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Automorphisms of Projective Manifolds

Tsemo Aristide

abstract: Let (M, P ∇M ) be a compact projective manifold and Aut(M, P ∇M ) its group of automorphisms.
The purpose of this paper is to study the topological properties of (M, P ∇M ) if Aut(M, P ∇M )) is not discrete
by applying the results of [13] and the Benzekri’s functor which associates to a projective manifold a radiant
affine manifold. This enables us to show that the orbits of the connected component of Aut(M, P ∇M ) are
immersed projective submanifolds. We also classify 3-dimensional compact projective manifolds such that
dim(Aut(M, P ∇M )) ≥ 2.
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1. Introduction

The purpose of this paper is to study the group of automorphisms of projective manifolds. Firstly
we recall the definition of (X, G) manifolds, their group of automorphisms and morphisms between
(X, G)-structures. We applied the results described in the general framework of (X, G)-manifolds to
the category of affine manifolds and projective manifolds. Benzekri has constructed a functor which
associates to a projective manifold (M, P ∇M ) a radiant affine manifold (B(M), ∇B(M)) whose underlying
topological space is M × S1. It enables us to show that there exists a surjective morphism between the
connected component Aut(B(M), ∇B(M))0 of the group of affine automorphisms of (B(M), ∇B(M)) and
the connected component Aut(M, P ∇M )0 of the group of projective automorphisms of (M, P ∇M ).

Let (M, ∇M ) be a compact affine manifold, in [13], I have studied the relations between Aut(M, ∇M )
and the topology of M . This enables us to show that the orbits of Aut(M, P ∇M )0 are projective immersed
submanifolds. In the last section, we study the automorphisms group of 2 and 3 dimensional projective
manifolds. We remark that a 2-dimensional projective manifold whose group of automorphisms is not
discrete is homeomorphic to the sphere, the 2-dimensional projective space or the two dimensional torus.
Finally we show that a 3-dimensional projective manifold (M, P ∇M ) whose developing map is injective
and such that dim(Aut(M, P ∇M ) ≥ 2 is homeomorphic to a spherical manifold, S2 ×S1, or a finite cover
of M is the total space of a torus bundle.

Remark that (X, G) manifolds play an important role in low dimensional topology: seven of the eight
geometry of Thurston are examples of projective geometry (see Cooper and Goldman [8] p. 1220). In
[12] p.17, Sullivan and Thurston note that the existence of a (X, G)-structure on every 3-manifold implies
the Poincare conjecture.
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2. (X, G)-manifolds

A (X, G) model is a finite dimensional differentiable manifold X , endowed with an effective and
transitive action of a Lie group G which satisfies the unique extension property. This is equivalent to
saying that: two elements g, g′ of G are equal if and only if their respective restrictions to a non empty
open subset of X are equal.

A (X, G) manifold (M, X, G) is a differentiable manifold M , endowed with an open covering (Ui)i∈I

such that for every i ∈ I, there exists a differentiable map fi : Ui → X which is a diffeomorphism onto
its image and fi ◦ f−1

j coincides with the restriction of an element gij of G to fj(Ui ∩ Uj). The map fi is
called an (X, G) chart.

A (X, G) structure defined on M can be lifted to the universal cover M̃ of M . This structure is
defined by a local diffeomorphism DM : M̃ → X . This implies that a (X, G) chart of this structure is an
open subset U of M̃ such that the restriction of DM to U is a diffeomorphism onto its image.

Let (X, G) and (X ′, G′) be two models, φ : X → X ′ a differentiable map and Φ : G → G′ a morphism
of groups such that for every g ∈ G, the following diagram is commutative:

X
g

−→ X

φ ↓ ↓ φ

X ′ Φ(g)
−→ X ′

Let (M, X, G) (resp. (M ′, X ′, G′)) be a (X, G) manifold (resp. a (X ′, G′) manifold). A (Φ, φ)-
morphism f : (M, X, G) → (M ′, X ′, G′) is a differentiable map: f : M → M ′ such that for every chart
(Ui, fi) of M such that f(Ui) is contained in the chart (Vj , f ′

j) of M ′, there exists an element g ∈ G such

that the restrictions of f ′
j ◦ f ◦ f−1

i and Φ(g) ◦ φ to fi(Ui) coincide.

We will denote by Aut(X, M, G) the group of (IdG, IdX)-automorphisms of (M, X, G) and by
Aut(M, X, G)0 its connected component. It is a Lie group endowed with the compact open topology. For
every element g ∈ Aut(M̃, X, G), the developing map defines a representation HM : Aut(M̃, X, G) → G

such that the following diagram is commutative:

M̃
g

−→ M̃

DM ↓ ↓ DM

X
HM (g)
−→ X

Remark that the group of Deck transformations that we identify to the fundamental group π1(M), of
M , is a subgroup of Aut(M̃, X, G). The restriction hM of HM to the fundamental group π1(M), of M is
called the holonomy representation of the (X, G) manifold (M, X, G).

