, µ0 is a topology for X. The above discussion is shown
clearly in the set implications: Figure 1.
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Figure 1: Sets implications

4. βclosure compatible topology with an ideal

Definition 4.1. Let (X, τ , I) be an ideal topological space. We say the τ is β-closure compatible with
the ideal I, denoted τ ∼β

∗∗

I if the following holds for every A ⊆ X, if for every x ∈ A there exists U ∈
βO(x) such that A ∩ clβ (U) ∈ I, then A ∈ I.

For example: Let X = {a,b,c} with the topology τ = {φ, X,{a},{b},{a,b}} and an ideal I = {φ,
{b}}. Here βO (X) = {{a} , {b} , {a, b} , {a, c} , {b, c} , X, φ}. For the set A1 = {a} there exists U = {a,c}
∈ βO (X, a) such that clβ (U) ∩ A1 = {a}/∈ I and A1 /∈ I, for the set A2 = {b} there exists U = {b,c}∈
βO (X, b) such that U ∩ A2 ={b}∈ I and A2 ∈ I, for the set A3 = {c} there exists U = {b,c} ∈ βO (X, c)
such that U ∩ A3 = {c} /∈ I and A3 /∈ I, and so on. Hence τ∼β

∗∗

I.
Theorem 4.2. Let (X, τ , I) be an ideal topological space, the following properties are equivalent:

1. τ ∼β
∗∗

I

2. If a subset A of X has a cover of open sets each of whose β-closure intersection with A is in I, then
A ∈ I.

3. For every A ⊆ X, A ∩ β∗∗(A) = φ implies that A ∈ I.

4. For every A ⊆ X, A − β∗∗(A) ∈ I.

5. For every A ⊆ X, if A contains no nonempty subset B with B ⊆ β∗∗(B), then A ∈ I.

Proof: (1) ⇒ (2): The proof is obvious by Definitions.
(2) ⇒ (3): Let A ⊆ X and x ∈ A. Then x /∈ β∗∗(A) and there exists Vx ∈ βO(x) such that A ∩ clβ (Vx)
∈ I. Therefore, we have A ⊆

⋃

{Vx : x ∈ A} and Vx ∈ βO(x) and hence by A ∈ I.
(3) ⇒ (4): For any A ⊆ X, A − β∗∗(A) ⊆ A and (A − β∗∗(A)) ∩ β∗∗(A − β∗∗(A)) ⊆ (A − β∗∗(A)) ∩
β∗∗(A) = φ. Hence A − β∗∗(A) ∈ I, by (3).
(4) ⇒ (5): For every A ⊆ X, A − β∗∗(A) ∈ I, by (4). Let A − β∗∗(A) = J ∈ I, then A = J ∪ (A ∩
β∗∗(A)) and by Theorem 2.9 (2) and Theorem 2.6 (5), β∗∗(A) = β∗∗ (J ) ∪ β∗∗(A ∩ β∗∗(A)) = β∗∗(A ∩
β∗∗(A)). Therefore, we have A ∩ β∗∗(A) = A ∩ β∗∗(A ∩ β∗∗(A)) ⊆ β∗∗(A ∩ β∗∗(A)) and A ∩ β∗∗(A)
⊆ A. By hypothesis, A ∩ β∗∗(A) = φ and hence A − β∗∗ (A) ∈ I.
(5) ⇒ (1): Let A ⊆ X and assume that for every x ∈ A, there exists U ∈ βO(x) such that A ∩ cl(U) ∈
I. Then A ∩ β∗∗(A) ⊆ A. Hence, A ∩ β∗∗(A) = φ, by (5). Suppose that A contains B such that B ⊆
β∗∗(B). Then B = B ∩ β∗∗(B) ⊆ A ∩ β∗∗ (A) = φ. Hence, A contains no nonempty subset B with B
⊆ β∗∗(B). Thus, A ∈ I.

Theorem 4.3. Let (X, τ , I) be an ideal topological space. If τ ∼β
∗∗

I, then the following are equivalent.

