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On Cartesian product of matrices

Deepak Sarma

abstract: Bapat and Kurata [Linear Algebra Appl., 562(2019), 135-153] defined the Cartesian product of
two square matrices A and B as A⊘B = A⊗ J+ J⊗B, where J is the matrix of all one of appropriate order
and ⊗ is the Kronecker product. In this article, we find the expression for the trace of the Cartesian product
of any finite number of square matrices in terms of the traces of the individual matrices. Also, we establish
some identities involving the Cartesian product of matrices. Finally, we apply the Cartesian product to study
some graph-theoretic properties.
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1. Introduction and terminology

By Mm,n, we denote the class of all matrices of size m × n. Also, by Mn, we denote the class of all
square matrices of order n. For M ∈ Mn we write mij or Mij to denote the ij−th element of M. By J
and 11, we mean the matrix of all one’s and vector of all one’s, respectively of suitable order. Similarly, 0
denotes the zero matrix or the vector. We will mention their order wherever it is necessary. Throughout
this article, we denote the sum of all entries of a matrix A by SA and the sum of the entries of i−th row of
A by Ai. The inertia of a square matrix M with real eigenvalues is the triplet (n+(M), n0(M), n−(M)),
where n+(M) and n−(M) denote the number of positive and negative eigenvalues of M , respectively,
and n0(M) is the algebraic multiplicity of 0 as an eigenvalue of M.

The Kronecker product of two matrices A and B of sizes m × n and p × q,, respectively, denoted by
A⊗B is defined to be the mp× nq block matrix

A⊗B =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB

 .

The Hadamard product of two matrices A and B of the same size, denoted by A ◦B is defined to be
the entry-wise product A ◦B = [ai,jbi,j ].

Bapat and Kurata [2] defined the Cartesian product of two square matrices A ∈ Mm and B ∈ Mn as
A⊘B = A⊗ Jn + Jm ⊗B. The authors proved the Cartesian product to be associative. We use A[k] to
mean A⊘A⊘ · · · ⊘A︸ ︷︷ ︸

k times

.

If A ∈ Mm and B ∈ Mn, then A ⊘ B can be considered as a block matrix with i, j−th block
ai,jJn + B, i = 1, 2, . . . ,m, in other words A ⊘ B is the matrix obtained from A replacing ai,j with
ai,jJn +B. It can be observed that ai,j + bp,q is the p, q−th entry of the i, j−th block of A⊘B.
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All graphs considered here are finite, undirected, connected, and simple. The distance between two
vertices u, v ∈ V (G) is denoted by duv and is defined as the length of a shortest path between u and v
in G. The distance matrix of G is denoted by D(G) and is defined by D(G) = (duv)u,v∈V (G). Since D(G)
is a real symmetric matrix, all its eigenvalues are real. For a column vector x = (x1, . . . , xn)

T ∈ Rn, we
have

xTD(G)x =
∑

1≤i<j≤n

dijxixj .

The Wiener index W (G) of a graph is the sum of the distances between all unordered pairs of vertices

of G, in other words W (G) =
SD(G)

2 . The distance spectral radius ρD(G) of G is the largest eigenvalue of
its distance matrix D(G). The transmission, denoted by Tr(v) of a vertex v is the sum of the distances
from v to all other vertices in G.

The Cartesian product G12G2 of two graphs G1 and G2 is the graph whose vertex set is the Cartesian
product V (G1) × V (G2) and in which two vertices (u, u′) and (v, v′) are adjacent if and only if either
u = v and u′ is adjacent to v′ in G2, or u′ = v′ and u is adjacent to v in G1. Let Gu ∗ Hv denote the
graph obtained from two graphs G and H by identifying a vertex u from G with a vertex v from H.

The article have been organized as follows. In section 2, we discuss some existing results involving the
Kronecker product of matrices and the Cartesian product of graphs. In section 3, we find trace of various
compositions of matrices involving Cartesian products. Again in section 4, we obtain some identities
involving Cartesian product of matrices and find some applications in graph theory.

