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Ergodicity for a Family of Operators
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abstract: The aim of this paper is to introduce the notions of power boundedness, Cesàro boundedness,
mean ergodicity, and uniform ergodicity for a family of bounded linear operators on a Banach space. The
authors present some elementary results in this setting and show that some main results about power bounded,
Cesàro bounded, mean ergodic, and the uniform ergodic operator can be extended from the case of a linear
bounded operator to the case of a family of bounded linear operators acting on a Banach space. Also, we show
that the Yosida theorem can be extended from the case of a bounded linear operator to the case of a family
of bounded linear operators acting on a Banach space.
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1. Introduction

Let T be a bounded linear operator, on a complex Banach space X. The ergodicity for T was already
developed in different directions, (see, e.g. [2,3,4,6,7,8,9,12]). For example, in [3], it was shown that
when 1

n
‖T n‖ −→ 0, n → ∞, T is uniformly ergodic if and only if (I − T )2X is closed. In [9], Lin

showed that if 1
n

‖T n‖ −→ 0, n → ∞, T is uniformly ergodic if and only if (I − T )X is closed. Hence
(I − T )kX is closed for each integer k ≥ 1. In [1], the authors extended this result to the case of a family
of bounded linear operators. It is well known that the Cesàro boundedness of the operator T , as well as
the condition, limn−→∞

1
n

‖T nx‖ = 0, for every x ∈ X, which are, in general, independent; see [5, Remark
4], are necessary for the mean ergodicity of T . In [13], Yosida has established the following theorem for
an operator acting on a locally convex space.

Theorem 1.1. Let X be a locally convex linear topological space, and T a continuous linear operator on
X into X. We assume that the family of operators {T n : n = 1, 2, . . .} is equi-continuous in the sense
that, for any continuous semi-norm q on X, there exists a continuous semi-norm q′ on X such that
supn≥1 q(T nx) ≤ q′(x) for all x ∈ X. Then the closure R(I − T )a of the range R(I − T ) satisfies

R(I − T )a =

{

x ∈ X : lim
n−→∞

Mn(T )x = 0, Mn(T ) =
1

n

n
∑

m=1

T m

}

.

In particular,
R(I − T )a ∩ ker(I − T ) = {0}.

In this paper we introduce the notions of power boundedness, Cesàro boundedness, mean ergodicity,
and uniform ergodicity for a family of bounded linear operators from the Banach algebra Cb ((0, 1], B(X))
(respectively from B∞), this class was introduced and studied by S. Macovei in [10,11]. The notion of
uniform ergodicity was introduced in [1], see below for the definitions. We deal with giving relations be-
tween these definitions. In Theorem 3.10 we show that the restriction of a mean (respectively uniformly)
ergodic family of bounded linear operators on an invariant subspace is also mean (respectively uniformly)
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ergodic. Also, we extend the Theorem 1.1 for a family of bounded linear operators acting on a Banach
space, see Theorem 3.13 below.

Papers dedicated to the study of the class of a family of bounded linear operators acting on a Banach
space have been elaborated in [10,11].

2. Preliminaries

Let X be an infinite-dimensional Banach space and B(X) the Banach algebra of all bounded linear
operators on X. We denote by I the identity operator on X.

In [10], Macovei showed that the set

Cb ((0, 1], B(X)) =

{

{Th}h∈(0,1] ⊂ B(X) : {Th}h∈(0,1] is a bounded family, i.e. sup
h∈(0,1]

‖Th‖ < ∞

}

,

is a Banach algebra non-commutative with norm

‖{Th}‖ = sup
h∈(0,1]

‖Th‖.