1. For every A ⊆ X, A ∩ β∗∗(A) = φ implies that β∗∗(A) = φ

2. For every A ⊆ X, β∗∗(A − β∗∗(A)) = φ

3. For every A ⊆ X, β∗∗(A ∩ β∗∗(A)) = β∗∗(A).

Proof: First we show that (1) holds if τ ∼β
∗∗

I. For every A ⊆ X, and A ∩ β∗∗(A) = φ, by Theorem
4.2 (3), A ∈ I and by Theorem 2.7 (5), β∗∗(A) = φ.
(1) ⇒ (2): Let B = A − β∗∗(A), then B ∩ β∗∗(B) = (A − β∗∗(A)) ∩ β∗∗(A − β∗∗(A)) = [A ∩ (X −
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β∗∗ (A))] ∩ β∗∗(A ∩ (X − β∗∗(A))) ⊆ [A ∩ (X − β∗∗(A))] ∩ [β∗∗(A) ∩ β∗∗(X − β∗∗(A))] = φ. This
implies β∗∗(B) = φ, by hypothesis. Hence, β∗∗(A − β∗∗(A)) = φ.
(2) ⇒ (3): Assume that for every A ⊆ X, β∗∗(A − β∗∗ (A)) = φ. Now, A = (A − β∗∗(A)) ∪ (A ∩
β∗∗(A)) implies β∗∗ (A) = β∗∗[(A − β∗∗(A)) ∪ (A ∩ β∗∗(A))] = β∗∗(A − β∗∗(A)) ∪ β∗∗(A ∩ β∗∗(A))
= β∗∗(A ∩ β∗∗(A)).
(3) ⇒ (1): Assume that for everyA ⊆ X, A ∩ β∗∗(A) = φ and β∗∗(A ∩ β∗∗ (A)) = β∗∗ (A). This implies
that φ = β∗∗(φ) = β∗∗(A).

Theorem 4.4. Let (X, τ , I) be an ideal topological space, and τ∼β
∗∗

I. Then for every G ∈ τ θβ and any
subset A of X, cl(β∗∗(G ∩ A)) = β∗∗(G ∩ A) ⊆ β∗∗(G ∩ β∗∗(A)) ⊆ clθβ (G ∩ β∗∗(A)).
Proof: By Theorem 4.3 (3) and Theorem 2.7, we have β∗∗ (G ∩ A) = β∗∗((G ∩ A) ∩ β∗∗(G ∩ A))
⊆ β∗∗(G ∩ β∗∗(A)). Also,cl(β∗∗(G ∩ A)) = β∗∗(G ∩ A) ⊆ β∗∗(G ∩ β∗∗(A)) ⊆ clθβ (G ∩ β∗∗(A)), by
Theorem 2.6.

Theorem 4.5. Let (X, τ , I) be an ideal topological space. Then τ∼β
∗∗

I if and only if Ψβ
∗∗

(A) − A ∈ I

for every A ⊆ X.
Proof: Necessity: Let A ⊆ X. Assume that τ ∼β

∗∗

I. Observe that x ∈ Ψβ
∗∗

(A) − A if and only if x
/∈ A and x /∈ β∗∗(X − A) if and only if x /∈ A and there exists Ux ∈ βO(x) such that clβ (Ux) − A ∈ I

if and only if there exists Ux ∈ βO(x) such that x ∈ clβ (Ux) − A ∈ I. Now, for each x ∈ Ψβ
∗∗

(A) − A
and Ux ∈ βO(x), clβ (Ux) ∩ (Ψβ

∗∗

(A) − A) ∈ I, by heredity and hence Ψβ
∗∗

(A) − A ∈ I, by assumption
that τ ∼β

∗∗

I.
Sufficiency: Let A ⊆ X and assume that for each x ∈ A there exists Ux ∈ βO(x) such that clβ(Ux) ∩
A ∈ I. Observe that Ψβ

∗∗

(X − A) − (X − A) = A − β∗∗(A) = {x : there exists Ux ∈ βO(x) such that
x ∈ clβ(Ux) ∩ A ∈ I}. Hence A ⊆ Ψβ

∗∗

(X − A)− (X − A) ∈ I and implies A ∈ I, by heredity of I.

