(3s.) **v. 2025 (43)** : 1–9. ISSN-0037-8712 doi:10.5269/bspm.63516

Separable ranges of Henstock-Kurzweil-Pettis integral

Hemanta Kalita

ABSTRACT: In this article, we introduce Pettis integrability type property for Henstock-Kurzweil-Pettis-integrals. We discuss several necessary conditions that X has Henstock-Kurzweil-Pettis-integrability property for weak Baire measure. Necessary and sufficient conditions of the indefinite integral of any Henstock-Kurzweil-Pettis (respectively, Denjoy-Pettis) integrable function with values in a fixed Banach space having separable ranges are discussed.

Key Words: Henstock-Kurzweil-Pettis integrability property, Mazur property, separable ranges.

Contents

1	Introduction	1
2	Preliminaries	2
3	Henstock-Kurzweil-Pettis integral	3
4	Henstock-Kurzweil-Pettis integrals with separable range	5

1. Introduction

Integration Theory of functions with values in a Banach space has long been a fruitful area of study. Bochner, Gelfand, Pettis, Birkhoff, Phillips, etc have a major contribution in this area of interest. Edgar, Huff, Talagrand discussed Pettis integrability with scalar measurability, Pettis integrability of weak measurable functions with values by several different techniques (see [2,3,12]). Piazza and Musiał' [11] characterized Henstock-Kurzweil-Pettis integrals by cores of the functions and throught the properties of suitable operations defined by integrands. Bongiorno et al. [1] studied about Henstock-Kurzweil-Pettis integrable function and Henstock integrable functions are scalarly approximated in the Alexiewicz norm by a sequence of step functions. In their work authors have done the full approximation of the Henstock-Kurzweil-Pettis integral if and only if the range of the integral is norm relatively compact. notion of Bourgain property of real-valued functions formulated by J. Bourgain. Plebanek [9] has shown that the Pettis integral property of a Banach space X, together with the requirement of separability of X-valued Pettis integral is equivalent to the fact that every weak Baire measure on X is in a certain weak sense, concentrated on a separable subspace. Naralenkov [8] find the necessary and sufficient conditions so that the indefinite integral of any Henstock-Kurzweil-Pettis integrable function with values in a fixed Banach space has a relatively compact range or be continuous, except at most on a countable set. Through out the article, we denote Henstock-Kurzweil-Pettis integrals as HKP-integrals.

Plebanek and Naralenkov's work motivated us to investigate the Henstock-Kurzweil-Pettis integrability property for μ -measure compact and Henstock-Kurzweil-Pettis integrals. We also investigate separable ranges of the Henstock-Kurzweil-Pettis integrable functions. Finally, we discuss separable ranges of indefinite Henstock-Kurzweil-Pettis integrals.

Our article structured as follows: In Section 2, the basic concepts and terminology are intro-duced together with some definitions and results. In Section 3, several properties of HKP-integral has been discussed. We give several conditions of Henstock-Kurzweil-Pettis integrability in X associate with weak Baire measure and compact measure. In Section 4, separable ranges of HKP-integrable function are discussed.

2010 Mathematics Subject Classification: 26A39, 28A05, 28C05. Submitted May 11, 2022. Published September 01, 2025

H. Kalita

2. Preliminaries

Assume Ω be set of intervals, Σ are the σ -algebra of Ω . Throughout the article (Ω, Σ, μ) be finite measure space. Let [0,1] be the unit interval of the real line with usual topology and μ be Lebesgue measure. In the whole article X is an arbitrary Banach space with dual X^* . The closed unit ball of X is denoted by B(X). If $Y \subset X$ then Y^{\perp} are annihilator of Y in X^* . We denote $\sigma(X,X^*)$ are weak topology and the topology generated on X by a Banach space Y is $\sigma(X,Y)$. Recall Banach-valued Henstock-Kurzweil as follows.