The pullback pM (f) of an element f of Aut(M, X, G), by the universal covering map, pM : M̃ → M

is an element of Aut(M̃, X, G) which belongs to the normalizer N(π1(M)) of π1(M) in Aut(M̃, X, G).
Conversely, every element g of N(π1(M)) induces an element AM (g) of Aut(M, X, G) such that the
following diagram is commutative:

M̃
g

−→ M̃

pM ↓ ↓ pM

M
AM (g)
−→ M.

The kernel of the morphism AM : N(π1(M)) → Aut(M, X, G) is π1(M) and AM is a local diffeomor-
phim. We will denote by N(π1(M))0 the connected component of N(π1(M)), it is also the connected
component of the commutator of π1(M) in Aut(M̃, X, G). Since AM is locally invertible, it induces
an isomorphism between the Lie algebra n(π1(M)) of N(π1(M)) and the Lie algebra aut(M, X, G) of
Aut(M, X, G). If (M, X, G) is a compact (X, G) manifold, aut(M, X, G) is isomorphic to the subspace
of elements of G, the Lie algebra of G, which are invariant by hM (π1(M)).
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3. Affine and projective structures

Let Rn be the n-dimensional real vector space. We denote by Gl(n,R) the group of linear automor-
phisms of Rn and by Aff(n,R) its group of affine transformations. If we fix an origin 0 of Rn, for every
element f ∈ Aff(n,R), we can write f = (L(f), af) where L(f) is an element of Gl(Rn) and af = f(0).
The couple (Rn, Aff(n,R)) is a model. A (Rn, Aff(n,R)) manifold is also called an affine manifold.
Equivalently, an (Rn, Aff(n,R)) manifold is a n-dimensional differentiable manifold M endowed with a
connection ∇M whose curvature and torsion tensors vanish identically.

Remark that the linear part L(hM ) of the holonomy representation hM of an affine manifold (M, ∇M )
is the holonomy of the connection ∇M . We say that the n-dimensional affine manifold (M, ∇M ) is radiant
if its holonomy hM fixes an element of Rn, this is equivalent to saying that hM and L(hM ) are conjugated
by a translation.

The n-dimensional real projective space RP n is the quotient of Rn+1 −{0} by the equivalence relation
defined by x ≃ y if and only there exists λ ∈ R such that x = λy. If x is an element of Rn+1 − {0},
we will denote by [x]RP n its equivalent class. The group Gl(n + 1,R) acts transitively on RP n by the
action defined by g.[x]RP n = [g.x]RP n the kernel of this action is the group Hn+1 of homothetic maps.
We denote by P Gl(n + 1,R) the quotient Gl(n + 1,R) by Hn. The couple (RP n, P Gl(n + 1,R)) is a
model. A (RP n, P Gl(n + 1,R)) is also called a projective manifold. Equivalently, a projective manifold
can be defined by a differentiable manifold M endowed with a projectively flat connection P ∇M . We
will denote it by (M, P ∇M ).

The n-dimensional sphere Sn is the quotient of Rn+1 − {0} by the equivalence relation defined by
x ≃ y if and only if there exists λ > 0 such that x = λy. Let x be an element of Rn+1 − {0}, we will
denote by [x]Sn its equivalence class for this relation. Remark that if 〈, 〉 is an Euclidean metric defined
on Rn+1, there exists a bijection between the unit sphere Sn

〈,〉 = {x : x ∈ Rn+1, 〈x, x〉 = 1} and Sn defined
by the restriction of the equivalence relation to Sn

〈,〉.

There exists a map DSn : Sn → RP n such that for every element x of Rn+1−{0}, [x]RP n = DSn([x]Sn ).
The map DSn is a covering, thus is the developing map of a projectively flat connection P ∇Sn defined
on Sn.

A p-dimensional projective submanifold (F, P ∇F ) of the projective manifold (M, P ∇M ) is a p-
dimensional submanifold F of M endowed with a structure of a projective manifold, such that the
canonical embedding iF : (F, P ∇F ) → (M, P ∇M ) is a morphism of projective manifolds.