2. Preliminaries

Kronecker product has been extensively studied in the literature. Some of the interesting properties
of the Kronecker product are given below.

Lemma 2.1. [5] If A ∈ Mm and B ∈ Mn, then tr(A⊗B) = tr(A)× tr(B).

Lemma 2.2. [5] If A,B and C are matrices of suitable orders, then

A⊗ (B + C) = (A⊗B) + (A⊗ C) and

(A+B)⊗ C = (A⊗ C) + (B ⊗ C).

Lemma 2.3. [5] If A ∈ Mm and B ∈ Mn, then (A⊗B)T = AT ⊗BT .

Lemma 2.4. [5] If A ∈ Mm and B ∈ Mn, then (A⊗B)∗ = A∗ ⊗B∗.

Lemma 2.5. [5] For A ∈ Mm, B ∈ Mn, and a, b ∈ C, aA⊗ bB = abA⊗B.

Lemma 2.6. [5] For matrices A,B,C and D of appropriate sizes

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Lemma 2.7. [5] For any A ∈ Mm and B ∈ Mn, there exists a permutation matrix P such that

P−1(A⊗B)P = B ⊗A.

For more results on Kronecker product, we refer to [3]. The Cartesian product of two graphs have
been studied by many researchers. Here we are interested in Cartesian product of two matrices because
for any two connected graphs G1 and G2, the distance matrix of G12G2 equals to the Cartesian product
of the distance matrices of G1 and G2, i.e. D(G12G2) = D(G1) ⊘ D(G2). Zhang and Godsil [6] found
the distance inertia of the Cartesian product of two graphs.

Theorem 2.8. [6] If G and H are two connected graphs, where V (G) = {u1, . . . , um} and V (H) =
{v1, . . . , vn}, then, the inertia of distance matrix of G2H is (n+(Gum ∗Hun), (m−1)(n−1)+n0(Gum ∗
Hun), n−(Gum ∗Hun)).

Corollary 2.9. [6] Let T1 and T2 be two trees on m and n vertices, respectively. Then the distance
inertia of T12T2 is (1, (m− 1)(n− 1),m+ n− 2).
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3. Trace of Cartesian product

Here we consider different compositions and products involving Cartesian products of matrices and
evaluate their trace.

Lemma 3.1. If A ∈ Mm and B ∈ Mn, then tr(A⊘B) = n.tr(A) +m.tr(B).

Proof. We have

tr(A⊘B) = tr(A⊗ Jn + Jn ⊗B)

= tr(A⊗ Jn) + tr(Jm ⊗B)

= tr(A)× tr(Jn) + tr(Jm)× tr(B) [using theorem 2.1]

= n.tr(A) +m.tr(B).

2

Theorem 3.2. If Ai ∈ Mni
and ki ∈ C for i = 1, 2, . . . , n, then

tr(k1A1 ⊘ k2A2 ⊘ · · · ⊘ knAn) =
( n∏

i=1

ni

) n∑
i=1

kitr(Ai)

ni
.

Proof. We prove the result by induction on n. For n = 1, there is nothing to prove. For n = 2, the result
follows from theorem 3.1. Suppose the result holds for n = ℓ ≤ n− 1. That is

tr(k1A1 ⊘ k2A2 ⊘ · · · ⊘ kℓAℓ) =
( ℓ∏

i=1

ni

) ℓ∑
i=1

kitr(Ai)

ni
. (3.1)

Now

tr(k1A1 ⊘ k2A2 ⊘ · · · ⊘ kℓAℓ ⊘ kℓ+1Aℓ+1)

= kℓ+1nℓ+1tr(k1A1 ⊘ k2A2 ⊘ · · · ⊘ kℓAℓ) +
( ℓ∏

i=1

kini

)
tr(Aℓ+1) [using theorem 3.1]

= kℓ+1nℓ+1

( ℓ∏
i=1

ni

) ℓ∑
i=1

kitr(Ai)

ni
+
( ℓ∏

i=1

kini

)
tr(Aℓ+1) [using eq. (3.1)]

=
( ℓ+1∏

i=1

ni

) ℓ+1∑
i=1

kitr(Ai)

ni
.