And

C0 ((0, 1], B(X)) =

{

{Th}h∈(0,1] ∈ Cb ((0, 1], B(X)) : lim
h→0

‖Th‖ = 0

}

,

is a closed bilateral ideal of Cb ((0, 1], B(X)). The quotient algebra Cb ((0, 1], B(X)) /C0 ((0, 1], B(X)),
which will be denoted B∞, is also a Banach algebra with quotient norm

∥

∥

∥

˙{Th}
∥

∥

∥
= inf

{Uh}h∈(0,1]∈C0((0,1], B(X))
‖{Th} + {Uh}‖ = inf

{Sh}h∈(0,1]∈
˙{Th}

‖{Sh}‖ ≤ ‖{Sh}‖,

for any {Sh}h∈(0,1] ∈ ˙{Th}. On the other hand,

lim sup
h→0

‖Sh‖ ≤
∥

∥

∥

˙{Th}
∥

∥

∥
,

for any {Sh}h∈(0,1] ∈ ˙{Th}.
In [11], Macovei showed that the set

Xb ((0, 1], X) =

{

{xh}h∈(0,1] ⊂ X : {xh}h∈(0,1] is a bounded sequence, i.e. sup
h∈(0,1]

‖xh‖ < ∞

}

,

is a Banach space in rapport with norm

‖{xh}‖ = sup
h∈(0,1]

‖xh‖ .

And

X0 ((0, 1], B(X)) =

{

{xh}h∈(0,1] ∈ Xb ((0, 1], X) : lim
h→0

‖xh‖ = 0

}

,

is a closed subspace of Xb ((0, 1], X). The quotient space Xb ((0, 1], X) /X0 ((0, 1], X), which will be
denoted X∞, is a Banach space in rapport with quotient norm

∥

∥

∥

˙{xh}
∥

∥

∥
= inf

{uh}h∈(0,1]∈X0((0,1], X)
‖{xh} + {uh}‖ = inf

{yh}h∈(0,1]∈
˙{xh}

‖{yh}‖ = inf
{yh}h∈(0,1]∈

˙{xh}
sup

h∈(0,1]

‖yh‖ .

In [11], it has shown that B∞ ⊂ B(X∞), where B(X∞) is the algebra of linear bounded operators on
X∞.



Ergodicity for a Family of Operators 3

Let T ∈ B(X), we denote the Cesàro means by

Mn (T ) =
1

n

n−1
∑

k=0

T k, n = 1, 2 . . . .

We say that T is Cesàro bounded if
sup

n∈N∗

‖Mn (T ) ‖ < ∞.

We say that the operator T is mean ergodic if there exists P ∈ B(X) such that

‖Mn (T ) x − P x‖ −→ 0 as n → ∞,

for each x ∈ X.
We say that the operator T is uniformly ergodic if there exists P ∈ B(X) such that

‖Mn (T ) − P ‖ −→ 0 as n → ∞.

In the following definitions, we introduce the notions of power boundedness , Cesàro boundedness, mean
ergodicity and uniform ergodicity for family of operators of Cb ((0, 1], B(X)).

Definition 2.1. We say that a family of operators {Th}h∈(0,1] ∈ Cb ((0, 1], B(X)) is power bounded if

sup
n∈N

lim sup
h→0

‖T n
h ‖ < ∞.

We say that it is Cesàro bounded if

sup
n∈N∗

lim sup
h→0

‖Mn (Th)‖ < ∞.

Remark 2.2. If Th = T for each h ∈ (0, 1]. Then, T is power bounded (respectively Cesàro bounded) if
and only if {Th}h∈(0,1] power bounded (respectively Cesàro bounded).

Definition 2.3. We say that a family of operators {Th}h∈(0,1] ∈ Cb ((0, 1], B(X)) is mean ergodic if there
exists {Ph}h∈(0,1] ∈ Cb ((0, 1], B(X)) such that

lim
n→∞

lim sup
h→0

‖Mn (Th) xh − Phxh‖ = 0,

for each {xh}h∈(0,1] ∈ Xb ((0, 1], X).
We say that it is uniformly ergodic if there exists {Ph}h∈(0,1] ∈ Cb ((0, 1], B(X)) such that

lim
n→∞

lim sup
h→0

‖Mn (Th) − Ph‖ = 0.

Remark 2.4. (i) If Th = T for each h ∈ (0, 1]. Then, T is mean (respectively uniformly) ergodic if
and only if {Th}h∈(0,1] is mean (respectively uniformly) ergodic.