Definition 2.1 [1, Definition 1] A function $f:[0,1] \to X$ is said to be Henstock-Kurzweil integrable on [0,1] if there exists $w \in X$ with the following property: for every $\epsilon > 0$ there exists a gauge δ on [0,1] such that

$$\left|\left|\sum_{i=1}^{p} f(t_i)|I_i| - w\right|\right| < \epsilon$$

for each δ -fine perron partition $P = \{(I_1, t_i), (I_2, t_2), ..., (I_p, t_p)\}$ of [0, 1]. We set $w = (H) \int_0^1 f d\mu$. We call HK([0, 1], X) the set of all Henstock integrable functions $f : [0, 1] \to X$.

The HK[0,1] is endowed with the Alexiewicz norm

$$||h||_A = \sup_{0 \le \alpha \le 1} |(HK) \int_0^\alpha h(t) d\mu(t)|.$$

The completion of the HK[0,1] is isomorphic to the space of distribution which are distributional derivatives of continuous function. The conjugate space $HK^*[0,1]$ is linearly isometric to the space BV[0,1].

Definition 2.2 [13] A function $f:[0,1] \to X$ is said to be scalarly measurable (resp scalarly integrable) if for every $x^* \in X^*$ the function x^*f is Lebesgue measurable (resp integrable). A scalarly integrable function $f:[0,1] \to X$ is said to be Pettis integrable if for each $A \in L$ there exists a vector $w_A \in X$ such that

$$\langle x^*, w_A \rangle = \int_A x^* f d\mu \text{ for every } x^* \in X^*.$$

We call w_A the Pettis integral of f over A and we write $w_A = (P) \int_A f d\mu$.

Definition 2.3 [10] A function $f:[0,1] \to X$ is said to be scalarly Henstock-Kurzweil integrable if for each $x^* \in X^*$ the function x^*f is Henstock-Kurzweil integrable. A scalarly Henstock-Kurzweil integrable function f is said to be Henstock-Kurzweil-Pettis integrable if for each $I \in [0,1]$ there exists $w_I \in X$ such that

$$\langle x^*, w_I \rangle = (HK) \int_I x^* f d\mu \text{ for every } x^* \in X^*.$$

We call w_I the Henstock-Kurzweil-Pettis integral of f over I and we write $w_I = (HKP) \int_I f d\mu$.

We call the additive interval function $F(I) = (HKP) \int_I f d\mu$ the HKP-primitive of f. Let HKP([0,1],X) the set of all X-valued HKP-integrable function on [0,1] (functions that are scalarly equivalent are identified). Henstock-Kurzweil-primitive (resp HKP-primitives) F of a function f is continuous (resp weakly continuous i.e. x^*F is continuous for every $x^* \in X^*$). One can see [1]. The Alexiewicz norm on HKP([0,1],X) is

$$||f||_A = \sup_{0 \le t \le 1} ||(HKP) \int_0^1 f d\mu||.$$

If $|x^*f| \leq K$ a.e. for some constant K and every $x^* \in X^*$ then f is weakly bounded. If $f: [0,1] \to X$ is a scalarly bounded function then the image measure λ given by

$$\lambda(E) = \mu(f^{-1}(E))$$

is a weak Baire measure on X.

Definition 2.4 [9] Given a weak Baire measure μ on a Banach space X, we say μ is scalarly concentrated on a subspace Γ of X if $x^*|_{\Gamma} = 0$ implies $x^* = 0$ μ -a.e..

Recall a topological space X is measure compact if every non zero- σ -additive Baire measure on X has non empty support. Measure-compact implies real compact but not conversely. It is well known that every compact measure is perfect. For a measure to be perfect it is necessary and sufficient that it's restriction to any σ -subalgebra with a countable number of generators be compact.

Recall a Banach space X is said to have Pettis Integral property (PIP) if for every X-valued weakly bounded function f defined on an arbitrary finite measure space is Pettis integrable. We say that X has Mazur's property if each $weak^*$ -continuous functional on X^* is in X.

Definition 2.5 A scalarly measurable function $f:[0,1] \to X$ is determined by a space $Y \subseteq X$ if for every $x^* \in Y^{\perp}$ the equality $x^*f = 0$ hold μ -a.e..

