(3s.) **v. 2025 (43)** : 1–5. ISSN-0037-8712 doi:10.5269/bspm.63567

A note on (I, J)-continuous functions

Ennis Rosas, Carlos Carpintero* and José Sanabria

ABSTRACT: The purpose of the present paper is to introduce, study and characterize the (I, J)-continuous functions. Also, we investigate their relationships with other types of continuous functions.

Key Words: I-open set, $\theta_{(I,J)}$ -continuous function, (I,J)-continuous function

Contents

1	Introduction	1
2	Preliminaries	1
3	(I,J)-continuous functions	2
4	Relations between (I,J) continuity with other type of functions	3

1. Introduction

It is well known today that the notion of continuous function is playing a very important role in general topology. Generalizations of the notions of continuity have been extensively studied on functions $f:(X,\tau)\to (Y,\sigma)$. Recently using the notion of topological ideal, different types of continuous functions have been introduced and studied. The notion of ideal topological spaces has been introduced and studied by Kuratowski [5] and the local function of a subset A of a topological space (X, τ) was introduced by Vaidyanathaswamy [9] as follows: given a topological space (X,τ) with an ideal I on X and P(X) the set of all subsets of X, a set operator $(.)^*: P(X) \to P(X)$, defined as for each $A \subseteq X$, $A^*(\tau, I) = \{x \in A : x \in$ $X / U \cap A \notin I$ for every $U \in \tau_x$, where $\tau_x = \{U \in \tau : x \in U\}$ is called the local function of A with respect to τ and I. The Kuratowski closure operator $cl^*(,)$ for a topology, $\tau^*(\tau,I)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\tau, I)$. We will denote $A^*(\tau, I)$ by A^* and $\tau^*(\tau, I)$ by τ^* . Note that when $I = \{\emptyset\}$, (respectively I = P(X)) $A^* = cl(A)$, (respectively $A^* = \emptyset$). In 1961, Levine [4] introduced and studied the weakly J- continuous. In 1990, Jankovic and Hamlett [3] introduced the notion of I-open set in a topological space (X,τ) with an ideal I on X. In 2005, Yüksel et al. [10] introduced, studied and investigated the $\theta_{(I,J)}$ -continuous functions. In 2012, Al-Omari and Noiri [1] investigated some properties of $\theta_{(I,J)}$ -continuous functions in ideal topological spaces and its relations with another functions. In this article, we continue with the study of the (I, J)-continuous functions on ideal topological spaces. Additionally, the relationships with others related functions are discussed.

2. Preliminaries

Throughout this paper, (X,τ) and (Y,σ) (or simply X and Y) are topological spaces without separation axioms are assumed, unless explicitly stated. If I is and ideal on X, (X,τ,I) means an ideal topological space. For a subset A of (X,τ) , $\operatorname{Cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A with respect to τ and the interior of A with respect to τ , respectively, for any subset A of (X,τ) . A subset A of (X,τ,I) is an I-open [3], if $A \subseteq \operatorname{int}(A^*)$. A subset A of (X,τ,I) is called I-closed if its complement of an I-open set. In the case that $I = \{\emptyset\}$, (respectively, I = P(X)) the I-open sets form the collection of all preopen sets of X (respectively, the only I-open set is \emptyset). The notion of I-closure and the I-interior of a subset A of an ideal topological space, can be defined in the same form as $\operatorname{Cl}(A)$ and $\operatorname{int}(A)$, respectively, will be denoted by I $\operatorname{Cl}(A)$ and I $\operatorname{Int}(A)$, respectively. The collection of all I-open (resp. I-closed) subsets of

Submitted May 15, 2022. Published April 14, 2025 2010 Mathematics Subject Classification: 54C05, 54C08, 54C60

^{*} Corresponding author

 (X, τ, I) is denoted by IO(X) (resp. IC(X)). We set $IO(X, x) = \{A : A \in IO(X) \text{ and } x \in A\}$. Given (X, τ, I) , if the ideal is τ -acotado, that is $\tau \cap I = \emptyset$, then $X^* = X$. Otherwise, $X^* \subseteq X$.

Definition 2.1 A function $f:(X,\tau)\to (Y,\sigma)$ is said to be θ -continuous [2] if for each $x\in X$ and each open set V in Y, such that $f(x)\in V$, there exists an open set U, such that $x\in U$ and $f(cl(U))\subseteq cl(V)$.

Definition 2.2 A function $f:(X,\tau)\to (Y,\sigma)$ is said to be precontinuous [6] (resp. preirresolute [8]) if $f^{-1}(G)$ is preopen in X for every open (resp. preopen) set G of Y.