Hence the result follows by induction. 2

As immediate corollary of the above theorem we get the following result.

Corollary 3.3. For A ∈ Mn, tr(A[k]) = k.nk−1tr(A).

Proposition 3.4. If A,B ∈ Mn, then

tr
(
(A+B)⊘ (A−B)

)
= 2n.tr(A).

Proof. From theorem 3.1, we have

tr
(
(A+B)⊘ (A−B)

)
= n.tr(A−B) + n.tr(A+B)

= n[tr(A)− tr(B) + tr(A) + tr(B)]

= 2n.tr(A).

2
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Proposition 3.5. For A ∈ Mm, Bi ∈ Mn; i = 1, 2, . . . , k, then

tr(A⊗ (B1 ⊘B2 ⊘ · · · ⊘Bk)) = nk−1tr(A)

k∑
i=1

tr(Bi).

Proof. We have

tr(A⊗ (B1 ⊘B2 ⊘ · · · ⊘Bk))

= tr(A).tr(B1 ⊘B2 ⊘ · · · ⊘Bk) [using theorem 2.1]

= tr(A).nk−1
k∑

i=1

tr(Bi) [using theorem 3.2]

= nk−1tr(A)

k∑
i=1

tr(Bi).

2

Theorem 3.6. If Ai ∈ Mni
for i = 1, 2, . . . , t, then

tr
[
(A1 ⊘A2 ⊘ · · · ⊘Aℓ)⊗ (Aℓ+1 ⊘Aℓ+2 ⊘ · · · ⊘Am)⊗ · · · ⊗ (Ar ⊘Ar+1 ⊘ · · · ⊘At)

]
=

t∏
p=1

np

ℓ∑
i=1

tr(Ai)

ni

m∑
j=ℓ+1

tr(Aj)

nj
· · ·

t∑
k=r

tr(Ak)

nk
.

Proof. By repeated application of theorem 2.1 we get

tr
[
(A1 ⊘A2 ⊘ · · · ⊘Aℓ)⊗ (Aℓ+1 ⊘Aℓ+2 ⊘ · · · ⊘Am)⊗ · · · ⊗ (Ar ⊘Ar+1 ⊘ · · · ⊘At)

]
=

[
tr(A1 ⊘A2 ⊘ · · · ⊘Aℓ)

][
tr(Aℓ+1 ⊘Aℓ+2 ⊘ · · · ⊘Am)

]
· · ·

[
tr(Ar ⊘Ar+1 ⊘ · · · ⊘At)

]
=

( ℓ∏
i=1

ni

ℓ∑
i=1

tr(Ai)

ni

)( m∏
ℓ+1

nj

m∑
j=ℓ+1

tr(Aj)

nj

)
· · ·

( t∏
k=r

nk

t∑
k=r

tr(Ak)

nk

)
[using theorem 3.2]

=

t∏
p=1

np

ℓ∑
i=1

tr(Ai)

ni

m∑
j=ℓ+1

tr(Aj)

nj
· · ·

t∑
k=r

tr(Ak)

nk
.

2

Theorem 3.7. If Ai ∈ Mni ; i = 1, 2, . . . , t, then

tr
[
(A1 ⊗A2 ⊗ · · · ⊗Aℓ)⊘ (Aℓ+1 ⊗Aℓ+2 ⊗ · · · ⊗Am)⊘ · · · ⊘ (Ar ⊗Ar+1 ⊗ · · · ⊗At)

]
=

t∏
p=1

np

[ ℓ∏
i=1

tr(Ai)

ni
+

m∏
j=ℓ+1

tr(Ai)

nj
+ · · ·+

t∏
k=r

tr(Ak)

nk

]
.