(ii) The operator Th is mean ergodic for any h ∈ (0, 1], does not imply that the family {Th}h∈(0,1] is
mean ergodic.

Example 2.5. To see Remark 2.4,(ii), consider the Banach space l∞ of bounded sequences
x = (xn)n=1,..., with the supremum norm.

For every integer j define the operator Tj by Tj(x) = (yn)n=1,2.... where yn = xn+1 for n ≤ j − 1;
yj = 0; yn = xn for n > j. The operator Tj acts as a shift to the left on the j first values of x, but acts
as the identity on the infinite part of x after j.

One can show that each Tj is mean ergodic with the corresponding projector Pj defined by Pj(x) =
(zn)n=1,2..., where zn = 0 for n ≤ j; zn = xn for n > j. By taking n < j and the constant sequence 1 we
get ‖Mn (Tj) 1 − Pj1‖∞ = 1.

Now for h ∈ (0, 1] put Sh = Tj when 1
j+1 < h ≤ 1

j
. Each Sh is mean ergodic with the projector

Ph = Pj for 1
j+1 < h ≤ 1

j
. But with the constant sequence 1, from the property of the operators Tj, we

have lim suph→0 ‖Mn (Sh) 1 − Ph1‖∞ = 1 for every integer n, and the condition of Definition 2.3 does
not hold.
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In the following definitions, we introduce the notions of power boundedness, Cesàro boundedness,
mean ergodicity, and uniform ergodicity for a family of operators of B∞.

Definition 2.6. We say that ˙{Th} ∈ B∞ is power bounded if

sup
n∈N

∥

∥

∥

˙{Th}
n
∥

∥

∥
< ∞,

where ˙{Th}
n

= ˙{T n
h }.

We say that it is Cesàro bounded if

sup
n∈N∗

∥

∥

∥
Mn( ˙{Th})

∥

∥

∥
< ∞,

where Mn( ˙{Th}) = { ˙Mn (Th)}.

Definition 2.7. We say that ˙{Th} ∈ B∞ is mean ergodic if there exists ˙{Ph} ∈ B∞ such that

lim
n→∞

∥

∥

∥
Mn( ˙{Th}) ˙{xh} − ˙{Ph} ˙{xh}

∥

∥

∥
= 0,

for each ˙{xh}h∈(0,1] ∈ X∞, where

Mn( ˙{Th}) ˙{xh} − ˙{Ph} ˙{xh} = { ˙Mn (Th)} ˙{xh} − ˙{Ph} ˙{xh} = { ˙Mn (Th) − Ph} ˙{xh}.

We say that it is uniformly ergodic if there exists ˙{Ph} ∈ B∞ such that

lim
n→∞

∥

∥

∥
Mn( ˙{Th}) − ˙{Ph}

∥

∥

∥
= 0,

where

Mn( ˙{Th}) − ˙{Ph} = { ˙Mn (Th)} − ˙{Ph} = { ˙Mn (Th) − Ph}.

3. Main results

We start this section with some propositions relating power boundedness, Cesàro boundedness, mean
ergodicity, and uniform ergodicity of a family of bounded linear operators ˙{Th} ∈ B∞.

Proposition 3.1. Let ˙{Th} ∈ B∞ be power bounded. Then any {Sh}h∈(0,1] ∈ ˙{Th} is also power bounded.

Proof. Suppose that ˙{Th} is power bounded, then

sup
n∈N

∥

∥

∥

˙{Th}
n
∥

∥

∥
< ∞.

Let {Sh}h∈(0,1] ∈ ˙{Th} be arbitrary. Then

sup
n∈N

lim sup
h→0

‖Sn
h ‖ ≤ sup

n∈N

∥

∥

∥

˙{T n
h }

∥

∥

∥
= sup

n∈N

∥

∥

∥

˙{Th}
n
∥

∥

∥
< ∞.

Therefore, {Sh}h∈(0,1] is power bounded.
�

In particular, we obtain the following results.

Corollary 3.2. Let ˙{Th} ∈ B∞ be power bounded. Then {Th}h∈(0,1] is also power bounded.

