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Explicit Formulas for the Matrix Exponential

Mohammed Mougouf and Said Zriaa

ABSTRACT: In this work, new closed-form formulas for the matrix exponential are provided using certain
polynomials which are constructed with the help of a generalization of Hermite’s interpolation formula. Our
method is direct and elementary, it gives tractable and manageable formulas not current in the extensive
literature on this essential subject. Moreover, others are recuperated and generalized. Several particular cases
and examples are formulated to illustrate the method presented in this paper.
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1. Introduction

In numerical linear algebra, the computation of the exponential matrix has been one of the most
challenging problems. Therefore, many different methods have been proposed for the calculation of such
matrix, a large number of them are of pedagogic interest only or of dubious numerical stability.

In their paper [11], the authors have concluded that the exponential matrix could be calculated in
many different ways and they have noticed that some of them are preferable to others but none are
completely satisfactory. In [14] J. S. Respondek agreed with this opinion and gave a list of reasons and
arguments that the set of the preferable ways and methods should be extended.

The present article proposes a new method for computing the matrix exponential using certain poly-
nomials which are constructed with the help of a generalization of Hermite’s interpolation formula. We
hold the same opinion as the authors of [11,14] and believe that this method can be used efficiently for
numerical computation of the exponential of a matrix once the eigenvalues of the given matrix are known.

As we noted above many works deal with the computation of the exponential matrix. Let us mention
some of these works. For instance, In [11], the authors presented a careful investigation on various such
efforts they attempted to describe all the methods that seem to be practical. J. L. Howland [7] presented
a procedure that generalizes a method described in [11]. T. M. Apostol [2] presented an elegant and
manageable approach that gave explicit formulas for some special cases. His method does not produce
the general case when the characteristic polynomial of the matrix has multiple roots.

Much of the difficulty of the computation of the matrix exponential is bypassed by the algorithm of
Putzer [13]. In [8], I. E. Leonard presented an alternative method intending to minimize the mathemati-
cal prerequisites. His approach requires exactly the solution of homogeneous linear differential equations
with constant coefficients. To avoid solving the initial value problems for these differential equations, E.
Liz [9] provided a method which requires only the knowledge of a basis for each solution space of these
equations.

For greater detail on some of the methods and algorithms used for computing the exponential matrix,
we refer the interested reader to [1,2,3,4,5,6,7,8,9,10,11,14,16]) and the references there.

It is important to mentien that the computation of the matrix exponential requires to multiply ma-
trices. The fast matrix multiplication make the matrix calculations faster, and the intelligible cover of
that is given by the survey article of J. S. Respondek [15].

Among the essential tools used in this paper are the Vandermonde matrices and their inverses and
certain polynomials. So it is convenient to fix some notations.
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Let a1, aq,...,as be distinct elements of C and my,mao, ..., ms be nonnegative integers. For a non-
constant polynomial P(x) = (z — o)™ (z — ag)™? - -+ (x — as)™* of degree n, we denote by L, (z)[P]
the following polynomial

Loty @)[P) = Bi@)e — o > 2 (a)(e o), (1)

where 1 <j <s, 0<k; <my; —1,

and
g5(x) = (Pj(2)~".
Here and further L;lk)j (x)[P] means the Ith derivative of L, (x)[P].

According to [17], we can write every polynomial @ of degree less than or equal to n — 1 as

s m_7~—1

Q=320 0™ ey L, (@)]P)). (12)

=1 k;j=0 7

This formula is of great importance, it is used in [12] to invert the confluent Vandermonde matrix.
In [12], the confluent Vandermonde matrix associated with the polynomial P of degree n = m; +
mo =+ -+ msg
P(z) = (z —a1)™ (z — )™ - (v — )™,

is defined to be the following block matrix

Va(P)=W1 Vo ... Vi), (1.3)
where a1, ao, ..., a, are distinct elements of C.
The block matrix Vj is of order n x my,k = 1,..., s, and defined to be the matrix

Vie = Ve (@ — ag)™)

with entries

=1\ imd if > i
Vi)ii = (j—l)ak e =7
(Ve)is { 0, otherwise,

where () denotes the binomial coefficient.
For completeness, we recall the following Theorem and corollary (needed in the sequel) which provide
an explicit closed-form for the inverse of the confluent Vandermonde matrices (for more details, see [12]).