Let F̂ be the universal cover of F , we can lift iF to a projective map îF : F̂ → M̂ . The image of
DM ◦ îF is contained in a p-dimensional projective subspace UF of RP n. The map DM ◦ îF : F̂ → UF is a
developing map of F . There exists a canonical morphism πF : π1(F ) → π1(M) induced by iF . Let γ be
an element of π1(F ), the holonomy hF (γ) is the restriction of hM (πF (γ)) to UF . If there is no confusion,
we are going to denote hM (πF (γ)) by hM (γ).

Proposition 3.1. The group of automorphisms of the n-dimensional projective manifold Sn is isomorphic

to Sl(n + 1,R), the group of invertible (n + 1) × (n + 1) matrices such that for every element A ∈
Sl(n + 1,R), |det(A)| = 1.

Proof. Let g be an element of Sl(n+1,R). For every [x]Sn ∈ Sn, we write ug(x) = [g(x)]Sn . Let [g] be the
image of g by the quotient map Sl(n+1,R) → P Gl(n+1,R), we have [g]◦DSn = DSn ◦ug. This implies
that ug is an element of Aut(Sn, P ∇Sn). Suppose that ug = IdSn , it implies that for every [x] ∈ Sn,
g(x) = λ(x)x, λ(x) > 0, we deduce that g(x) = λIdRn , λ > 0, and λn+1 = 1 since g ∈ Sl(n + 1,R).
This implies that λ = 1. We deduce that u : Sl(n + 1,R) → Aut(Sn, P ∇Sn) defined by u(g) = ug is
injective. Let f be an element of Aut(Sn, P ∇Sn), there exists an element [g] ∈ P Gl(n + 1,R) such that
[g] ◦ DSn = DSn ◦ f . Consider an element g ∈ Sl(n + 1,R) whose image by the quotient map is [g],
f = ug. This implies that u is an isomorphism. �

The Benzecri correspondence.
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Consider the embedding iG
n : Gl(n,R) → Gl(n + 1,R) defined by iG

n (A) =

(

A 0
0 1

)

and the open embedding in : Rn → RP n defined by in(x1, ..., xn) = [x1, ..., xn, 1]. For every elements
x ∈ Rn and g ∈ Gl(n,R), we have in(g(x)) = iG

n (g)(in(x)). We deduce that for every affine manifold
(M, ∇M ) whose developing map is DM , there exists a projective structure defined on M whose developing
map is in ◦ DM .

Benzecri [4] p.241-242 has defined a functor between the category of projective manifolds of dimension
n and the category of radiant affine manifolds of dimension n + 1 which can be described as follows:

Firstly, we remark that since the universal cover M̃ of the projective manifold M is simply connected
and DSn : Sn → PRn is a covering map, the theorem 4.1 of Bredon [5] p.143 implies that the development
map DM : M̃ → PRn, can be lifted to a local diffeomorphism D′

M : M̃ → Sn which is a projective
morphism. Let N(π1(M)) be the normalizer of π1(M) in Aut(M̃, P ∇M̃ ), for every g ∈ N(π1(M)), there
exists H ′

M (g) ∈ Aut(Sn, P ∇Sn) such that the following diagram is commutative:

M̃
g

−→ M̃

D′
M ↓ ↓ D′

M

Sn H′

M
(g)

−→ Sn.

We will denote by h′
M the restriction of H ′

M to π1(M).

There exists a local diffeomorphism DM̃×S1 : M̃ × R∗
+ → Rn+1 − {0} defined by DM̃×S1 (x, t) =

tD′
M (x), which is the developing map of a radiant structure defined on M × S1 whose holonomy rep-

resentation hM×S1 : π1(M × S1) → Gl(n + 1,R) is defined by hM×S1(γ, n) = 2nh′
M (γ). This radiant

affine manifold M × S1 is the construction of Benzecri, we will often denote this affine structure by
(B(M), ∇B(M)) and by pB(M) : M × S1 → M the projection on the first factor.

Let f : (M, P ∇M ) → (N, P ∇N ) be a morphism between n-dimensional projective manifolds; f can
lifted to the projective the morphism f̃ : M̃ → Ñ . We deduce the existence of a morphism of affine
manifolds f ′ : M̃ × R∗

+ → Ñ × R∗
+ defined by f ′(x, t) = (f̃ , t). The morphism f ′ is equivariant with

respect to the action of π1(B(M)) on M̃ × R∗
+ and π1(B(N)) on Ñ × R∗

+, and covers a morphism
b(f) : B(M) → B(N).

Let (N, ∇N ) be a n-dimensional radiant affine manifold. We suppose that the holonomy of N fixes
the origin of Rn. The vector field defined on Rn by XRn

R (x) = x is invariant by the holonomy. Its pullback

by the developing map is a vector field XÑ
R of Ñ invariant by π1(N). We deduce that XÑ

R is the pullback
of a vector field XN

R of N called the radiant vector field of N .