Proposition 3.3. Let ˙{Th} ∈ B∞ be Cesàro bounded. Then any {Sh}h∈(0,1] ∈ ˙{Th} is also Cesàro
bounded.
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Proof. Suppose that ˙{Th} is Cesàro bounded, then

sup
n∈N∗

∥

∥

∥
Mn( ˙{Th})

∥

∥

∥
< ∞.

Let {Sh}h∈(0,1] ∈ ˙{Th} be arbitrary. Then

sup
n∈N∗

lim sup
h→0

‖Mn(Sh)‖ ≤ sup
n∈N∗

∥

∥

∥

˙Mn({Th})
∥

∥

∥
= sup

n∈N∗

∥

∥

∥
Mn( ˙{Th})

∥

∥

∥
< ∞.

Therefore, {Sh}h∈(0,1] is Cesàro bounded.
�

In particular, we obtain the following results.

Corollary 3.4. Let ˙{Th} ∈ B∞ be Cesàro bounded. Then {Th}h∈(0,1] is also Cesàro bounded.

Proposition 3.5. Let ˙{Th} ∈ B∞ be mean ergodic. Then any {Sh}h∈(0,1] ∈ ˙{Th} is also mean ergodic.

Proof. Suppose that ˙{Th} is mean ergodic, then there exists ˙{Ph} ∈ B∞ such that

lim
n→∞

∥

∥

∥
Mn( ˙{Th}) ˙{xh} − ˙{Ph} ˙{xh}

∥

∥

∥
= 0,

for each ˙{xh}h∈(0,1] ⊂ X∞.

Let {Sh}h∈(0,1] ∈ ˙{Th} be arbitrary. Then for {Ph}h∈(0,1] ∈ ˙{Ph}, we have

lim
n→∞

lim sup
h→0

‖Mn (Sh) xh − Phxh‖ ≤ lim
n→∞

∥

∥

∥
Mn( ˙{Th}){xh} − {Ph}{xh}

∥

∥

∥

= lim
n→∞

∥

∥

∥
Mn( ˙{Th}) ˙{xh} − ˙{Ph} ˙{xh}

∥

∥

∥
= 0.

Therefore, {Sh}h∈(0,1] is mean ergodic. �

In particular, we obtain the following results.

Corollary 3.6. Let ˙{Th} ∈ B∞ be mean ergodic. Then {Th}h∈(0,1] is also mean ergodic.

Proposition 3.7. [1] Let ˙{Th} ∈ B∞ be uniformly ergodic. Then any {Sh}h∈(0,1] ∈ ˙{Th} is also
uniformly ergodic. In particular, {Th}h∈(0,1] is uniformly ergodic.

It is easy to show that Propositions 3.8 and 3.9 below holds.

Proposition 3.8. Let ˙{Th} ∈ B∞.

(1) If ˙{Th} is mean ergodic, then

lim
n→∞

1

n
˙{Th}

n ˙{xh} = ˙{0},

for each ˙{xh} ∈ X∞.

(2) If ˙{Th} is uniformly ergodic, then

lim
n→∞

1

n

∥

∥

∥

˙{Th}
n
∥

∥

∥
= 0.

Proof. It suffices to show that

1

n
˙{Th}

n
= Mn( ˙{Th}) −

n − 1

n
Mn−1( ˙{Th}). (3.1)

�
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Proposition 3.9. Let ˙{Th} ∈ B∞.

(1) If ˙{Th} is power bounded, then it is Cesàro bounded.

(2) If ˙{Th} is mean ergodic, then it is Cesàro bounded.

Proof. It suffices to use equality (3.1).
�

In the following Theorem, we prove that the restriction of a mean (respectively uniformly) ergodic
family of bounded linear operators on an invariant subspace is also mean (respectively uniformly) ergodic.

Theorem 3.10. Let ˙{Th} ∈ B∞ be mean (respectively uniformly) ergodic and let Y∞ ⊂ X∞ be a closed
subspace, which is ˙{Th}-invariant. Then, the restriction ˙{Sh} = ˙{Th}|Y∞

is mean (respectively uniformly)
ergodic.