Theorem 2.1 [1, Theorem 2] If $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable then there exists a sequence (f_n) of X-valued step function such that for all $x^* \in X^*$, $x^*f = \lim_n x^*f_n$ a.e. if and only if f is determined by a separable subspace of X.

3. Henstock-Kurzweil-Pettis integral

The Henstock-Kurzweil-Pettis integral is the natural generalization of the Pettis integral for a function, obtained by replacing the Lebesgue integrability for scalar functions by the Henstock-Kurzweil integrability. If X contains no copy of c_0 , it is well known that each X-valued strongly measurable scalarly integrable function is also Pettis integrable. In the case of the Henstock-Kurzweil integrability, a similar property is fulfilled by weakly sequentially complete Banach spaces. Gordon proved that a separable Banach space is weakly sequentially complete if and only if each X-valued Henstock-Kurzweil scalarly integrable function is also HKP integrable.

Lemma 3.1 Let $f:[0,1] \to X$ be scalarly Henstock-Kurzweil integrable. Define $T_f:X^* \to HK(\mu)$ by

$$T_f(x^*)(t) = \langle f(t), x^* \rangle, \ x^* \in X^*, \ t \in [0, 1]$$

then T_f is weak*-pointwise continuous.

Proof: If $t \in [0,1]$ and $X_a^* \to x^*$ (weak*), then

$$T_f(x_a^*)(t) = \langle f(t), x_a^* \rangle$$

$$\to \langle f(t), x^* \rangle$$

$$= T_f(x^*)(t)$$

so, $T_f(x_a^*) = T_f(x^*)$ is pointwise.

Proposition 3.1 Let $f:[0,1] \to X$ be scalarly Henstock-Kurzweil integrable then f is HKP-integrable if and only if $T_f: X^* \to HK([0,1], \mu)$ is weak*-weakly continuous. In particular if f is Henstock-Kurzweil-Pettis integrable then T_f is necessarily a weakly compact operator.

Proof: Let T_f is $weak^*$ -weakly continuous. Assume $A \in \Sigma$. Then $\chi_A \in BV(\mu)$. In this situation linear functional $\mathfrak{a} \in X^{**}$

$$\begin{split} <\boldsymbol{x}^*,\mathfrak{a}>&=(HK)\int_A <\boldsymbol{f}(t),\boldsymbol{x}^*>d\mu(t)\\ &=(HK)\int T_f(\boldsymbol{x}^*)(t).\chi_A(t)d\mu(t)\\ &= \end{split}$$

4 H. Kalita

is $weak^*$ continous. So, for $x_A \in X$ with

$$\langle x_A, x^* \rangle = (HK) \int_A \langle f(t), x^* \rangle d\mu(t) \text{ for all } x^* \in X^*$$
 (3.1)

gives f is Henstock-Kurzweil-Pettis integrable.

Conversely, assume f is Henstock-Kurzweil-Pettis integrable then for $A \in \Sigma$ there exists $x_A \in X$ with (3.1). So, from the representation theorem and convergence theorem we have:

$$< T_f(x^*), \chi_A > = (HK) \int_A < f(t), x^* > d\mu(t) = < x_A, x^* >$$

is $weak^*$ -continuous function of x. Hence $< T_f(x^*), g >$ is $weak^*$ continuous function of x^* for any step function g. Again, using the boundedness of f, we get $< T_f(x^*), g >$ is $weak^*$ -continuous function of x^* for any $g \in BV(\mu)$.

Corollary 3.1 Let $f:[0,1] \to X$ be scalarly Henstock-Kurzweil integrable then f is HKP-integrable if and only if $T_f: B(X^*) \to HK([0,1], \mu)$ is weak*-weakly continuous.

From Proposition 3.1 and Corollary 3.1 we can deduce the following corollary as follows:

Corollary 3.2 A scalarly Henstock-Kurzweil integrable function $f:[0,1] \to X$ determined by a subspace Y of X if and only if $T: X \to HK(\mu)$ is defined by $x^* \to x^*f$ is a $\sigma(X^*, Y)$ -weakly continuous.