Proposition 3.2. Let (M, P ∇M ) be a compact projective manifold. There exists a surjective mor-

phism of groups between the connected component of Aut(B(M), ∇B(M)) and the connected component

of Aut(M, P ∇M ).

Proof. Let f be an element of Aut(B(M), ∇B(M))0, the connected component of Aut(B(M), ∇B(M)).

Consider an element f̃ of Aut(M̃ × R∗
+)0 over f . For every x̃ ∈ M̃ and t ∈ R∗

+, we can write f̃(x̃, t) =

(g̃(x̃, t), h(x̃, t)). The flow of XRn+1

R is in the center of Gl(n + 1,R), we deduce that f̃ commutes with the

flow X
B̃(M)
R , g(x̃, t) does not depend of t and h(x̃, t) = th(x̃, 1).

Let γ be an element of π1(M), since (γ, 2).(x̃, t) = (γ(x̃), 2t) is an element of π1(B(M)) and f̃ is
an element of N(π1(B(M)))0, we deduce that (γ, 2) commutes with f̃ and g̃ commute with γ. This
implies that there exists an element g of Aut(M, P ∇M ) whose lifts is g̃. Remark that since f̃ is an affine
transformation, h(x, 1) is a constant. The correspondence P : Aut(B(M), ∇B(M))0 → Aut(M, P ∇M )0

defined by P (f) = g is well defined and is surjective morphism of groups since for every element f ∈
Aut(M, P ∇M )0, P (b(f)) = f . �
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Let (M, P ∇M ) be a projective manifold M , the orbits of the radiant flow φ
B(M)
t of X

B(M)
R are

compact. The images of the elements of φ
B(M)
t by P are the identity on (M, P ∇M ). This implies that

dim(Aut(M, P ∇M )) + 1 ≤ dim(Aut(B(M), ∇B(M)))). We deduce that if (M, P ∇M ) is a projective
manifold, such that Aut(M, P ∇M ) is not discrete, the dimension of Aut(B(M), ∇B(M)) is superior or
equal to 2.

4. Automorphisms of projective manifolds and automorphisms of radiant affine manifolds

Let (N, ∇N ) be an affine manifold. In [13], I have shown that aut(N, ∇N ), the Lie algebra of
Aut(N, ∇N ) is endowed with an associative product defined by X.Y = ∇M XY . We deduce that ∇B(M)

defines on aut(B(M), ∇B(M)) an associative structure which can be pulled back to n(π1(B(M)). It results
that the Lie algebra HB(M)(n(B(M), ∇B(M))) of the image of N(π1(B(M))) by HB(M) is stable by the
canonical product of matrices which is the image of the associative product of n(π1(B(M))) by HB(M).
Remark that HB(M)(n(B(M), ∇B(M))) is isomorphic to n(B(M), ∇B(M)). The theorem 23 of chap. III
of [1] implies that we can write: HB(M)(n(B(M), ∇B(M))) = SM ⊕ NM where SM is a semi-simple
associative algebra and NM a nilpotent associative algebra.

In [14], by using this associative product, I have shown that the orbits of the canonical action of
Aff(N, ∇N )0 on N are immersed affine submanifolds of (N, ∇N ) and are the leaves of a (singular)
foliation. This leads to the following result:

Proposition 4.1. Let (M, P ∇M ) be a projective manifold. The orbits of the action of Aut(M, P ∇M )0

on M are immersed projective submanifolds and are the leaves of a singular foliation.

Proof. The orbits of Aut(B(M), ∇B(M))0 are immersed affine submanifolds of B(M). The proposition
3.2 shows that there exists a surjective map P : Aut(B(M), ∇B(M))0 → Aut(M, P ∇M )0 such that, for
every g ∈ Aut(B(M), ∇B(M))0 and x ∈ B(M), pB(M)(g(x)) = P (g)(pB(x)). This implies that the orbits
of Aut(M, P ∇M )0 are the images of the orbits of Aut(B(M), ∇B(M))0 by the quotient map B(M) → M .
�

Theorem 4.2. Let (M, P ∇M ) be a compact oriented projective manifold of dimension superior or equal

to 2. Suppose that HM (N(π1(M))) acts transitively on RP n, then (M, P ∇M ) is isomorphic to a finite

quotient of KP m by a subgroup of K where K is the field of real numbers, complex numbers, quaternions

or octonions. The action of π1(M) on KP n is induced by its action on Km+1 by homothetic maps.