Definition 2.3 A function $f:(X,\tau)\to (Y,\sigma)$ is said to be p-continuous [7] if $f^{-1}(G)$ is open in X for every preopen set G of Y.

Definition 2.4 A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be weakly J-continuous [4] (resp. $\theta_{(I,J)}$ -continuous [10]) if for each $x\in X$ and each open set V in Y, such that $f(x)\in V$, there exists an open set U, such that $x\in U$ and $f(U)\subseteq cl^*(V)$ (resp. $f(cl^*(U))\subseteq cl^*(V)$).

The following was proved in [1].

Theorem 2.1 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$ be a function. The following statements hold:

- 1. If f is continuous then f is weakly J-continuous;
- 2. If f is $\theta_{(I,J)}$ -continuous then f is weakly J-continuous.

Remark 2.1 None of the implications of Theorem 2.1 is reversible. Furthermore, the notions of continuous function and $\theta_{(I,J)}$ -continuous function are independent.

3. (I, J)-continuous functions

In this section, we define and characterize the (I, J)-continuous functions for any ideal topological spaces (X, τ, I) and (Y, σ, J) .

Definition 3.1 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces. A function $f: (X, \tau, I) \to (Y, \sigma, J)$ is said to be (I, J)-continuous if for each $x \in X$ and each J-open set V such that $f(x) \in V$, there exists an I-open set U such that $x \in U$ and $f(U) \subseteq V$.

Theorem 3.1 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$, be a function. The following statements are equivalent:

- 1. f is (I, J)-continuous;
- 2. $f^{-1}(V)$ is I-open in X for each J-open set V in Y:
- 3. $f^{-1}(K)$ is I-closed in X for each J-closed set K in Y;
- 4. $f(I\operatorname{Cl}(A)) \subseteq J\operatorname{Cl}(f(A))$ for every subset A of X;
- 5. $I \operatorname{Cl}(f^{-1}(B)) \subseteq f^{-1}(J \operatorname{Cl}(B))$ for every subset B of Y.

Proof: (1) \Longrightarrow (2). Let V be any J-open set in Y and x be any point in $f^{-1}(V)$. From (1), there exists an I-open U_x containing x such that $U_x \subseteq f^{-1}(V)$. It follows that $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. Since the union of I-open sets is I-open, $f^{-1}(V)$ is I-open in X.

- $(2) \Rightarrow (3)$ If K is a J-closed set in Y, then $f^{-1}(Y \setminus K)$ is an I-open set in X. But $f^{-1}(Y \setminus K) = X \setminus f^{-1}(K)$, then $f^{-1}(K)$ is J-closed in X.
- $(3) \Rightarrow (4)$ Let K be any J-closed set in Y containing f(A). It follows that $A \subseteq f^{-1}(K)$. By (3), $f^{-1}(K)$ is a I-closed set in X containing A. In consequence, $I \operatorname{Cl}(A) \subseteq f^{-1}(K)$, and then $f(I \operatorname{Cl}(A)) \subseteq K$. Since this is true for all J-closed set K in Y containing f(A), it follows that $f(I \operatorname{Cl}(A)) \subseteq J \operatorname{Cl}(f(A))$.

 $(4) \Rightarrow (5)$ Let B any subset of Y. Taking $A = f^{-1}(B)$ and applying (4), we have $f(I\operatorname{Cl}(f^{-1}(B))) \subseteq J\operatorname{Cl}(f(f^{-1}(B))) \subseteq J\operatorname{Cl}(B)$. Therefore, $I\operatorname{Cl}(f^{-1}(B)) \subseteq f^{-1}(J\operatorname{Cl}(B))$.

 $(5) \Rightarrow (1)$ Suppose that $x \in X$ and V is a J-open set in Y containing f(x). Then $V \cap (Y - V) = \emptyset$ and $f(x) \notin J\operatorname{Cl}(Y - V)$. Thus $x \notin f^{-1}(J\operatorname{Cl}(Y - V))$ and by (5), we have $x \notin I\operatorname{Cl}(f^{-1}(Y - V))$, hence there exists an I-open set U in X such that $x \in U$ and $U \cap f^{-1}(Y - V) = \emptyset$, which implies that $f(U) \cap (Y - V) = \emptyset$. Therefore, $f(U) \subseteq V$ and so, f is (I, J)-continuous.

The following two example shows that the notions of (I, J)-continuous function and continuous function, are independent.