The action of T_f on $weak^*$ neighborhoods in X^* as follows:

Definition 3.1 [5] Let Y be a finite set in X, and $\epsilon > 0$, let

$$\mathcal{O}(Y,\epsilon) = \{x^* \in X^* : ||x^*|| \le 1 \text{ and } x^*(x) \le \epsilon \text{ for every } x \text{ in } Y\}.$$

Proposition 3.2 If f is scalarly Henstock-Kurzweil integrable, then for all $Y \subseteq X$, $\epsilon > 0$ the set $T_f(\mathcal{O}(Y,\epsilon))$ is closed and convex in $HK(\mu)$.

Proof: The proof is of similar argument of the [5, Lemma 2].

Proposition 3.3 If f is scalarly Henstock-Kurzweil integrable. Then the following are equivalent:

- 1. $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable.
- 2. T_f is a weakly compact operator

$$\mathbb{Z} = \bigcap \left\{ T\left((\mathcal{O}(Y, \epsilon)) : Y \subset X, Y \text{ is finite, } \epsilon > 0 \right\} = \{0\}.$$

Proof: The proof is of similar argument of the [5, Proposition 3].

Henstock-Kurzweil-Pettis Integral property

Next, we give several conditions of Henstock-Kurzweil-Pettis integrability in X in the context of weak Baire measure and compact measure. We called a Banach space X has the μ -HKP integral property if each X-valued, scalarly μ -measurable function is μ -HKP integrable. If such a property holds true for all complete measure, then X is said to have the HKP-integral property. It is not hard to see a Banach space X has Henstock-Kurzweil-Pettis Integral property (HKPIP) if for every X-valued weakly bounded function f defined on an arbitrary finite measure space is Henstock-Kurzweil-Pettis integrable.

Theorem 3.1 If X is μ -measure compact then X has the μ -HKPIP. In addition, if X is measure compact then X has HKPIP.

Proof: Suppose X is μ -measure compact. Let $f:[0,1] \to X$ be bounded and scalarly measurable then f is weakly equivalent to Henstock-Kurzweil measurable function $g:[0,1] \to X$. Since g is bounded and measurable, it is Henstock-Kurzweil integrable. Let x_A be Henstock-Kurzweil integral. In this case if $x_A = (HK) \int_A g d\mu$ then for every $x^* \in X^*$, $x^*f = x^*g$ a.e.. So,

$$x_A x^* = (HK) \int_A g x^* d\mu$$
$$= (HK) \int_A f x^* d\mu.$$

Hence x_A is Henstock-Kurzweil-Pettis integral $(HKP)\int_{A}fd\mu.$

Conditions of Mazur in Banach space X are not helpful for HKPIP.

Remark 3.1 The condition of Mazur in X implies Pettis Integral Property in X (see [3]). Ye Guoju et al. in [4] presented that Pettis integrals are subset of Henstock-Kurzweil-Pettis integral. In [11, Proposition 4], it is very clearly mention that Mazur property in X (particularly separable or weakly compactly generated) implies HKPIP if and only if $f:[0,1] \to X$ is scalarly Henstock-Kurzweil integrable and each infinite subset of $\{x^*f: ||x^*|| \le 1\}$ contains an equi-Henstock-Kurzweil integrable sequences.

Theorem 3.2 Let X be a Banach space. If the condition of Mazur in X, then HKPIP does not hold on X.

4. Henstock-Kurzweil-Pettis integrals with separable range

In this Section, we discuss separable ranges of HKP-integrable function. We start this section with the known result.

Theorem 4.1 [1, Theorem 2] $f:[0,1] \to X$ be a function. If there exists a sequence of Henstock-Kurzweil-Pettis integrable functions $f_n:[0,1] \to X$ such that

- 1. The set $\{x^*f_n: ||x^*|| \leq 1, n \in \mathbb{N}\}$ is uniformly μ -integrable.
- 2. $\lim_{n} x^* f_n = x^* f$ in μ -measurable for each $x^* \in X^*$.