Proof. The fact that HM (N(π1(M))) acts transitively on RP n implies that H ′
M (N(π1(M))) acts transi-

tively on Sn. The theorem of Montgomery Zipplin [11] p.226 implies that a connected compact subgroup
K ′ of H ′

M (N(π1(M))) acts transitively on Sn. The theorem I p. 456 of Montgomery and Samelson [10]
implies that a connected compact simple subgroup C′ of K ′ acts transitively on Sn. The Lie algebra of
the connected component C of H ′−1

M (C′) is isomorphic to the Lie algebra of C′ since the kernel of H ′
M

is discrete. This implies that C is compact. Remark that the orbits of the action of C on M̃ are open.
We deduce that C acts transitively on M̃ and M̃ is compact. This implies that D′

M : M̃ → Sn is a
covering since it is a local diffeomorphism defined between compact manifolds. This implies that D′

M is
a diffeomorphim since Sn and M̃ are simply connected.

We can write Rn = ⊕i∈IUi where Ui is an irreducible component of the action of h′
M (π1(M)) since

π1(M) is finite.
Let i, j ∈ I, consider two non zero elements xi ∈ Ui, xj ∈ Uj , since H ′

M (N(π1(M))0) acts transitively
on Sn there exists B ∈ H ′

M (N(π1(M))0) such that B(xi) = cxj , B(Ui) ∩ Uj is invariant by H ′
M (π1(M)),

we deduce that B(Ui) = Uj since Uj is irreducible and B is an isomorphism.
The group of automorphisms of the irreducible representation Ui is K where K = R,C,H or O. We

deduce that Rn+1 is a K vector space and the action of H ′
M (π1(M))0) on Kn is induced by its action on

K by right multiplication of elements of K. �

Remark.

Suppose that the dimension of M is even, and HM (N(π1(M))0)) acts transitively on RP n. The proof
of the previous theorem can be simplified as follows: Every element of H ′

M (π1(M)) has a fixed point
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since every element of Gl(2n + 1,R) has a real eigenvalue. We deduce that H ′
M (π1(M)) is the identity

and there exists a map f : M → RP n such that DM = f ◦ pM . This implies that f is a covering map
and M is homeomorphic to Sn or RP n.

Let (M, P ∇M ) be a projective manifold, suppose that Aut(M, P ∇M )0 is not solvable. This implies
that Aut(B(M), ∇B(M))0 and the connected component of the normalizer N(π1(B(M)))0 of π1(B(M))

in Aut(B̃(M), ∇
B̃(M)

) are not solvable. We deduce that the image of N(π1(B(M)) by HB(M) contains

a subgroup HS1 isomorphic to S1. We denote by X ′
B(M), a vector field which generates the Lie algebra

of HS1 , its pullback by the developing map DB(M) of B(M) is a vector field X̃B(M) invariant by the
fundamental group of B(M). We deduce that there exists a vector field XB(M) of B(M) whose pullback

by the universal covering map is X̃B(M). Suppose that the developing map is injective, the flow of XB(M)

defines an action of S1 on B(M) which is transverse and commutes with the radial flow. This implies
there exists a vector XM on M which is the image of XB(M) by the map induced by pB(M) : B(M) → M .
The vector field XM induces an action of S1 on M : We have:

Proposition 4.3. Let (M, P ∇M ) be a compact projective manifold whose developing map is injective,

suppose that Aut(M, P ∇M )0 is not solvable, then M is endowed with a non trivial action of S1.

5. Automorphisms of projective manifolds of dimension 2 and 3

In dimension 2, we have the following result:

Proposition 5.1. Let (M, P ∇M ) be a 2-dimensional compact connected oriented projective manifold,

suppose that Aut(M, P ∇P ) is not discrete, then M is homeomorphic to the 2-dimensional torus or to the

sphere.

Proof. Suppose NM 6= 0, there exists a non zero element AM ∈ NM such that A2
M = 0, we deduce that

dim(ker(AM )) = 2, dim(Im(AM )) = 1. Remark that Im(AM ) is fixed by the holonomy.
Suppose that NM = 0, we deduce that dim(SM ) ≥ 2, there exists a non zero element distinct of

the identity eM ∈ SM such that e2
M = eM . To see this remark that SM contains either an associative

algebra isomorphic to the associative algebra of 2 × 2 real matrices or two idempotents which are linearly
independent. The linear map eM is diagonalizable and its eigenvalues are equal to 0 and 1. Since the
flow of eM is distinct of the radial flow, we deduce that 0 is an eigenvalue of eM . This implies that either
the dimension of the eigenspace associated to 0 is 1, or the the dimension of the eigenspace associated to
1 is 1. We deduce that the holonomy preserves a vector subspace of dimension 1.