Proof. Using theorem 3.2 and then theorem 2.1, we get

tr
[
(A1 ⊗A2 ⊗ · · · ⊗Aℓ)⊘ (Aℓ+1 ⊗Aℓ+2 ⊗ · · · ⊗Am)⊘ · · · ⊘ (Ar ⊗Ar+1 ⊗ · · · ⊗At)

]
=

t∏
p=1

np

[ tr(A1 ⊗A2 ⊗ · · ·Aℓ)∏ℓ
i=1 ni

+
tr(Aℓ+1 ⊗Aℓ+2 · · · ⊗Am)∏m

j=ℓ+1 nj
+ · · ·+ tr(Ar ⊗ · · · ⊗At)∏t

k=r nk

]

=

t∏
p=1

np

[∏ℓ
i=1 tr(Ai)∏ℓ

i=1 ni

+

∏m
j=ℓ+1 tr(Ai)∏m

j=1 nj
+ · · ·+

∏t
k=r tr(Ak)∏t

k=r nk

]

=

t∏
p=1

np

[ ℓ∏
i=1

tr(Ai)

ni
+

m∏
j=ℓ+1

tr(Ai)

nj
+ · · ·+

t∏
k=r

tr(Ak)

nk

]
.

2
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4. Some identities and applications

From the definition of Cartesian product of two matrices, we get following remarks.

Remark 4.1. If A and B are square matrices and k ∈ C, then kA⊘ kB = k(A⊘B).

Remark 4.2. For A ∈ Mn and any k ∈ C, k ⊘A = A+ kJn = A⊘ k.

For any square matrices A and B, from the definitions of Kronecker product and Cartesian product, it
can be observed that if ai,jbp,q is an entry of A⊗B then the corresponding entry of A⊘B is ai,j+bp,q. Thus
from theorem 2.7, we see that if P−1(A⊗B)P = B⊗A, then for the same P, we get P−1(A⊘B)P = B⊘A.
Thus we get the following result.

Remark 4.3. If A and B are square matrices, then A⊘B is permutation similar to B ⊘A.

Proposition 4.4. For A ∈ Mm, B ∈ Mn, (A⊘B)T = AT ⊘BT .

Proof. By definition we have
A⊘B = A⊗ Jn + Jm ⊗B

which implies

(A⊘B)T = (A⊗ Jn + Jm ⊗B)T

= (A⊗ Jn)T + (Jm ⊗B)T

= AT ⊗ JTn + JTm ⊗BT [using lemma 2.3]

= AT ⊗ Jn + Jm ⊗BT

= AT ⊘BT .

Hence the result. 2

By repeated application of theorem 4.4, we get the following result as a corollary.

Corollary 4.5. For square matrices Ai for i = 1, 2, . . . , n,

(A1 ⊘A2 ⊘ · · · ⊘An)
T = AT

1 ⊘AT
2 ⊘ · · · ⊘AT

n .

Proceeding as in theorem 4.4 and using theorem 2.4, we get the following result.

Proposition 4.6. If A ∈ Mm, B ∈ Mn, then (A⊘B)∗ = A∗ ⊘B∗.

By repeated application of theorem 4.6, we get the following result as a corollary.

Corollary 4.7. If Ai is a square matrix for each i = 1, 2, . . . , n, then

(A1 ⊘A2 ⊘ · · · ⊘An)
∗ = A∗

1 ⊘A∗
2 ⊘ · · · ⊘A∗

n.

Theorem 4.8. If A ∈ Mm, B ∈ Mn, then A⊘B is symmetric if and only if A and B are both symmetric.

Proof. If A and B are both symmetric, then AT = A and BT = B. Now

(A⊘B)T = AT ⊘BT [by theorem 4.4]

= A⊘B.