Then f is Henstock-Kurzweil-Pettis μ -integrable and

$$\lim_{n} (HK) \int_{E} f_{n} d\mu = (HK) \int_{E} f d\mu \ E \subseteq [0, 1]$$

weakly in X for each $E \in \Sigma$.

Theorem 4.2 If $f \in HKP([0,1],X)$ then the followings are equivalent:

- 1. $\left\{x^*f: x^* \in B(X^*)\right\}$ is separable subset of HK([0,1]).
- 2. There exists a sequence (f_n) of X-valued step function, such that for each $x^* \in X^*$ the sequence $(x^*f_n)_{n\in\mathbb{N}}$ is converges weakly to x^*f in HK([0,1]).
- 3. $\mu_f(\Sigma)$ is a separable subset of X.

Proof: For $(1) \Longrightarrow (2)$: Let $\{x^*f: x^* \in B(X^*)\}$ be separable. In this situation there exists a sequence (x_n^*) in $B(X^*)$ such that $\{x_n^*f: n \in \mathbb{N}\}$ is dense in $\{x^*f: x^* \in B(X^*)\}$. Since $f \in HKP([0,1],X)$ then by [1, Theorem 2], the topology of convergence in measure and the weak topology of HK[0,1] coincide on the set $\{x^*f: x^* \in B(X^*)\}$ and there exists a step function $f_n: [0,1] \to X$ such that $x^*f_n \to x^*f$ weakly in HK[0,1] for every $x^* \in X^*$.

6 H. Kalita

For (2) \Longrightarrow (3): By condition (2), for each $E \in \Sigma$ the sequence $\mu_{f_n}(E)$ is weakly convergent to $\mu_f(E)$. Since ranges of μ_{f_n} are finite dimensional, $\mu_f(\Sigma)$ contained in the weak closure of the set $\bigcup_{n=1}^{\infty} \mu_{f_n}(\Sigma)$ as separable.

For (3) \implies (1): Let us use contradiction method here. If possible assume $\{x^*f: x^* \in B(X^*)\}$ is non-separable and $x_1^* \in U(X^*)$ where

$$U(X^*) = \left\{ (x, s) : | \langle x^*, f(x) \rangle | \ge s ||x^*|| \right\} \text{ for } x^* \in X^*$$

and $h \in BV(\mu)$ such that $\langle h, x_1^* f \rangle = 1$. Let for an ordinal $b \langle x_1, the family \left\{ (x_a^*, h_a) : a \langle b \right\}$ satisfies the followings:

- a) $x_a^* \in U(X^*),$
- b) $h_a \in BV(\mu)$,
- c) $x_c^* f \in \overline{\lim} \{x_a^* f : a < c\}$ for each c < b,
- d)

$$< h_c, x_a^* f > = \begin{cases} 1 & \text{if } a = c < b \\ 0 & \text{if } a < c < b \end{cases}$$

As $\left\{x^*f: x^* \in B(X^*)\right\}$ is non-separable, so $x_b^* \in U(X^*)$ such that $x_b^*f \notin \overline{\lim} \left\{x_a^*f: a < b\right\}$. Now from Hahn-Banach Theorem for all a < b such that $< h_b, x_b^*f >= 1$ and $< h_b, x_a^*f >= 1$ implies $h_b \in BV(\mu)$. From the net $\left\{(x_a^*, h_a): a < x_1\right\}$ satisfying (a) - (d) for all a, b, c less than x_1 implies $||T_f^*(h_b) - T_f^*(h_a)|| \ge 1$ whenever a < b. So, $T_f^*(BV(\mu))$ is non-separable on X^{**} . Since $\{\chi_E: E \in \Sigma\}$ is norm dense in $BV(\mu)$ and so $\mu(\Sigma)$ is norm dense in $T_f^*(BV(\mu))$. This is a contradiction. Hence $\mu_f(\Sigma)$ is separable.