We conclude that if Aut(M, P ∇M )) is not discrete, its holonomy fixed a point of PR2. The lemma
2.5 p. 808 in Goldman [9] implies that the Euler number of M is positive. �

Dimension 3.

In this section, we study the group of automorphisms of a connected 3-dimensional compact projective
manifold (M, P ∇M ) whose group of automorphisms is not discrete.

Aut(M, P ∇M )0 is not solvable.

Suppose that Aut(M, P ∇M )0 is not solvable, then Aut(B(M), ∇B(M))0 and N(π1(B(M)))0 are not
solvable. We deduce that the connected subgroup of Gl(n+1,R), HB(M)(N(π1(M))0) contains a subgroup
H” isomorphic to S1. We denote by X”B(M) a vector field which generates the Lie algebra of H”. The
pullback X ′

B(M) of X”B(M) by DB(M) is the pullback of a vector field XB(M) of B(M) by pB(M).

Suppose that the set of fixed points of H” is not empty, we can write R4 = U ⊕ V where U is a
2-dimensional vector subspace corresponding to the non trivial irreducible submodule of H” and V the
set of fixed points. Remark that hB(M)(π1(B(M))) preserves U and V since it commutes with H”. This
implies that there exists a foliation FU (resp. FV ) on B(M) whose pullback by the universal covering
map is the pullback by DB(M) of the foliation of R4 whose leaves are 2-dimensional affine spaces parallel
to U (resp. parallel to V ).
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Proposition 5.2. Suppose that V ∩ DB(M)(B̃(M)) is empty. Then a finite cover of M is a total space

of a fibre bundle over S1 whose fibre is T 2.

Proof. The vector field defined by Y ”(u, v) = u; u ∈ U, v ∈ V is invariant by the holonomy of B(M).
To show this, remark that the restriction of H” to U defines on it a complex structure and since
hB(M)(π1(B(M))) commutes with H”, its restriction to U are morphisms of that complex structure.
The pullback of Y ” by DB(M) is the pullback of a vector field YB(M) of B(M) by the universal covering
map. The image YM of YB(M) by pB(M) and XM commute and generate a locally free action of R2 on

M since V ∩ DB(M)(B̃(M)) is empty. Chatelet, Rosenberg and Weil [6] implies that M is the total space
of a fibre bundle over S1 whose fibre is T 2. �

If FV has compact leaf, we have the following result:

Proposition 5.3. Let (M, P ∇M ) be a 3-dimensional compact projective manifold whose developing map

is injective. Suppose that Aut(M, P ∇M )0 is not solvable and V ∩ DB(M)(B̃(M)) is not empty. Then the

holonomy of (M, P ∇M ) is solvable.

Proof. Let F̂0 be a connected component of V ∩ DB(M)(B̃(M)) its image by the universal covering map
is a compact leaf F0 compact leaf of FV which is a 2-dimension compact affine manifold, we deduce that
its fundamental group is solvable. Let r be the restriction of h(π1(B(M)) to V , since hB(M)(π1(B(M))
preserves V , we have an exact sequence:

1 → Ker(r) → hB(M)(π1(B(M)) → Im(r) → 1

The groups Ker(r) is solvable since it restriction to U commutes with a non trivial linear action of S1.
The group Im(r) is also solvable since it is contained in hF0

(π1(F0)), we deduce that hB(M)(π1(B(M))
is solvable. �

Aut(M, P ∇M )0 is solvable.

In this section we study 3-dimensional projective manifolds whose group of automorphisms is solvable.
We can decompose the associative algebra n(π1(B(M)) by writing: n(π1(B(M)) = SM ⊕ NM , where SM

is a semi-simple associative algebra and NM a nilpotent associative algebra. We deduce that SM is the
direct product of associative algebras isomorphic to either R or C and is commutative. It results that
the fact that Aut(M, P ∇M )0 is not commutative implies that NM is not commutative.

Aut(M, P ∇M )0 is solvable and is not commutative.

Theorem 5.4. Suppose that NM is not commutative, then hB(M)(π1(B(M))), the image of the holonomy

of B(M) is solvable.

Proof. First step:
Suppose that the square of every element of NM is zero.
Let A, B ∈ NM such that AB 6= BA. Suppose that dim(ker(A)) = 3. It implies that dim(Im(A)) = 1.

Since (A + B)2 = 0, we deduce that AB + BA = 0 and B(Ker(A)) ⊂ Ker(A), B(Im(A)) ⊂ Im(A)), we
deduce that the restriction of B to Im(A) is zero since B is nilpotent and dim(Im(A)) = 1. This implies
that BA = 0, we deduce that AB = 0 and AB = BA. Contradiction.