Therefore A⊘B is symmetric.
Conversely, suppose that A ⊘ B is symmetric. Then 1, 1 block of A ⊘ B must be symmetric. But

1, 1 block of A ⊘ B is a1,1Jn + B which is symmetric if and only if B is symmetric. Again since A ⊘ B
is symmetric, the 1, 1 entry of any i, j−th block of A⊘ B must be same as 1, 1 entry of j, i−th block of
A⊘B. That is ai,j + b1,1 = aj,i + b1,1 for all i, j = 1, 2 . . . , n. Which implies that A is symmetric. 2
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Theorem 4.9. If A ∈ Mm, B ∈ Mn, then A ⊘ B is skew-symmetric if and only if A and B are both
skew-symmetric.

Proof. If A and B are both skew-symmetric, then AT = −A and BT = −B. Now

(A⊘B)T = AT ⊘BT [by theorem 4.4]

= (−A)⊘ (−B)

= (−A)⊗ Jn + Jm ⊗ (−B)

= −A⊗ Jn − Jn ⊗B [by theorem 2.5]

= −A⊘B.

Therefore A⊘B is skew-symmetric.
The other direction is similar to that of the proof of theorem 4.8. 2

Theorem 4.10. If A ∈ Mm and B ∈ Mn, the A ⊘ B is a diagonal matrix if and only if A = kJm and
B = −kJn for some k ∈ C. Furthermore in that case A⊘B = 0.

Proof. If A = kJm and B = −kJn for some k ∈ C, then

A⊘B = kJm ⊗ Jn + Jm ⊗ (−kJn)
= 0. [using theorem 2.5]

Again if A⊘B is a diagonal matrix, then we must have

ai,i + bp,q = 0 for i = 1, 2, . . . ,m and p, q = 1, 2, . . . , n; p ̸= q,

ai,j + bp,p = 0 for i, j = 1, 2, . . . ,m; i ̸= j and p, q = 1, 2, . . . , n;

ai,j + bp,q = 0 for i = 1, 2, . . . ,m; i ̸= j and p = 1, 2, . . . , n; p ̸= q.

Solving all those equations we see that all entries of A are equal (say k) and all entries of B are also equal
(−k). Thus we get our required result. 2

Corollary 4.11. There exist no square matrices A,B such that A⊘B = I.

Theorem 4.12. If A,C ∈ Mm, B,D ∈ Mn, then A ⊘ B = C ⊘ D if and only if C = A − kJm and
D = B + kJn for some k ∈ C.

Proof. If C = A− kJm and D = B + kJn for some k ∈ C, then

C ⊘D = (A− kJm)⊘ (B + kJn)
= (A− kJm)⊗ Jn + Jm ⊗ (B + kJn)
= A⊗ Jm − kJm ⊗ Jn + Jm ⊗B + Jm ⊗ kJn
= A⊘B.

Conversely, suppose that A⊘B = C ⊘D. Then every block of A⊘B equals to the corresponding block
of C ⊘D,

i.e. ai,jJn +B = ci,jJn +D for i, j = 1, 2, . . . ,m.

Which implies that ai,j + bp,q = ci,j + dp,q for any i, j = 1, 2. . . . ,m and p, q = 1, 2, . . . , n. That is
ai,j−ci,j = dp,q−bp,q for any i, j = 1, 2. . . . ,m and p, q = 1, 2, . . . , n. Therefore we must have A−C = λJm
and D −B = λJn for some λ ∈ C. Hence the theorem follows. 2

Theorem 4.13. If A,B ∈ Mn, then A⊘B = B ⊘A if and only if B = A+ kJn for some k ∈ C.
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Proof. If B = A+ kJn, then by direct calculation we have

A⊘B = B ⊘A = A⊘A+ kJn2 .