Amalgamate the Theorem 4.1 and the Theorem 4.2 we can find out the following conclusion.

Theorem 4.3 Let $f:[0,1] \to X$ be a given function, μ is a perfect measure and $\mu_f(\Sigma)$ is a separable set. Then $f \in HKP([0,1],X)$ if and only if there exists a sequence (f_n) of X-valued step function such that

- 1. The family $\left\{x^*f_n: n \in \mathbb{N}, x^* \in B(X^*)\right\}$ is uniformly integrable.
- 2. For each $x^* \in X^*$, $\lim_n x^* f_n = x^* f$ a.e..

With the analogous way, we can construct the following Lemma from Talagrand [12, 5-1-2], which was used in [9] by G. Plebanek in his work.

Lemma 4.1 Let $([0,1], \Sigma, \mu)$ be a measure space and C be an absolutely convex set of measurable function which is τ_m -compact and bounded in BV[0,1]. Then the followings are equivalent:

- 1. $\mu: C \to \mathbb{R}, \ \mu(g) = (HK) \int_0^1 g d\mu \text{ is } \tau_m\text{-continuous.}$
- 2. There exists a countable subsets $D \subset [0,1]$ such that $(HK) \int_0^1 g d\mu = 0$ whenever $g \in C$ and $g|_D = 0$.

Theorem 4.4 If $f:[0,1] \to X$ is scalarly Henstock-Kurzweil integrable function then $f \in HKP([0,1],X)$ and $\mu_f(\Sigma)$ is separable if and only if the measure $f(\mu)$ is scalarly concentrated on a separable subspace of X.

Proof: Let $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable function and $\mu_f(\Sigma)$ is separable. Let Γ be separable subspace of $\mu_f(\Sigma)$. From the [11, Theorem 3] we get $x^* \in \Gamma^{\perp}$ and $x^*f = 0$ a.e. so, $x^* = 0$ $f(\mu)$ -a.e..

Conversely, let $\nu=f(\mu)$ and Γ the closure of a countable set of X such that ν is scalarly concentrated on Γ . Next, $x_{|\Gamma}^*=0$ implies $x^*=0$ ν a.e.. From Lemma 4.1, $x^*\to (HK)\int_B x^*d\nu$ is τ_m -continuous for every $B\in Ba(X)$. Hence, $X^*\to HK(\nu)$ is τ_m -(weak) continuous where τ_m is the topology of pointwise convergence and $i_X:X\to X$ is Henstock-Kurzweil-Pettis integrable with respect to ν . If $x_0=(HK)\int_B i_X d\nu$, in this situation $x_{|\Gamma}^*=0$ gives $x^*x_0=0$. Hence $x_0\in \Gamma$, gives f is Henstock-Kurzweil-Pettis integrable and the range $\mu_f(\Sigma)$ is separable on Γ .

We begin with a simple characterization of indefinite Henstock-Kurzweil-Pettis integrals that have separable ranges.

Lemma 4.2 Suppose X is separable Banach spaces. Then $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable on [0,1] with indefinite integral F of f if the followings are equivalents:

- 1. F is weak*-continuous on [0,1].
- 2. The set $\left\{ \int_I f: I \subset [0,1] \right\}$ is separable.

Proof: For $(1) \Longrightarrow (2)$: Let F be $weak^*$ -continuous on [0,1]. Then F([0,1]) is $weak^*$ -compact. Therefore, $\{\int_I f:\ I\subset [0,1]\}$ is $weak^*$ -compact and $weak^*$ -topology of X^* restricted to $\{\int_I f:\ I\subset [0,1]\}$ is metrizable. Hence, $\{\int_I f:\ I\subset [0,1]\}$ is separable.

For $(2) \implies (1)$: Let (f_n) be a sequence of step function on [0,1] and F_n be the indefinite integral of f_n . By [1, Theorem 1], $\lim_n ||x^*F - x^*F_n||_n = 0$. since F_n is $weak^*$ -continuous on [0,1], then F is $weak^*$ -continuous on [0,1].