Theorem 4.6. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I, A ⊆ X. If U is a nonempty open
subset of β∗∗(A) ∩ Ψβ

∗∗

(A), then U − A ∈ I and clβ(U) ∩ A /∈ I.
Proof: If U ⊆ β∗∗(A) ∩ Ψβ

∗∗

(A), then U − A ⊆ Ψβ
∗∗

(A) − A ∈ I, by Theorem 4.5. Hence, U −A ∈
I, by heredity. Since U ∈ βO(X) − {φ} and U ⊆ β∗∗(A), we have clβ(U) ∩ A /∈ I by the definition of
β∗∗(A).

5. β
∗∗

codense ideal

Definition 5.1. Let (X, τ , I) be an ideal topological space, then an ideal I is said to be β∗∗ -codense if
CβO(X) ∩ I = φ where CβO(X) = {clβ(U) : U ∈ βO(X)} .

For example: Let X = {a,b,c} with the topology τ = {φ, X,{a},{a,c}} and the ideal I = {φ,{a}}.
Here βO (X) = {{b} , {c} , {b, c} , X, φ}. Then, CβO(X) = {{b} , {c} , {b, c} , X, φ}. Therefore, CβO(X)
∩ I = φ. Hence our ideal I is a β∗∗-codense ideal.
Theorem 5.2. Let (X, τ , I) be an ideal topological space. Then the following are equivalent:

1. I is β∗∗-codense.

2. If I ∈ I, then intθβ (I) = φ

3. For every clopen G, G ⊆ β∗∗(G)

4. X = β∗∗(X).

Proof: (1) ⇒ (2): Let CβO(X) ∩ I = φ and I ∈ I. Suppose that x ∈ intθβ (I). Then there exists U
∈ τ (x) such that x ∈ U ⊆ cl(U ) ⊆ I. Since I ∈ I and then φ 6= {x} ⊆ cl(U) ∈ CβO(X) ∩ I. This is
contradiction to CβO(X) ∩ I = φ. Hence intθβ (I) = φ.
(2) ⇒ (3): Let x ∈ G. Assume that x /∈ β∗∗(G), then there exists Ux ∈ βO(x) such that G ∩ clβ(Ux) ∈
I and hence G ∩ Ux ∈ I. Since G is clopen, by (2) and Lemma 2.6, x ∈ G ∩ Ux = int(G ∩ Ux) ⊆ intG
∩ clβ(U x) ⊆ int(G ∩ cl(U x)) = intθβ (G ∩ clβ(U x) = φ. It is a contradiction. Hence x ∈ β∗∗(G). Thus,
G ⊆ β∗∗(G).
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(3) ⇒ (4): Since X is clopen, then X = β∗∗(X).
(4) ⇒ (1): X = β∗∗(X) = {x ∈ X : X ∩ clβ(U) = clβ(U) /∈ I for every U ∈ βO(x)}. Hence CβO(X) ∩ I = φ.

Definition 5.3. Let (X, τ , I) be an ideal topological space. A subset A of X is called a Baire- β∗∗-set
with respect to τ and I, denoted by A ∈ Bβr

(X, τ , I), if there exists a θβ-open set U such that A = U
[mod I]. Also, Uβr

(X, τ , I), denote {A ⊆ X : there exists B ∈ Bβr
(X, τ , I) − I such that B ⊆ A}.

Lemma 5.4. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I. If U, V ∈ τθβ and Ψβ
∗∗

(U) =
Ψβ

∗∗

(V ), then U = V [mod I].