Proof. Since Y∞ is ˙{Th}-invariant, then it is is ˙{Th}
n
-invariant, for n = 1, 2, . . .. Thus it is Mn( ˙{Sh}) =

Mn( ˙{Th})|Y∞
-invariant. Hence, the strong (respectively uniform) limit, if it exists, is in Y∞. Therefore

˙{Sh} is mean (respectively uniformly) ergodic. �

Theorem 3.11. Let ˙{Th} ∈ B∞ such that limn
1
n

˙{Th}
n ˙{xh} = ˙{0}, for each ˙{xh} ∈ X∞. Then

(

˙{I} − ˙{Th}
)k

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0},

for each k = 1, 2, . . ..

Proof. It is easy to show that

Mn( ˙{Th})
(

˙{I} − ˙{Th}
)

=
1

n

(

˙{Th} − ˙{Th}
n+1

)

. (3.2)

Now, let ˙{yh} ∈
(

˙{I} − ˙{Th}
)

X∞. Then, there exists ˙{xh} ∈ X∞ such that ˙{yh} =
(

˙{I} − ˙{Th}
)

˙{xh}.

Thus, by (3.2), we get

Mn( ˙{Th}) ˙{yh} = Mn( ˙{Th})
(

˙{I} − ˙{Th}
)

˙{xh} =
1

n

(

˙{Th} ˙{xh} − ˙{Th}
n+1 ˙{xh}

)

=
1

n
˙{Th} ˙{xh} −

1

n
˙{Th}

n+1 ˙{xh},

which converges to ˙{0} as n −→ ∞ by hypothesis.

On the other hand, let ˙{yh} ∈
(

˙{I} − ˙{Th}
)

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

, then ˙{yh} = ˙{Th} ˙{yh}. Thus,

˙{yh} = ˙{Th}
k ˙{yh}, for each k = 1, 2, . . .. Hence,

Mn( ˙{Th}) ˙{yh} =
1

n

n
∑

k=1

˙{Th}
k ˙{yh} = ˙{yh}.

Since Mn( ˙{Th}) ˙{yh} −→ ˙{0} as n −→ ∞, then ˙{yh} = ˙{0}. Thus
(

˙{I} − ˙{Th}
)

X∞∩ker
(

˙{I} − ˙{Th}
)

=

˙{0}. But, ˙{0} ∈
(

˙{I} − ˙{Th}
)k

X∞ ⊆
(

˙{I} − ˙{Th}
)

X∞, for each k = 1, 2, . . .. Therefore,

(

˙{I} − ˙{Th}
)k

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0}.

�
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Corollary 3.12. Let ˙{Th} ∈ B∞. If ˙{Th} is mean ergodic, then

(

˙{I} − ˙{Th}
)k

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0},

for each k = 1, 2, . . ..

Proof. It suffices to use Proposition 3.8 and Theorem 3.11.
�

In the following Theorem, we will extend the known ergodic theorem of K. Yosida [13] from the case
of a bounded linear operator to the case of a family of bounded linear operators on a Banach space.

Theorem 3.13. Let ˙{Th} ∈ B∞. If

(i) limn
1
n

˙{Th}
n ˙{xh} = ˙{0}, for each ˙{xh} ∈ X∞, and

(ii) ˙{Th} is Cesàro bounded.

Then,
(

˙{I} − ˙{Th}
)

X∞ =
{

˙{xh} ∈ X∞ : Mn( ˙{Th}) ˙{xh} −→ ˙{0} as n −→ 0
}

,

and
(

˙{I} − ˙{Th}
)

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0}.