Theorem 4.5 Let $f:[0,1] \to X$ be scalarly Henstock-Kurzweil integrable function and X is a Mazur space then followings are hold:

- 1. If $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable on [0,1] then the indefinite integral of f is $weak^*$ -continuous on [0,1].
- 2. If $f:[0,1] \to X$ is Henstock-Kurzweil-Pettis integrable on [0,1] then the set $\left\{ \int_I f: I \subset [0,1] \right\}$ is separable.

Proof: For (1): Let F be the indefinite integral of f. From [8, Theorem 1] x^*F is $weak^*$ -continuous on [0, 1]. Due to the Mazur property of X, we can find F is $weak^*$ -continuous on [0, 1].

For (2): It is direct implication of the Lemma 4.2.

Lemma 4.3 Let $f:[0,1] \to X$ be Henstock-Kurzweil-Pettis integrable with X is separable and $T:X^* \to HK[0,1]$ be a compact. In this situation range $R_{\mu}\{F(I)\}$ is separable if and only if the set $\left\{x^*f: ||x^*|| \le 1\right\}$ is separable subset of HK[0,1].

Proof: Let $T: X^* \to HK[0,1]$ defined by $T(x^*) = x^*f$ be compact. Then $T^*: BV[0,1] \to X^{**}$ shall be

$$\begin{split} < x^*, T^*_{\chi_I} > &= < T(x^*), \chi_I > \\ &= (HK) \int_I x^* f d\mu \\ &= < x^*, (HKP) \int_I f d\mu > \\ &= < x^*, F(I) > . \end{split}$$

8 H. KALITA

So, $F(I) = T_{\chi_I}^*$. By Schauder Theorem F(I) is compact. Let $X = \bigcup_n B(0,n)T(B(0,n))$ be separable. It is known that union of separable spaces is separable. Hence, $\bigcup_n T(B(0,n)) = R_{\mu}(F)$ is separable space.

Theorem 4.6 If X is separable Banach space and let $f:[0,1] \to X$ be Henstock-Kurzweil-Pettis integrable function. Assume $F:I \to X$ be its primitive then the followings are equivalents:

- 1. The family $\{x^*f_n: n \in \mathbb{N}, x^* \in B(X^*)\}$ is uniformly integrable.
- 2. For each $x^* \in X^*$ we have $\lim_{n} x^* f_n = x^* f$ a.e.
- 3. $R_{\mu}(F)$ is separable subset of X where $R_{\mu}(F)$ is the range spaces.

Proof: For $(1) \implies (2)$ is $(1) \rightarrow (2)$ of the Theorem 4.2.

For $(2) \implies (3)$: The condition (2) gives for each $E \in \Sigma$ the sequence $\left\{ (HK) \int_E f_n d\mu : n \in \mathbb{N} \right\}$ is weakly convergent to $(HK) \int_E f d\mu$. Hence $R_\mu(F)$ is contained in the weak closure of the set $\bigcup_n F_n(\Sigma)$ where F_n is the indefinite Henstock-Kurzweil-Pettis integral of f_n . Each set $F_n(\Sigma)$ is of finite dimensional so the union is weakly separable. Since weak and norm separability coincide in a Banach space so by Mazur Theorem $R_\mu(F)$ is separable.

For
$$(3) \implies (1)$$
 is similar as $(3) \implies (1)$ of the Theorem 4.2.

Lemma 4.4 Let Y be a subspace of X and assume Y contains no isomorphic copy of c_0 . If Y is WCG (has Mazur's property) then $f:[0,1] \to X$ a bounded scalarly Henstock-Kurzweil integral determined by Y is Henstock-Kurzweil-Pettis integrable.