Proof: Since U ∈ τ θβ , then U ⊆ Ψβ
∗∗

(U), by Corollary 3.3, and hence U − V ⊆ Ψβ
∗∗

(U) − V ∈
I, by Theorem 4.5. Therefore, U − V ∈ I. Similarly, V − U ∈ I. Now, (U − V ) ∪ (V − U ) ∈ I, by
additivity. Hence U = V [mod I].

Theorem 5.5. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I. If A, B ∈ Bβr
(X, τ , I) and

Ψβ
∗∗

(A) = Ψβ
∗∗

(B), then A = B [mod I].

Proof: Let U, V ∈ τ θβ be such that A = U [mod I] and B = V [mod I]. Now, Ψβ
∗∗

(A) = Ψβ
∗∗

(U)
and Ψβ

∗∗

(B) = Ψβ
∗∗

(V ) , by Theorem 3.2 (8). Since Ψβ
∗∗

(A) = Ψβ
∗∗

(B), then Ψβ
∗∗

(U) = Ψβ
∗∗

(V )
and U = V [mod I], by Lemma 5.4. Hence A = B [mod I], by transitivity.

Proposition 5.6. Let (X, τ , I) be an ideal topological space.

1. If B ∈ Bβr
(X, τ , I) − I, then there exists A ∈ τ θβ − {φ} such that B = A [mod I].

2. Let CβO(X) ∩ I = φ, then B ∈ Bβr
(X, τ , I) − I if and only if there exists A ∈ τθβ − {φ} such

that B = A [mod I].

Proof: (1) Assume that B ∈ Bβr
(X, τ , I) − I then B ∈ Bβr

(X, τ , I). Then there exists A ∈ τ θβ such
that B = A [mod I]. If A = φ, then we have B = φ [mod I]. This implies that B ∈ I. It is contradiction.
(2) Assume that there exists A ∈ τ θβ − {φ} such that B = A [mod I]. Hence by Definition 4.11, B ∈
Bβr

(X, τ , I). So, A = (B − J ) ∪ I, where J = B − A, I = A − B ∈ I. If B ∈ I, then A ∈ I, by heredity
and additivity. Since A ∈ τ θβ − {φ}, A 6= φ and there exists U ∈ βO(X) such that φ 6= U ⊆ clβ(U) ⊆
A. Since A ∈ I, clβ(U) ∈ I. Therefore, clβ(U) ∈ CβO(X) ∩ I. This contradicts that CβO(X) ∩ I = φ.

Proposition 5.7. Let (X, τ , I) be an ideal topological space and I be β∗∗-codense. If B ∈ Bβr
(X, τ , I)

− I, then Ψβ
∗∗

(B) ∩ intθβ (β
∗∗

(B)) 6= φ .

Proof: Assume that B ∈ Bβr
(X, τ , I) − I, then by Proposition 5.6 (1), there exists A ∈ τθβ − {φ}

such that B = A [mod I]. By Theorem 5.2 and Lemma 2.8, A = A ∩ X = A ∩ β∗∗(X) ⊆ β∗∗(A ∩ X) =
β∗∗(A). This implies that φ 6= A ⊆ β∗∗(A) = β∗∗((B − J ) ∪ I ) = β∗∗(B), where J = B − A, I = A −
B ∈ I, by Corollary 2.11. Since A ∈ τ θβ , A ⊆ intθβ (β

∗∗
(B)) . Also, φ 6= A ⊆ Ψβ

∗∗

(A) = Ψβ
∗∗

(B), by
Corollary 3.3 and Theorem 3.2 (8). Consequently, we obtain A ⊆ Ψβ

∗∗

(B) ∩ intθβ (β
∗∗

(B)).