Proof. Let Y =
{

˙{xh} ∈ X∞ : Mn( ˙{Th}) ˙{xh} −→ ˙{0} as n −→ 0
}

. Let ˙{yh} ∈
(

˙{I} − ˙{Th}
)

X∞, then,

as in the proof of Theorem 3.11, ˙{yh} ∈ Y. Let ˙{zh} ∈
(

˙{I} − ˙{Th}
)

X∞, thus, by (ii), there exists a

constant C > 0 such that
∥

∥

∥
Mn( ˙{Th}) ˙{yh}

∥

∥

∥
≤ C

∥

∥

∥

˙{yh}
∥

∥

∥
for every ˙{yh} ∈ Y and each n = 1, 2, . . ..

Now, fix ǫ > 0, then there exists ˙{uh} ∈
(

˙{I} − ˙{Th}
)

X∞ ⊆ Y such that
∥

∥

∥

˙{zh} − ˙{uh}
∥

∥

∥
< ǫ

C
(where

˙{zh} − ˙{uh} = ˙{zh − uh}). Then, we obtain

∥

∥

∥
Mn( ˙{Th}) ˙{zh}

∥

∥

∥
≤

∥

∥

∥
Mn( ˙{Th}) ˙{uh}

∥

∥

∥
+

∥

∥

∥
Mn( ˙{Th})

(

˙{zh} − ˙{uh}
)∥

∥

∥

≤
∥

∥

∥
Mn( ˙{Th}) ˙{uh}

∥

∥

∥
+ C

∥

∥

∥

˙{zh} − ˙{uh}
∥

∥

∥

<
∥

∥

∥
Mn( ˙{Th}) ˙{uh}

∥

∥

∥
+ ǫ.

Since ˙{uh} ∈ Y, then, for n sufficiently large, we have
∥

∥

∥
Mn( ˙{Th}) ˙{zh}

∥

∥

∥
< 2ǫ. Thus,

lim
n−→0

∥

∥

∥
Mn( ˙{Th}) ˙{zh}

∥

∥

∥
= 0.

Hence,
(

˙{I} − ˙{Th}
)

X∞ ⊆ Y. To prove the converse, let ˙{xh} ∈ Y and n ∈ N
∗. Then

˙{xh} − Mn( ˙{Th}) ˙{xh} = ˙{xh} −
1

n

n
∑

k=1

˙{Th}
k ˙{xh}

=
1

n

n
∑

k=1

(

˙{I} − ˙{Th}
k
)

˙{xh}

=
1

n

n
∑

k=1

(

˙{I} − ˙{Th}
) [(

˙{I} + ˙{Th} + . . . + ˙{Th}
k−1

)

˙{xh}
]

,
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thus ˙{xh} − Mn( ˙{Th}) ˙{xh} ∈
(

˙{I} − ˙{Th}
)

X∞. Since, ˙{xh} ∈ Y, by passing to limit as n −→ 0, we

check that ˙{xh} ∈
(

˙{I} − ˙{Th}
)

X∞. The proof of the equality

(

˙{I} − ˙{Th}
)

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0}

is similar to the proof of Theorem 3.11.

�

Corollary 3.14. Let ˙{Th} ∈ B∞. If ˙{Th} is mean ergodic, then

(

˙{I} − ˙{Th}
)

X∞ =
{

˙{xh} ∈ X∞ : Mn( ˙{Th}) ˙{xh} −→ ˙{0} as n −→ 0
}

,

and
(

˙{I} − ˙{Th}
)

X∞ ∩ ker
(

˙{I} − ˙{Th}
)

= ˙{0}.

Proof. It suffices to use Propositions 3.8, 3.9 and Theorem 3.11.

�

Theorem 3.15. Let ˙{Th} ∈ B∞ is mean ergodic. If we denote ˙{Ph} ˙{xh} = limn−→∞ Mn( ˙{Th}) ˙{xh} for
all ˙{xh} ∈ X∞. Then, ˙{Ph} : X∞ −→ X∞ satisfies:

(1.) ˙{Ph}
2

= ˙{Ph} = ˙{Th} ˙{Ph} = ˙{Ph} ˙{Th}, ( ˙{Ph} is a projection);

(2.) ˙{Ph}X∞ = ker
(

˙{I} − ˙{Th}
)

;

(3.) ker
(

˙{Ph}
)

=
(

˙{I} − ˙{Th}
)

X∞ =
(

˙{I} − ˙{Ph}
)

X∞.