Proof: Let Y is WCG and f is scalarly Henstock-Kurzweil integrable, there exists a countable partition P_i of [0,1] into measurable sets such that for each E in P_i , the function $f.\chi_E$ is weakly bounded. From [6, Lemma2], f is Pettis integrable and hence Henstock-Kurzweil-Pettis integral for all E in P_i . This gives for each $F \in \Sigma$, $(HK) \int_{F \cap E} f d\mu = (HKP) \int_{F \cap E} f d\mu \in X$. Now, for $x^* \in X^*$ and $F \in \Sigma$,

$$\begin{split} \sum_{E \in P_i} |x^* \left((HKP) \int_{F \cap E} f d\mu \right)| &= \sum_{E \in P_i} |(HK) \int_{F \cap E} x^* f d\mu| \\ &\leq \sum_{E \in P_i} (HK) \int_{F \cap E} |x^* f| d\mu \\ &= (HK) \int_{E} |x^* f| d\mu < \infty \end{split}$$

Now by Bessaga-Pelezynski characterization theorem, the series $\sum_{E \in P_i} (HKP) \int_{F \cap E} f d\mu$ is an unconditionally norm convergent series for all F in Σ . That is $\sum_{E \in P_i} (HKP) \int_{F \cap E} f d\mu = (HKP) \int_F f d\mu$.

Proposition 4.1 Let $f:[0,1] \to X$ be scalarly Henstock-Kurzweil integrable and $T_f: X^* \to HK([0,1])$ defined by $x^* \to x^*f$ is weakly compact. If f is determined by a subspace having Mazur's property, then f is Henstock-Kurzweil-Pettis integrable.

Proof: Let f is determined by $Y \subset X$ having Mazur's property. This gives each $weak^*$ -continuous functional on Y^* is in Y. Let (x_n) be dense in Y. If possible For each n, choose x_n^* in $\mathcal{O}\left(\{x_j\}_{j=1}^n, \epsilon\right)$ so that $x_n^*f = g$ a.e. for $g \in \bigcap_{(Y,\epsilon)} T(\mathcal{O}(Y,\epsilon))$ if possible. We need to claim g = 0 a.e.. Let x^* be $weak^*$ cluster of $(x_n^*)_n$ then $g = x^*f$ a.e.. From the Theorem 4.1, $\lim_n x_n^*f = x^*f = g$ a.e. The Mazur's property in Y gives $x^*f = g = 0$.

References

- B. Bongiorno, L.Di. Piazza, K. Musiał', Approximation of Banach space valued Non-absolutely integrable functions by step functions, Glasgow Math. J. 50, 583-593, (2008).
- 2. G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26, 663-677, (1977).
- 3. G.A. Edgar, Measurability in a Banach space, II, ibid. 28 (1979), 559-579.
- 4. Ye Guoju and AN. Tianqing, On Henstock-Dunford and Henstock-Pettis integrals, IJMMS 25:7, 467-478, (2001).
- R. Huff, Remarks on Pettis integrability, proceedings of the American mathematical society, Volume 96, Number 3, March 1986.
- 6. H. Kalita, B. Hazarika, Countable additivity of Henstock–Dunford integrable functions and Orlicz Space, Analysis and Mathematical Physics, 11(2), 1-13, (2021).
- K. Musiał', Martingales of Pettis integrable functions, in Measure Theory, Lecture Notes in Math. 794, Springer, 324-339, (1980).
- 8. K. M. Naralenkov, On continuity and Compactness of some vector-valued integrals, Rocky Mountain Journal of Mathematics, 43(3), 1-17, (2013).
- 9. G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64(1), 71-78, (1993).
- L. D. Piazza, Kazimierz Musiał', Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space, J. Math. Anal. Appl. 408, 452-464, (2013).
- 11. L. D. Piazza, Kazimierz Musiał', Characterizations of Kurzweil-Henstock-Pettis integrable functions, Studia Mathematics 176(2), 1-19, (2006).
- 12. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
- 13. G. F. Stefansson, Pettis Integrability, Tran. AMS, 330(1), 1-19, (1992).

Hemanta Kalita,

Mathematics Division, School of Advanced Sciences and Languages,

VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India, India.

 $E ext{-}mail\ address: hemanta30kalita@gmail.com}$