Suppose that that dim(Ker(A)) = dim(Im(A)) = dim(Ker(B)) = dim(Im(B)) = 2. We deduce
that Im(A) = Ker(A), Im(B) = Ker(B) since A2 = B2 = 0. If Ker(A) ∩ Ker(B) = 0, R4 = Ker(A) ⊕
Ker(B) and AB = BA = 0 since AB + BA = 0. If Ker(A) = Ker(B), AB = BA = 0 since Im(A) =
Im(B) = Ker(A) = Ker(B). Contradiction.

We deduce that dim(Ker(A)∩Ker(B)) = 1. We can write R4 = V ect(e1, e2, e3, e4) where V ect(e1) =
Ker(A)∩Ker(B), V ect(e1, e2) = Ker(A) and V ect(e1, e3) = Ker(B). Every element in hB(M)(π1(B(M))
preserves Ker(A)∩Ker(B), Ker(A) and Ker(A)+Ker(B) since it commutes with A and B. We deduce
that π1(B(M)) is solvable since it preserves a flag.
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Step 2.
Suppose that there exists an element A ∈ NM such that A2 6= 0.
If dim(KerA) = 1, we have (A2)2 = 0 implies that Im(A2) ⊂ Ker(A2). Remark that x ∈ Ker(A2)

if and only if A(x) ∈ Ker(A) and x ∈ A−1(Ker(A)); dim(A−1(Ker(A)) = 2 since dim(Ker(A)) = 1.
We deduce that dim(Ker(A2)) = dim(Im(A2)) = 2, and Ker(A) ⊂ Ker(A2) = Im(A2) ⊂ Im(A) and
π1(B(M)) preserves a flag since it commutes with A and dim(Im(A)) = 3.

Suppose that dim(ker(A)) = 2, we deduce that dim(Im(A)) = 2. Suppose that Ker(A)∩Im(A) = 0,
we deduce that R4 = Ker(A) ⊕ Im(A). This is impossible since A is nilpotent. We also remark that
Ker(A) is distinct of Im(A) since A2 6= 0. This implies that dim(Ker(A) ∩ Im(A)) = 1. Every element
of π1(B(M)) preserves, Ker(A) ∩ Im(A), Ker(A) and Ker(A) + Im(A) and thus preserves a flag. We
deduce that hB(M)(π(B(M))) is solvable. �

Aut(M, P ∇M )0 is commutative.

Suppose that the developing map is injective and Aut(M, P ∇M )0 is commutative and its dimension
is superior or equal to 2. Let XM and YM two projective vector fields linearly independent. We denote
by XB(M) and YB(M) two affine vector fields of B(M) whose respective images by pB(M) are XM and
YM . There exist affine vector fields X ′

B(M) and Y ′
B(M) of R4 whose respective images by the covering

map are XB(M) and YB(M). Remark that if the group generated by XM and YM acts freely on M , then
Chatelet, Rosenberg and Weil [6] implies that M is the total space of a torus bundle.

In the rest of this section we assume that the set of zero of XM is not empty. This implies that we can
assume that the set of zero U of X ′

B(M) is not empty by eventually replacing X ′
B(M) with X ′

B(M) + cXR

where c ∈ R and XR is the radiant flow. We denote by B(N) the image of U ∩DB(M)(M̃) by the covering
map. Remark that B(N) is not empty.

Proposition 5.5. Suppose that dim(U) = 3 then π1(M) is solvable.

Proof. Suppose that the restriction of Y ′
B(M) to U is not zero. This implies that the restriction of YB(M)

to B(N) is not zero. This implies that the group of projective automorphisms of N , the quotient of B(N)
by the radiant flow is not discrete. The proposition 5.1 implies that N has a finite cover homeomorphic
to S2 or T 2. This implies that π1(B(N)) is solvable. The restriction of π1(B(M)) to U induces an exact
sequence whose image is contained in the image of the holonomy representation of B(N) and whose kernel
is solvable. We deduce that π1(B(M)) and π1(M) are solvable. If the restriction of Y ′

B(M) to U vanishes,

let V be the image of X ′
B(M), if V is not contained in U , then R4 = U ⊕ V , and since Y ′

B(M) commutes

with X ′
B(M), it preserves V . This implies that X ′

B(M) and Y ′
B(M) are linearly dependent contradiction.