Moreover,

X∞ = ker
(

˙{I} − ˙{Th}
)

⊕
(

˙{I} − ˙{Th}
)

X∞.

Proof. (1.) Let ˙{xh} ∈ X∞, then

(

˙{I} − ˙{Th}
)

˙{Ph} ˙{xh} =
(

˙{I} − ˙{Th}
)

lim
n−→∞

Mn( ˙{Th}) ˙{xh}

= lim
n−→∞

1

n

(

˙{Th} − ˙{Th}
n+1

)

˙{xh} = ˙{0}.

Thus, ˙{Ph} ˙{xh} = ˙{Th} ˙{Ph} ˙{xh} and ˙{Ph} = ˙{Th} ˙{Ph}. Hence, ˙{Th}
n ˙{Ph} = ˙{Ph} for every

n = 1, 2, . . .. Therefore, Mn( ˙{Th}) ˙{Ph} = ˙{Ph} for every n = 1, 2, . . .. Then, we have

˙{Ph}
2 ˙{xh} = lim

n−→∞
Mn( ˙{Th}) ˙{Ph} ˙{xh} = lim

n−→∞

˙{Ph} ˙{xh} = ˙{Ph} ˙{xh},

which implies ˙{Ph}
2

= ˙{Ph}. Also,

˙{Ph}
(

˙{I} − ˙{Th}
)

˙{xh} = lim
n−→∞

1

n

(

˙{Th} − ˙{Th}
n+1

)

˙{xh} = ˙{0},

thus, ˙{Ph} = ˙{Ph} ˙{Th}.
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(2.) Let ˙{xh} ∈ ker
(

˙{I} − ˙{Th}
)

, then, it is easy to show that Mn( ˙{Th}) ˙{xh} = ˙{xh}. Thus

˙{Ph} ˙{xh} = limn−→∞ Mn( ˙{Th}) ˙{xh} = ˙{xh}. Hence, ˙{xh} ∈ ˙{Ph}X∞. Conversely, Let ˙{xh} ∈
˙{Ph}X∞. Then there exists ˙{yh} ∈ X∞ such that

˙{xh} = ˙{Ph} ˙{yh} = ˙{Ph}
2 ˙{yh} = ˙{Ph}

(

˙{Ph} ˙{yh}
)

= ˙{Ph} ˙{xh}.

We obtain
˙{Th} ˙{xh} = ˙{Th}

(

˙{Ph} ˙{xh}
)

= ˙{Ph} ˙{xh} = ˙{xh}.

Therefore, ˙{xh} ∈ ker
(

˙{I} − ˙{Th}
)

.

(3.) Let ˙{xh} ∈ ker ˙{Ph}, then
(

˙{I} − ˙{Ph}
)

˙{xh} = ˙{xh} − ˙{Ph} ˙{xh} = ˙{xh}. Thus

˙{xh} ∈
(

˙{I} − ˙{Ph}
)

X∞.

Conversely, let ˙{xh} ∈
(

˙{I} − ˙{Ph}
)

X∞, then there exists ˙{zh} ∈ X∞ such that

˙{xh} =
(

˙{I} − ˙{Ph}
)

˙{zh}.

Thus
˙{Ph} ˙{xh} = ˙{Ph} ˙{zh} − ˙{Ph}

2 ˙{zh} = ˙{Ph} ˙{zh} − ˙{Ph} ˙{zh} = ˙{0}.