Proposition 5.8. Let (X, τ , I) be an ideal topological space and I be β∗∗-codense. If τ = τ θβ , then the
following statements are equivalent:

1. A ∈ Uβr
(X, τ , I)

2. Ψβ
∗∗

(A) ∩ intθβ (β
∗∗

(A)) 6= φ

3. Ψβ
∗∗

(A) ∩ β
∗∗

(A) 6= φ

4. Ψβ
∗∗

(A) 6= φ

5. int∗∗(A) 6= φ

6. There exists G ∈ βO(X) − {φ} such that G − A ∈ I and G ∩ A /∈ I.
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Proof: (1) ⇒ (2): Let B ∈ Bβr
(X, τ , I) − I such that B ⊆ A. Then intθβ (β

∗∗
(B)) ⊆ intθβ (β

∗∗
(A)) and

Ψβ
∗∗

(B) ⊆ Ψβ
∗∗

(A) and hence intθβ (β
∗∗

(B)) ∩ Ψβ
∗∗

(B) ⊆ intθβ (β
∗∗

(A)) ∩ Ψβ
∗∗

(A). By Proposition
5.7, we have Ψβ

∗∗

(A) ∩ intθβ (β
∗∗

(A)) 6= φ.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): The proof is obvious.
(4) ⇒ (5): If Ψβ

∗∗

(A) 6= φ, then there exists U ∈ βO(X)− {φ} such that U − A ∈ I. Since U /∈ I and U
= (U −A) ∪ (U ∩ A), we have U ∩ A /∈ I. By Theorem 3.2, φ 6= (U ∩ A) ⊆ Ψβ

∗∗

(U) ∩ A = Ψβ
∗∗

((U −
A) ∩ (U ∩ A)) ∩ A = Ψβ

∗∗

(U ∩ A) ∩ A ⊆ Ψβ
∗∗

(A) ∩ A = int∗∗(A). Hence, int∗∗(A) 6= φ.
(5) ⇒ (6): If int∗∗(A) 6= φ, then there exists G ∈ βO(X)− {φ} and I ∈ I such that φ 6= G − I ⊆ A.
Since every open set is β-open, we have G −A ∈ I, G = (G − A) ∪ (G ∩ A) and G /∈ I. This implies
that G ∩ A /∈ I.
(6) ⇒ (1): Let B = G ∩ A /∈ I with G ∈ τθβ − {φ} and G −A ∈ I. Then B ∈ Bβr

(X, τ , I) − I, since
B /∈ I and (B − G) ∪ (G − B) = G − A ∈ I.

Theorem 5.9. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I and I be β∗∗-codense. Then for
A ⊆ X, Ψβ

∗∗

(A) ⊆ β
∗∗

(A) .
Proof: Suppose that x ∈ Ψβ

∗∗

(A) and x /∈ β∗∗(A). Then there exists a nonempty neighborhood Ux ∈
βO(x) such that clβ(Ux) ∩ A ∈ I. Since x ∈ Ψβ

∗∗

(A), by Theorem 3.5, x ∈ ∪{U ∈ βO(X): clβ(U) −A
∈ I} and there exists V ∈ βO(x) and clβ(V) − A ∈ I. Now, we have Ux ∩ V ∈ βO(x), clβ(Ux ∩ V) ∩
A ∈ I and clβ(Ux ∩ V) − A ∈ I, by heredity. Hence, by finite additivity, we have (clβ(Ux ∩ V) ∩ A) ∪
(clβ(Ux ∩ V) − A) = clβ(Ux ∩ V) ∈ I. Since (Ux ∩ V) ∈ βO(x), this is contrary to CβO(X) ∩ I = φ.
Therefore, x ∈ β∗∗(A). This implies that Ψβ

∗∗

(A) ⊆ β∗∗(A).

Theorem 5.10. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I and I be β∗∗-codense. Then
Ψβ

∗∗

(A) ∩ Ψβ
∗∗

(X − A) = φ for every subset A of X.
Proof: Let x ∈ Ψβ

∗∗

(A) ∩ Ψβ
∗∗

(X − A) for some x ∈ X, then there exist β-open sets G, F containing
x such that clβ(G) − A ∈ I and clβ(F) ∩ A ∈ I respectively. Hence, clβ(G ∩ F) ∩ A ∈ I and clβ(G ∩
F) − A ∈ I, by heredity, so clβ(G ∩ F) ∈ I. Since G ∩ F ∈ βO(x), this is contrary to CβO(X) ∩ I = φ.
Thus, Ψβ

∗∗

(A) ∩ Ψβ
∗∗

(X − A) = φ .