Suppose that V is a subset of U , let W be the image of Y ′
B(M), if W is not contained in U , then

we can apply the previous argument to obtain a contradiction by replacing X ′
B(M) by Y ′

B(M). Suppose

that W is contained in U , V ∩ W = {0} since X ′
B(M) and Y ′

B(M) are linearly independent. We deduce

that, the holonomy of B(M) preserves, V, V ⊕ W and U . This implies that the holonomy of B(M) and
π1(B(M)) are solvable. �

Proposition 5.6. Suppose that dim(U) = 2, then π1(B(M)) is solvable.

Proof. Suppose that U ⊕ Im(X ′
B(M)) = R4.

Step 1.
If the restriction of X ′

B(M) or Y ′
B(M)to Im(X ′

B(M)) are not a multiple of the identity, we deduce that

r(π1(B(M)), the image of the restriction of π1(B(M)) to Im(X ′
B(M)) is solvable since it commutes with

X ′
B(M) and Y ′

B(M). The restriction of π1(B(M)) to Ker(XB(M)) is contained in the holonomy group

the 2-dimensional closed affine manifold B(N), we deduce that it is solvable. This implies π1(B(M)) is
solvable.

Step 2.
Suppose that the restriction of X ′

B(M) and Y ′
B(M) to Im(X ′

B(M)) are multiple of the identity. If the

restriction of Y ′
B(M) to U is equal to aIU , we deduce that Y ′

B(M) is contained in the vector space generated
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by IdR4 and X ′
B(M). This implies that the dimension of the vector space generated by XM and YM is 1.

Contradiction. We deduce that the restriction of Y ′
B(M) to U is not a multiple of the IdU . There exists

a real a such that the restriction of Z = Y ′
B(M) + aIdR4 to Im(X ′

B(M)) is zero. The restriction of Z to U

is distinct of a multiple of the identity, we conclude that π1(B(M)) is solvable by replacing Y ′
B(M) by Z

in the first step of the proof.

Suppose that dim(U ∩ Im(X ′
B(M)) = 1. The vector subspaces, U ∩ Im(X ′

B(M)), U, U ⊕ Im(X ′
B(M))

are stable by the holonomy. We deduce that π1(B(M)) preserves a flag and is solvable.
Suppose that U = Im(X ′

B(M)).

We can write R4 = V ect(e1, e2, e3, e4) where V ect(e1, e2) = U and X ′
B(M)(e3) = e1, X ′

B(M)(e4) = e2.

Let γ be an element of π1(B(M)), if we write the fact that the matrix M(γ) of γ commutes with the
matrix of X ′

B(M) in the basis (e1, e2, e3, e4), we obtain that:

M(γ) =








a1 b1 c1 d1

a2 b2 c2 d2

0 0 a1 b1

0 0 a2 b2









Since the restriction of π1(B(M)) to U is contained in the holonomy of π1(B(N)) which is solvable,
we deduce that π1(B(M)) is solvable. �

Proposition 5.7. Suppose that dim(U) = 1, then π1(B(M)) is nilpotent.

Proof. We can write n(π1(B(M)) = SM ⊕ NM where SM is semi-simple and NM nilpotent. Suppose
that NM is not zero, and consider n ∈ NM , if n2 6= 0, (n2)2 = 0, dim(Ker(n2)) ≥ 2, if n2 = 0,
dim(Ker(n)) ≥ 2. We can apply the proposition 5.4 and the proposition 5.5.

Suppose that NM = 0, n(B(M)) contains a non zero idempotent u1 which is not a multiple of the
identity, since it does not generates the radiant flow. If the eigenvalues of u1 are 0 or 1, this implies that
dim(Ker(u1)) ≥ 2) or dim(Ker(u1) − IdR4) ≥ 2, we can apply the proposition 5.4 and the proposition
5.5 to deduce that π1(B(M)) is nilpotent. �

Theorem 5.8. Let (M, P ∇M ) be a 3-dimensional projective manifold whose developing map is injective,

suppose that dim(Aut(M, P ∇M )) ≥ 2, then M is homeomorphic to a spherical manifold, S2 × S1 or a

finite cover of M is a torus bundle.

Proof. Suppose that Aut(M, P ∇M )0 is not solvable, the proposition 5.2 and the proposition 5.3 imply
that either M is the total space of a bundle over S1 whose fibre is homeomorphic to T 2 or π1(M) is
solvable. If Aut(M, P ∇M )0 is solvable, the theorem 5.1, the propositions 5.4, 5.5 and 5.6 show that
π1(M) is solvable. In [2], it is shown that a 3-dimensional closed manifold whose fundamental group
is solvable is homeomorphic to a spherical manifold, S1 × S2, a finite cover of M is a torus bundle, or
RP 3#RP 3. Benoist [3] and Goldman and Cooper [8] have shown that there does not exist a projective
structure on RP 3#RP 3. �
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