Hence, ˙{xh} ∈ ker ˙{Ph}. Therefore, ker ˙{Ph} =
(

˙{I} − ˙{Ph}
)

X∞. Now, we will show that both

are equal to
(

˙{I} − ˙{Th}
)

X∞. Let ˙{xh} ∈
(

˙{I} − ˙{Ph}
)

X∞, then there exists ˙{zh} ∈ X∞ such

that ˙{xh} =
(

˙{I} − ˙{Ph}
)

˙{zh}. We obtain

(

˙{I} − Mn( ˙{Th})
)

˙{zh} =
(

˙{I} − ˙{Th}
)





1

n

n−1
∑

i=0

i
∑

j=0

˙{Th}
j ˙{zh}



 ,

then
(

˙{I} − Mn( ˙{Th})
)

˙{zh} ∈
(

˙{I} − ˙{Th}
)

X∞. We have

˙{xh} =
(

˙{I} − ˙{Ph}
)

˙{zh} = ˙{zh} − lim
n−→∞

Mn( ˙{Th}) ˙{zh}

= lim
n−→∞

(

˙{I} − Mn( ˙{Th})
)

˙{zh} ∈
(

˙{I} − ˙{Th}
)

X∞.

let ˙{xh} ∈
(

˙{I} − ˙{Th}
)

X∞, then there exists ˙{zh} ∈ X∞ such that ˙{xh} =
(

˙{I} − ˙{Th}
)

˙{zh}.

Thus,
˙{Ph} ˙{xh} = ˙{Ph} ˙{zh} − ˙{Th} ˙{Ph} ˙{zh} = ˙{Ph} ˙{zh} − ˙{Ph} ˙{zh} = ˙{0}.

Hence, ˙{xh} ∈ ker ˙{Ph}. Now, let ˙{uh} ∈
(

˙{I} − ˙{Th}
)

X∞, then there exists a sequence

( ˙{vh}n)n ⊆
(

˙{I} − ˙{Th}
)

X∞ such that limn−→∞
˙{vh}n = ˙{uh}. Therefore, by the continuity

of ˙{Ph}, we conclude

˙{Ph} ˙{uh} = ˙{Ph} lim
n−→∞

˙{vh}n = lim
n−→∞

˙{Ph} ˙{vh}n = lim
n−→∞

˙{0} = ˙{0}.

We have ˙{uh} ∈ ker ˙{Ph} and thus the assertion (3.).
�
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Theorem 3.16. Let ˙{Th} ∈ B∞ be a Cesàro bounded linear operator on X∞ which satisfies

limn−→∞
‖ ˙{Th}

n ˙{xh}‖
n

= 0 for all ˙{xh} ∈ X∞. Then ˙{Th} is mean ergodic if and only if

(

˙{I} − ˙{Th}
) (

˙{I} − ˙{Th}
)

X∞ =
(

˙{I} − ˙{Th}
)

X∞. (3.3)

Proof. Assume that ˙{Th} is mean ergodic. Then

X∞ =
{

˙{xh} ∈ X∞ : ˙{Th}( ˙{xh}) = ˙{xh}
}

⊕
(

˙{I} − ˙{Th}
)

X∞.

Thus, the condition (3.3) holds.

Conversely, suppose that ˙{Th} is Cesàro bounded on X∞ and limn−→∞
‖ ˙{Th}

n ˙{xh}‖
n

= 0 for all ˙{xh} ∈ X∞.

Then,
{

Mn( ˙{Th}
}

converges strongly on ker
(

˙{I} − ˙{Th}
)

⊕
(

˙{I} − ˙{Th}
)

X∞. Then, the condition

(

˙{I} − ˙{Th}
) (

˙{I} − ˙{Th}
)

X∞ =
(

˙{I} − ˙{Th}
)

X∞,

implies that, for ˙{yh} ∈ X∞ there exists ˙{zh} ∈
(

˙{I} − ˙{Th}
)

X∞ such that

(

˙{I} − ˙{Th}
)

˙{yh} =
(

˙{I} − ˙{Th}
)

˙{zh}.

Then
˙{uh} = ˙{yh} − ˙{zh} ∈ ker

(

˙{I} − ˙{Th}
)

,

thus
˙{yh} = ˙{uh} + ˙{zh} ∈ ker

(

˙{I} − ˙{Th}
)

⊕
(

˙{I} − ˙{Th}
)

X∞.

Hence,

X∞ = ker
(

˙{I} − ˙{Th}
)

⊕
(

˙{I} − ˙{Th}
)

X∞.

Therefore,
{

Mn( ˙{Th}
}

converges strongly on X∞.

�
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