Corollary 5.11. Let (X, τ , I) be an ideal topological space with τ ∼β
∗∗

I and I be β∗∗ -codense. Then
β∗∗ (A) ∪ β∗∗ (X − A) = X for every subset A of X.
Theorem 5.12. Let (X, τ , I) be an ideal topological space. Then the following properties are equivalent:

1. I is β∗∗-codense.

2. Ψβ
∗∗

(φ) = φ

3. If A ⊆ X is β-closed, then Ψβ
∗∗

(A) − A = φ

4. If J ∈ I, then Ψβ
∗∗

(J) = φ.

Proof: (1) ⇒ (2): Since CβO(X) ∩ I = φ, then Ψβ
∗∗

(φ) =
⋃

{U ∈ βO(X) such that clβ(U) − φ =
clβ(U) ∈ I} = φ, by Theorem 3.5.
(2) ⇒ (3): Assume that x ∈ Ψβ

∗∗

(A) − A, then there exists a Ux ∈ βO(x) such that x ∈ clβ (Ux) − A
∈ I and clβ (Ux) − A ∈ βO(x). But clβ (Ux) − A ∈ {U ∈ βO(x) : clβ(U) ∈ I} = Ψβ

∗∗

(φ) implies that
Ψβ

∗∗

(φ) 6= φ. It is a contradiction. Hence, Ψβ
∗∗

(A) − A = φ.
(3) ⇒ (4): Let J ∈ I and by hypothesis φ is β-closed, then Ψβ

∗∗

(J ) = Ψβ
∗∗

(J ∪ φ) = Ψβ
∗∗

(φ) = φ.
(4) ⇒ (1): Assume that A ∈ CβO(X) ∩ I, then A ∈ I and by (4), Ψβ

∗∗

(A) = φ. Since A ∈ CβO(X) ,
then A ⊆ Ψβ

∗∗

(A) = φ by Corollary 3.3. Hence CβO(X) ∩ I = φ.
Definition 5.13. A subset A in an ideal topological space (X, τ , I) is said to be Iβ

∗∗

-dense set if
β∗∗(A) = X. The collection of all Iβ

∗∗

-dense sets in (X, τ , I) is denoted by Iβ
∗∗

D (X, τ) . The collection
of all dense sets in (X, τ ) is denoted by D(X, τ ).

For example: Let X = {a,b,c} with the topology τ = {φ, X, {a}, {a, c}} and the ideal I = {φ,
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{a} , {b} , {a, b}}. Here, βO (X) = {{a} , {a, b} , {a, c} , X, φ}. Then, A = {a}, β
∗∗

(A) = φ, B =
{b}, β

∗∗
(B) = φ, C = {c} , β

∗∗
(C) = X, D = {a, b} , β

∗∗
(D) = φ, E = {a, c} , β

∗∗
(E) = X,

F = {b, c} , β
∗∗

(F ) = X, G = φ, β
∗∗

(G) = φ, H = X, β
∗∗

(H) = X. Hence, Iβ
∗∗

D (X, τ) =
{{c} , {a, c} , {b, c} , X} .
Lemma 5.14. τ∗∗ (I) is a topology on X, generated by the sub basis {clβ(U) − E : U ∈ βO(X) and E ∈
I} or equivalently τ∗∗ (I) = {U ⊂ X : clβ(X − U) = β∗∗(X − U)}.