Theorem 1.1. Let P(zx) = (z — a1)™ (x — az)™ - (z — as)™= be a polynomial of degree n, where
Qa1,Q,...,a5 are distinct elements of C. The explicit inverse of the confluent Vandermonde matrix
Va(P) has the form

lel
-1 '5277742
Vii(P) = : , (1.4)
Lsms
where, for r =1,2,... s, the block matriz L,p,. is of order m, x n and given by

Lrm, = <ﬁL%‘li)(O)[P])

1<i<m,,1<j<n
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More precisely,

LoO)[P]  LYOP] - AL P 0)[P)
. LaOP]  LYOP] - ALY 0)P)
Lem,1(0)[P] L&) (O[] -+ Ly Lin V1 (0)[P)

The following corollary treats the interesting case of the generalized Pascal matrix

Corollary 1.2. Let o be a complex number and n be a positive integer. Then the inverse of the Vander-
monde matriz

1 0 0

« 1 0

a? 2c 0

3 2
Va((x —a)™) = (éo)[o/l (%)’)O;S 8 (1.5)

(nal)anfl (n;l)an72 1
" 1 0 0
—a 1 0
o? —2« 0

1 n —o? a?

K TR (TR
(nal)('_a)n—l (n;l)('_a)n—Q 1

2. Explicit formulas for the matrix exponential
Let us consider the following system of differential equations
X = AX,
where A = (aij)1<ij<k is a constant matrix with entries in C and X (¢) the vector column defined by
X(t) = (x1(t), 22(t), ...,z (t) 7.
Given any square matrix A, the exponential matrix function is

n

+oo
exp(tA) = Z EATL'
n=0

It is well known that the function
X(t) = exp(tA) Xy

is the theoretical solution of the equation
X =AX, X(0)= Xo.

The last differential equation has gained much importance in linear and dynamical systems.

Using the results of the previous section, we develop a purely algebraic approach, that requires only
the knowledge of eigenvalues of the matrix, to derive more explicit expressions for the exponential of an
arbitrary complex matrix.

Let x be a unital polynomial of degree k

x(z) = 2 —apaF Tt —agat T — o —ay
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and consider the following set of differentiable functions mapping C to the complex matrices of order k

F() = (/10 = af* D) +axf*2 () + -+ anf ()},

where f()(t) denote the Ith derivative of f(¢). It is well known that F'(x) is a C-vector space of dimension
k.

Let D(x) be the vector space of all complex functions satisfying the following linear differential
equation
y P () = ary* V(1) + agyF D () + - + ary(t).

Let y;,0 <1i <k — 1, be the elements of D(x) with the initial conditions
y9(0) = 6,5, for 0 < j <k —1.

It is well known that {yo(t), y1(¢),...,yx—1(¢)} is a basis of D(x); it is called the canonical basis of D().
The most important property of this basis is that all the elements of F(x) can be expressed as the linear
combinations of the y;’s only in terms of their derivatives at ¢ = 0. More precisely, each f € F(x) can be
written

k—1
F&) = u:(t)f9(0). (2.1)
i=0

As a particular case of Formula (2.1), we find the following well known result.

Proposition 2.1. For any k X k matriz A, the exponential matrix function is given by
k—1
exp(tA) = > yi(t)A’,
i=0
where {yo(t),y1(t), ..., yx—1(t)} is the canonical basis of D(x4) and x 4 is the characteristic polynomial

of A.

Proof. Follows immediately from the fact that exp(tA4) € F(x4)- O

In [2] the author intents to find, in the simplest way, a method for computing the exponential of
a matrix but he does not treat all cases. In what follows, we present the general results without any
disadvantages. We begin with a proposition that will be useful in the sequel.