Example 3.1 Let $X = Y = \{a, b, c\}$ with two topologies $\tau = \{\emptyset, X, \{b\}\}, \sigma = \{\emptyset, Y, \{a\}\}\}$ and two ideals $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, J = \{\emptyset, \{b\}\}\}$. Define a function $f : (X, \tau, I) \to (Y, \sigma, J)$ as follows: f(a) = b, f(b) = a and f(c) = c. It is easy to see that the collection of all I-open sets is $\{\emptyset\}$ and the collection of all J-open sets is $\{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}\}\}$. In consequence, f is continuous but is not (I, J)-continuous.

Example 3.2 Let $X = Y = \{a, b, c\}$ with two topologies $\tau = \{\emptyset, X, \{a, c\}\}, \sigma = \{\emptyset, Y, \{b\}\}$ and two ideals $I = \{\emptyset\}, J = \{\emptyset, \{a\}\}\}$. Define a function $f: (X, \tau, I) \to (Y, \sigma, J)$ as follows: f(a) = b, f(b) = a and f(c) = c. It is easy to see that the collection of all I-open sets is $\{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and the collection of all J-open sets is $\{\emptyset, Y, \{b\}, \{a, b\}, \{b, c\}\}\}$. In consequence, f is (I, J)-continuous but is not continuous.

The following two example shows that the notions of (I, J)-continuous function and $\theta_{(I, J)}$ -continuous function, are independent.

Example 3.3 Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{b,c\}\}$ and $I = \{\emptyset,\{a\}\}$, $Y = \{b,c\}$, $\sigma = \{\emptyset,Y,\{c\}\}$ with $J = \{\emptyset,\{b\}\}$. Define a function $f:(X,\tau,I) \to (Y,\sigma,J)$ as follows: f(a) = c, f(b) = b and f(c) = b. It is easy to see that the collection of all I-open sets is $\{\emptyset,X,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}\}$ and the collection of all J-open sets is $\{\emptyset,\{c\},\{b,c\},Y\}$. Observe that in (X,τ,I) , we have $Cl^*(X) = Cl^*(\{b\}) = Cl^*(\{c\}) = Cl^*(\{a,b\}) = Cl^*(\{a,c\}) = Cl^*(\{b,c\}) = X$, $Cl^*(\emptyset) = \emptyset$ and $Cl^*(\{a\}) = \{a\}$. In the same form in (Y,σ,J) , we have $Cl^*(Y) = Cl^*(\{c\}) = Cl^*(\{a,b\}) = Cl^*(\{a,c\}) = Cl^*(\{b,c\}) = Y$, $Cl^*(\emptyset) = \emptyset$, $Cl^*(\{a\}) = \{a,b\}$ and $Cl^*(\{b\}) = \{b\}$. Hence, we conclude that f is not (I,J)-continuous but is $\theta_{(I,J)}$ -continuous and weakly J-continuous.

Example 3.4 Let $X = Y = \{a, b, c\}$ with two topologies $\tau = \{\emptyset, X, \{b\}\} \ \sigma = \{\emptyset, Y, \{a\}\} \}$ and two ideals $I = \{\emptyset, \{a\}\}, \ J = \{\emptyset, \{b\}\} \}$. Define a function $f: (X, \tau, I) \to (Y, \sigma, J)$ as follows: f(x) = x, for each $x \in X$. It is easy to see that the collection of all I-open sets is $\{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\} \}$ and the collection of all J-open sets is $\{\emptyset, Y\}$. Observe that in $(X, \tau, I), Cl^*(X) = Cl^*(\{b\}) = Cl^*(\{a, b\}) = Cl^*(\{b, c\}) = X$, $Cl^*(\emptyset) = \emptyset$ and $Cl^*(\{a\}) = \{a\}, Cl^*(\{c\}) = \{a, c\} = Cl^*(\{a, c\})$. In the same form in $(Y, \sigma, J), Cl^*(Y) = Cl^*(\{a, b\}) = Cl^*(\{b, c\}) = Y$, $Cl^*(\{b\}) = Cl^*(\{c\}) = Cl^*(\{b, c\}) = \{b, c\}, Cl^*(\emptyset) = \emptyset$, and $Cl^*(\{a\}) = \{a\}$. Hence, we conclude that f is (I, J)-continuous but is neither $\theta_{(I, J)}$ -continuous nor weakly J-continuous.

4. Relations between (I,J) continuity with other type of functions

In this section, we consider a function $f:(X,\tau,I)\to (Y,\sigma,J)$, where (X,τ,I) and (Y,σ,J) are two ideal topological spaces. Our purpose is to find the relationships between continuity, $\theta_{(I,J)}$ -continuity and (I,J)-continuity, when $I=J=\{\emptyset\}$ or I=P(X) and J=P(Y).