Remark 5.15. The closure operator cl∗∗ for a topology τ∗∗ (I) defined as follows: for A ⊆ X, cl∗∗(A)
= A ∪ β∗∗(A)(I, τ ) and int∗∗(A) denote the interior of the set A in (X, τ∗∗, I). It is known that τ ⊆
τ∗∗(I). Clearly if A ⊂ β∗∗(A), then β∗∗(A) = cl∗∗(A). Also, cl∗∗ (X − A) = X − int∗∗(A).
Theorem 5.16. Let (X, τ , I) be an ideal topological space. If I is β∗∗-codense, then Iβ

∗∗

D (X, τ) =
D (X, τ∗∗), where D (X, τ∗∗) is the collection of all dense sets in (X, τ∗∗, I).
Proof: Let A ∈ Iβ

∗∗

D (X, τ). Then cl∗∗(A) = A ∪ β∗∗(A) = X implies A ∈ D (X, τ∗∗). Hence
Iβ

∗∗

D (X, τ ) ⊆ D (X, τ∗∗) . Now, let A ∈ D (X, τ∗∗) . Then, cl∗∗(A) = A ∪ β∗∗(A) = X. We prove
that β∗∗(A) = X. Let x ∈ X such that x /∈ A∗∗. Then there exists φ 6= U ∈ βO(X) such that clβ(U) ∩
A ∈ I. Since clβ(U) /∈ I, clβ(U) ∩ (X − A) /∈ I. So, clβ(U) ∩ (X − A) 6= φ. Let x0 ∈ clβ(U) ∩ (X −
A). Then x0 /∈ A and also x0 /∈ A∗∗. Because x0 ∈ A∗∗ implies that clβ(U) ∩ A /∈ I which is contrary to
clβ(U) ∩ A ∈ I. Hence, x0 /∈ A ∪ β∗∗(A) = cl∗∗(A) = X. This is contradiction, and it implies that A ∈
Iβ

∗∗

D (X, τ ). Therefore, D (X, τ∗∗) ⊆ Iβ
∗∗

D (X, τ ) . Thus, Iβ
∗∗

D (X, τ ) = D (X, τ∗∗) .

Theorem 5.17. Let (X, τ , I)be an ideal topological space. Then for x ∈ X, X − {x} is Iβ
∗∗

-dense if
and only if Ψβ

∗∗

({x}) = φ.
Proof: Follows from the definition of Iβ

∗∗

-dense set, since Ψβ
∗∗

({x}) = X − β∗∗(X − {x}) = φ if and
only if X = β∗∗(X − {x}).

Theorem 5.18. Let (X, τ , I) be an ideal topological space and I be β∗∗-codense. Then Ψβ
∗∗

(A) 6= φ if
and only if A contains the nonempty τ∗∗-interior.
Proof: Suppose that Ψβ

∗∗

(A) 6= φ then Ψβ
∗∗

(A) =
⋃

{U ∈ βO(X) such that clβ(U) − A ∈ I} by Theorem
3.5 (1), and there exists a nonempty set U ∈ βO(X) such that clβ(U) − A ∈ I. Let clβ(U) − A = J,
where J ∈ I. Hence, clβ(U) − J ⊆ A implies clβ(U) − J ∈ τ∗∗ and A contains the nonempty τ∗∗-interior
by Lemma 5.14. Conversely, suppose that A contains the nonempty τ∗∗-interior. Then there exists U ∈
βO(X) and J ∈ I such that clβ(U) − J ⊆ A. Hence, clβ(U) − A ⊆ J. Let G = clβ(U) − A ⊆ J, then G
∈ I. Thus,

⋃

{U ∈ βO(X) : clβ(U) − A ∈ I } = Ψβ
∗∗

(A) 6= φ.

6. Conclusion

In this paper, we have introduced and discussed the salient features of β-local closure function, a set
operator Ψβ

∗∗

, β∗∗-codense ideals and Iβ
∗∗

-dense sets. The notions of the β-closure compatible topology
τ with the ideal I are explored in the ideal topological space (X, τ , I). Furthermore, we have shown that
the heredity nature of ideals is imported under β-local closure function. These results are some modes
of future development in ideal topological spaces.
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