Proposition 2.2. If {e1(t),ea(t),...,er(t)} is a basis of the vector space D(x 4), then there exist unique
constant matrices By, Ba, ..., By such that

exp(tA) = e1(t)By + e2(t)Ba + - - - + ey (t) Bg.
Proof. This result follows directly from Proposition 2.1 and the fact that

{el(t), 62(t), e ,ek(t)}

is a basis of the vector space D(x 4). O

In the following, we provide the explicit expressions of the elements

Yo (@), y1(8), -, yr—1(t)

of D(x) in terms of the roots of .
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Theorem 2.3. Let x(z) = (x —a1)™ (x — ag)™2 - - (x — )™= be a unital polynomial of degree k. Then
the (i+1)th element of the canonical basis of D(x) is

S eapt mp—1 trp ; )
pi®) =3 = (D L O), 0 i< k-1,
o N e !
Proof. Tt is well known that
B = {et, et tmat eont et pettst gme ! et}
, ’”"7(7711—1)! e , e T =

is a basis of D(x). By expressing each member of this basis in terms of the canonical basis, we get

k—1

t VAN )
ae =2 () ()
j=0
for 0 <i<m,—1and p=1,2,...,s. The resulting change of basis matrix from B to the canonical

basis is the confluent Vandermonde matrix (1.3)

1 0 0 1 0 0
o 1 0 Qs 1 0
a% 2001 0 042 20 0
Ve(x) =1 o3 303 0 ol 3a2 0
a7 (k-1ab"? o1 af (B —1)ak? 1
Using the inverse given by (1.4), we obtain
s t mp—1
o 0! :
v = = (Y SIW,00).0<i<k-1
p=1 rp=0 p
as desired. O
As a particular case we have the following corollary.
Corollary 2.4. If x(x) = (x — a1)(x — ag) - - (x — ag) has distinct roots aq,Qa, ..., ax, then

e()zjt

k
yilt) = Y =LY O).0<i <k - 1.
=1 "

In the following we state one of our main results.

Theorem 2.5. Let A be a k x k matriz, and let x 4(z) = (x — a1)™(x — a2)™2 -+ (x — ag)™= be its
characteristic polynomial. Then,

k—1 s aut Mp—1l
er tr . ,
_ (i) i
ep(td) = S [ S (D0 LD 0)bval) 4"
i=0 p=1 rp=0 P
Proof. The result is an immediate consequence of Theorem 2.3 and Proposition 2.1. O

As a particular case we have the following corollary.
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Corollary 2.6. If x4(z) = (x — a1)(x — @) - - - (x — ag) has distinct roots a1, aq, ..., ak, then
Eel b agt
exp(t4) = >~ (D L O)al ) 4"

i=0 j=1

Proof. Follows immediately from Theorem 2.3 and Theorem 2.5.

In the case where the matrix A has a single eigenvalue, we have the following result.
Corollary 2.7. If x 4(7) = (z — a)* has a single root o, then
ot

e k=l i )
vyi(t) = .—(Z ((z i); al—ltl),o <i<k-1
=1 :

and

k—1 1 1 I+ l -
7 [ PNe?
exp(tA) g ﬁ( )! t )A e,

=0
Proof. The result is an immediate consequence of Theorem 2.3 and Theorem 2.5.

SM

For illustration purposes, we consider the case of a square matrix of order 3.

Example 2.8. Let A be a square matriz of order 3 with characteristic polynomial
xa(z) = 2% — a12? — agx — as.
1. If « is a root of multiplicity 3 of x 4(x) then, using Corollary 2.7, we have
2
1
> Ean)re (e b
=0 =1
2

1\
(-1) al_Qtl)AQ.

l+1

exp(tA) = (eat

eozt
(o

1) At

Consequently, we obtain
exp(tA) = (1 — at + (1/2)a*t?)e®' T + (t — at?)e™ A + (1/2)t%e*" A2,
2. If oy s a root of multiplicity 2, and oo is a simple root, then Theorem 2.5 gives
exp(t4) = (e (L10(0) [x 4] + tL11(0) [xa]) + 2 Lao(0)[x 4] ) I+
(e (LSY O)xa] + LY (O)[xal) + €™ L (0) ] ) A+

% (e“” (L2 0) x4l + L2 (0) [ 4]) + ™2 L (0)[XA]) A2,

Formula (1.1) yields

—22 4+ 2012 — 20400 + a%

Lio(x)[xal = T |

Ll = SR
LC2 — 201 ag

Loo(x)[x 4] 2—1‘:1

(a2 —a1)
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A simple calculation gives

exp(tA4) =
v
(a1 —az)?