Now suppose A⊘B = B ⊘A. Then ai,j + bp,q = bi,j + ap,q for all i, j, p, q = 1, 2 . . . , n. Therefore

n∑
p,q=1

(ai,j + bp,q) =

n∑
p,q=1

(bi,j + ap,q)

which gives n2ai,j + SB = n2bi,j + SA

i.e. bi,j = ai,j +
SB − SA

n2
for all i, j = 1, 2, . . . , n.

Thus B = A+ kJn for k = SB−SA

n2 . 2

Theorem 4.14. If A,B,C,D ∈ Mn, then

(i) (A⊘B)(C ⊘D) = AC ⊘BD +AJn ⊗ JnB + JnC ⊗DJn.

(ii) (A⊘B) ◦ (C ⊘D) = (A ◦ C)⊘ (B ◦D) +A⊗D + C ⊗B.

Proof. (i) We have

(A⊘B)(C ⊘D) = (A⊗ Jn + Jn ⊗B)(C ⊗ Jn + Jn ⊗D)

= (A⊗ Jn)(C ⊗ Jn) + (A⊗ Jn)(Jn ⊗B) + (Jn ⊗B)(C ⊗ Jn)
+ (Jn ⊗B)(Jn ⊗D)

= AC ⊗ Jn2 +AJn ⊗ JnB + JnC ⊗BJn + Jn2 ⊗BD

= AC ⊘BD +AJn ⊗ JnB + JnC ⊗DJn.

(ii) Here

(A⊘B) ◦ (C ⊘D) = (A⊗ Jn + Jn ⊗B) ◦ (C ⊗ Jn + Jn ⊗D)

= (A⊗ Jn) ◦ (C ⊗ Jn) + (A⊗ Jn) ◦ (Jn ⊗D) + (Jn ⊗B) ◦ (C ⊗ Jn)
+ (Jn ⊗B) ◦ (Jn ⊗D)

= (A ◦ C)⊗ Jn +A⊗D + C ⊗B + Jn ⊗ (B ◦D)

= (A ◦ C)⊘ (B ◦D) +A⊗D + C ⊗B.

2

Proposition 4.15. For matrices A,B,C of suitable orders,

(A+B)⊘ C =
1

2
[A⊘ C +B ⊘ C + (A+B)⊗ Jn]

and

A⊘ (B + C) =
1

2
[A⊘B +A⊘ C + J⊗ (B + C)].

Proof. We prove only the first result as the second one can be proved similarly. If A and B are matrices
of same order (say m) and matrix C is of order n, then

(A+B)⊘ C = (A+B)⊗ Jn + Jm ⊗ C

= A⊗ Jn +B ⊗ Jn + Jm ⊗ C. [since ⊗ is distributive] (4.1)

From eq. (4.1), we have

(A+B)⊘ C = A⊗ Jn +B ⊘ C (4.2)



8 D. Sarma

and

(A+B)⊘ C = A⊘ C +B ⊗ Jn. (4.3)

Now adding eq. (4.2) and eq. (4.3), we get

2((A+B)⊘ C) = A⊘ C +B ⊘ C + (A+B)⊗ Jn.

Hence the result follows. 2

Theorem 4.16. If Ai ∈ Mm, Bi ∈ Mn for i = 1, 2, . . . , k, then

( k∑
i=1

Ai

)
⊘
( k∑

i=1

Bi

)
=

k∑
i=1

(Ai ⊘Bi).

Proof. We prove the result by induction on k. For k = 1, the result is trivial. For k = 2, we have

(A1 +A2)⊘ (B1 +B2) = (A1 +A2)⊗ Jn + Jm ⊗ (B1 +B2)

= A1 ⊗ Jn +A2 ⊗ Jn + Jm ⊗B1 + Jm ⊗B2 [since ⊗ is distributive]

= A1 ⊘B1 +A2 ⊘B2. (4.4)

Thus the result holds for k = 2. Suppose the identity holds for k = 1, 2, . . . , ℓ < k, then

( ℓ+1∑
i=1

Ai

)
⊘
( ℓ+1∑

i=1

Bi

)
=

( ℓ∑
i=1

Ai

)
⊘

( ℓ∑
i=1

Bi

)
+Aℓ+1 ⊘Bℓ+1 [by eq. (4.4)]

=

ℓ∑
i=1

(Ai ⊘Bi) +Aℓ+1 ⊘Bℓ+1 [by induction hypothesis]

=

ℓ+1∑
i=1

(Ai ⊘Bi).