Example 4.1 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$, $\sigma = \{X, \emptyset\}$ and $I = J = \{\emptyset\}$. Define $f: (X, \tau, I) \to (Y, \sigma, J)$ as the identity function. It is easy to see that f is continuous but is not (I, J)-continuous.

Example 4.2 Let $X = Y = \{a, b, c, d\}$, $\tau = \sigma = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ and $I = J = \{\emptyset\}$. Define $f: (X, \tau, I) \to (Y, \sigma, J)$ as follows: f(a) = a, f(b) = d, f(c) = c and f(d) = b. It is easy to see that the collection of all preopen sets is $\{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Therefore, f is (I, J)-continuous but is neither continuous nor $\theta_{(I, J)}$ -continuous.

Remark 4.1 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$ a function. If $I = J = \{\emptyset\}$, then:

- 1. f is $\theta_{(I,J)}$ -continuous if and only if it is θ -continuous.
- 2. f is (I, J)-continuous if and only if it is preirresolute.
- 3. From Examples 4.1 and 4.2, we see that if $I = J = \{\emptyset\}$, then the notions of continuous function and (I, J)-continuous function are independent.

Remark 4.2 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$ a function.

- 1. If I = P(X) and J = P(Y), then f is $\theta_{(I,J)}$ -continuous if and only if it is continuous.
- 2. If J = P(Y), then f is (I, J)-continuous.

Theorem 4.1 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$ a function.

- 1. If $I = \{\emptyset\}$ and f is preirresolute, then f is (I, J)-continuous.
- 2. If $J = \{\emptyset\}$ and f is (I, J)-continuous, then f is preirresolute.

Proof: (1) Since $JO(Y) \subseteq PO(Y)$, the proof follows from the fact that IO(X) = PO(X) when $I = \{\emptyset\}$. (2) Since $IO(X) \subseteq PO(X)$, the proof follows from the fact that JO(X) = PO(Y) when $J = \{\emptyset\}$. \square

Theorem 4.2 Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces and $f: (X, \tau, I) \to (Y, \sigma, J)$ a function.

- 1. If $I = \{\emptyset\}$, J is σ -bounded and f is (I, J)-continuous, then f is precontinuous.
- 2. If I is τ -bounded, $J = \{\emptyset\}$ and f is p-continuous, then f is (I, J)-continuous.

Proof: (1) Follows from the fact that if J is σ -bounded, then $\sigma \subseteq JO(Y)$.

(2) Follows from the fact that if I is τ -bounded, then $\tau \subseteq IO(Y)$.

References

- 1. Al-Omari, A.; Noiri, T. On $\theta_{(I,J)}$ -continuous functions. Rend. Istit. Mat. Univ. Trieste 44, (2012), 399-411.
- 2. Fomin, S. Extension of topological spaces. Ann. of Math 44, (1943), 471-480.
- 3. Jankovic, D.S.; Hamlett, T. R. New topologies from old via ideals. Amer. Math. Monthly 97(4), (1990), 295-310.
- 4. Levine, N. A decomposition of continuity in topological spaces. Amer. Math. Monthly 68, (1961), 44-46.
- 5. Kuratowski, K. Topology. Academic Press, New York, USA, (1966).
- 6. Mashhour, A. S; Abd El-Monsef, M. E; El-Deep, S. N. On precontinuous and weak precontinuous mappings. Proced. Phys. Soc. Egyp 53, (1982), 47-53.
- 7. Navalagi, G. B. Completely preirresolute functions and completely gp-irresolute functions. Int. J. Math. Comput. Appl 3(1-2), (2011), 55-65.
- 8. Reilly, I. L; Vamanmurthy, M. K. On α-continuity in topological spaces. Acta Math. Hung 45(1-2), (1985), 27–32.
- 9. Vaidyanathaswamy, R. The localisation theory in set-topology. Proc. Indian Acad. Sci 20, (1944), 51-61.
- 10. Yüksel, S; Acikgöz, A; Noiri, T. On δ -I-Continuous functions. Turkish J. Math 29, (2005), 39-51.

Ennis Rosas,

 $Universidad\ de\ la\ Costa,\ Departamento\ de\ Ciencias\ Naturales\ y\ Exactas$

 $Barranquilla,\ Colombia.$

 $E ext{-}mail\ address: ennisrafael@gmail.com}$

and

Carlos Carpintero,
Corporación Universitaria del Caribe-CECAR
Departamento de Ciencias Básicas
Sincelejo, Colombia.
E-mail address: carpintero.carlos@gmail.com

and

José Sanabria,
Departamento de Matemáticas
Facultad de Educación y Ciencias
Universidad de Sucre
Sincelejo, Colombia.

 $E ext{-}mail\ address: } {\it jesanabri@gmail.com}$