((a% — a3)te™! + 2aq (e — eaQt))A-l-

[((a% —2a12)e® + (afay — arad)te™ ! + a%e"‘Qt)I—i—

(eaQt —e! 4 (g — ag)teo‘lt)AQ]

3. If a1, e, a3 are simple roots of x 4(x) then, using Corollary 2.4, we have

3 3
exp(td) =( 3 e Lin(0)xal )T + (D0 e Lig (0)xal) A+

3 et
(305 L ) hal) 42
Formula (1.1) gives
 (r—m)(r—az) 2 — (a4 a3)T + asas
Llo(x)[XA]) = (041 — a2)(a1 — 043) = (041 — ag)(al — 043)
r (e a)(r—a3) 2% — (1 + ag)z + o az
Laof)beal) = (a2 —an)(az —a3z) (a2 —a1)(az —a3)
 (r—m)(r—m) 2 — (a4 )T+ oo
Lso(w)beal) = (a3 —a1)(az —a2)  (az—a)(as — az)

Consequently, the matriz exponential in this case is given by

Qa3 a1Q3
exp(tA :[ ait eo2t
p( ) (061 - 062)(041 - 043) (062 - 061)(042 - 063)
e %t} [ a3 + a3 art
+ e+
(a3 — o) (a3 — az) (a3 —an)(a1 — az)
o1+ as ast o1+ Qo eoat| AL
(a3 — ag)(ag — ) (1 —az)(az — az)
aqt eazt eagt

A2,

[(051 — 042)(011 — 063) * (062 — 041)(042 — 063) * (063 — 041)(043 — 062)

In the present approach, we provide closed-form formulas for the matrix exponential. The approach
makes the determination of the exponential of any square matrix more practical. Using Lagrange poly-
nomials W. A. Harris et al. [5] have derived some explicit formulas for the exponential of a matrix with
simple eigenvalues. Here, we generalize this result to any matrix using a generalization of Hermite’s
interpolation formula given by A. Spitzbart [17].

Theorem 2.9. Let A be a k x k matriz, and let x 4(z) = (x — a1)™ (x — a2)™2 -+ (x — ag)™= be its
characteristic polynomial. Then,

eo‘ftBjkj, (2.2)

Bl

thi
.|
;!

s mj;—1
exp(tA) = Z Z
§=1 k;=0

where Bj, = Ljk; (A)[x4l-
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Proof. Using Proposition 2.2 with the fact that

t t gt t t t tms—l t
eal ’teal b) bl eal b 7ea$ 7tea$ b) b) e
{ (my —1)! (ms — 1)! }
is a basis of D(x 4), we can find unique constant matrices Bjy,,j = 1,2,...,s and 0 < k; <m; — 1, such
that
mi—1 t mo—1 tJ ms—1 t]
t t s
exp(tA) = Z ﬁeal Blj + Z ﬁe‘“ ng + -+ Z ﬁeo‘ tBSj.
j=0 §=0 j=0
Applying Proposition 2.2 to this equality yields
1 0 0 1 0 0
o1 1 0 Qs 1 0
a? 2011 0 a? 206 0
ol 303 0 ol 3a? 0
b (k=12 1 s af Tt (B—=1)ak 2
Bio I
B A
Bim,—1 Amt
. = (2.3)
BSO
Bsm3,1 Ak'fl