Hence the result follows. 2

Using theorem 4.16 repeatedly, we get the following general result.

Theorem 4.17. For Ai ∈ Mm, Bi ∈ Mn, . . . , Ci ∈ Mℓ, for i = 1, 2 . . . , k, then

( k∑
i=1

Ai

)
⊘
( k∑

i=1

Bi

)
⊘ · · · ⊘

( k∑
i=1

Ci

)
=

k∑
i=1

(Ai ⊘Bi ⊘ · · · ⊘ Ci).

Lemma 4.18. If A and B are any square matrices, then

SA⊗B = SASB .

Proof. If A ∈ Mm and B ∈ Mn, then the i, j−th block of A⊗B is ai,jB and Sai,jB = ai,jSB . Therefore
we get

SA⊘B = SB

m∑
i,j=1

ai.j = SBSA.

Hence the result follows. 2

Theorem 4.19. If A ∈ Mm and B ∈ Mn, then

SA⊘B = n2SA +m2SB .
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Proof. We have

SA⊘B = SA⊗Jn+Jm⊗B

= SA⊗Jn + SJm⊗B

= SA × n2 +m2 × SB . [using theorem 4.18].

Hence the theorem holds. 2

As a corollary of theorem 4.19, we get the expression for the Wiener index of Cartesian product of
two connected graphs.

Corollary 4.20. If G1 and G2 are two connected graphs of order m and n respectively, then

W (G12G2) = n2W (G1) +m2W (G2).

As an application of the above corollary we get the following result.

Corollary 4.21. If H is any fixed connected graph and G1, G2 are connected graphs of same order with
W (G1) ≥ W (G2), then

W (H2G1) ≥ W (H2G2),

with equality if and only if W (G1) = W (G2).

Theorem 4.22. If A ∈ Mm and B ∈ Mn, then A ⊘ B has a constant row sum if and only if A and B
both have constant row sums.

Proof. Let us consider any arbitrary row of A ⊘ B. If the first entry of that row is ai,1 + bj,i, then the
row sum of that row of A⊘B equals to

(nai,1 +Bj) + (nai,2 +Bj) + · · ·+ (nai,m +Bj) = nAj +mBj . (4.5)

Now if A and B have constant row sums, then Ai =
SA

m and Bi =
SB

n . Therefore, by eq. (4.5), A⊘B
has constant row sum equal to n

mSA + m
n SB .

Again if A⊘B has constant row sum (say k), then from eq. (4.5) we get

nAi +mBj = k for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Keeping i fixed, we see that Bj is constant for j = 1, 2, . . . , n. Similarly, keeping j fixed we get Ai is
constant for i = 1, 2, . . . ,m. Hence, the theorem holds. 2

The following result is a reformulation of theorem 4.22. Therefore, the proof is omitted.

Theorem 4.23. If A ∈ Mm and B ∈ Mn, then 11mn is an eigenvector of A ⊘ B if and only if 11m and
11n are eigenvectors of A and B respectively.

As an application of theorem 4.22, we get the following result as a corollary.

Corollary 4.24. The Cartesian product G12G2 of two connected graphs G1 and G2 is transmission
regular if and only if G1 and G2 are both transmission regular.

From the proof of theorem 4.22, we get a lower bound for the distance spectral radius of the Cartesian
product of two connected graphs.

Corollary 4.25. If G1 and G2 are two connected graphs of order m and n respectively, then

ρD(G12G2) ≥
n

m
W (G1) +

m

n
W (G2),

with equality if and only if G1 and G2 are both transmission regular.
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