On the other hand, utilizing Formula (1.2) for the canonical basis of Cj_1[x], we obtain the following
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system
1 0 0 1 0 0
aq 1 0 Qs 1 0
a? 2011 0 a? 206 0
o3 303 0 ol 3a?2 0
a7 (k=12 1 s o (k=1)ak 2
Luo(a)[x 4] !
Ly (2)[x Al o
' xm.l—l
Lim,—1(@)[xal |
Lso(x)[x 4]
Lsm,—1()[x ] xk;l
Replacing in this matrix equation « with A yields
1 0 0 1 0 0
o 1 0 Qg 1 0
a? 201 0 o2 20 0
as 3a? 0 al 3a? 0
oAl (k= 1)k 2 1 a1l (k—1)ak2 1
Lio(A)[x 4] i
L11(A)[x 4]
) m. -1
Limr (Al || A"
Lso(A)[xal
Lsms—l(A)[XA] Ak'._1

Since the confluent Vandermonde matrix is invertible, we have

Bjk; = Lji; (A)[x 4] forall 1 <j <s, 0<k; <my—1.

The following example is used to illustrate Theorem 2.5 and Theorem 2.9.
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Example 2.10. Let us consider Example 1. of [8]

A:

o O N
o NN O

1
0
3

The characteristic polynomial of A is x 4(z) = (x — 2)?(x — 3). In this case, by using Formula (1.1), we
have

Lio(z)[xa] = (# = 3)(1 —2) = —2® + 4z — 3,

Lii(z)[x4] = (z —3)(2 — 2) = —2® + 5z — 6,

Loo(z)[x 4] = (# —2)* = 2® — 4w + 4.

T —
T —

We deduce that

Lio(0)[x4] = -3, L:IO(O)[XA] = 4 L,I,O(O)[XA] = =2
Li(z)[xal = -6, L,ll(O)[XA] = 9, L,1,1(0)[XA] = -2
Lao(z)[xal = 4, LoO)[xal = —4, Ly0)xa] = 2.

Using the formula of Theorem 2.5, we obtain
exp(tA) = (ezt(—S —6t) + 4e3t)I + (62’5(4 +5t) — 4e3t)A+

(1/2) (th(—2 —2t) + 2e3f)A2.

Therefore
Q2 ) o3t _ 2t
exp(tA)=| 0 e* 0
0 0 et

Now we find the matriz exponential of A, but using this time Theorem 2.9. From Formula (2.2), we
get
exp(tA) = thBl() + tthBll + egtho,

where
Bio = Lio(A)[x 4] = —A* +4A — 31,
Bii = L11(A)[x4] = —A% 4+ 5A — 61,
Boog = Lao(A)[x 4] = A* — 4A +41.
More explicitly,
1 0 -1 0 0O 0 0 1
Bio=10 1 0 ],Bi1=|0 0 0],Byx=1(0 0 0
0 0 O 0 0O 0 0 1
Thus
exp(tA) = thBlo + tthBll + eBtBQ().
That is
o2t () @3t _ o2t
exp(tAd)=| 0 e* 0

Next, we derive some corollaries of Theorem 2.9.



FORMULAS FOR THE MATRIX EXPONENTIAL 11

Corollary 2.11. If x4(z) = (z — a1)™ (z — a2)™2, a1 and as are two distinct complex numbers, then

mlfl 5 mzfl ;

. 15 it 5 ot
exp(tA) = Z ﬁe Y By + Z ﬁe " Baj,

j=0 7 =0

where
mi—j—1 _1)1 (mg—i—i—l)
mzfl

Blj = (A_alj)j(A—OéQI)m2 (A—O[ll)i,

(
. (al — a2)m2+i
mo—j—1 (_1)i(m1+i—1)
(

By = (A—a )™ (A—aql) ol LA — apl)

B m1—j—1 (_1)l(m,,i:i_11) o -

Lij(z)[xa] = ; W(m — )M (z — ap)™2,
mo—j—1 -1 i(mi+i—1 ,

Laj(x)[xal = %( — )™ (z — az)"™

Corollary 2.12. If x4(z) = (x — a1)™ (x — a2), a1 and ag are distinct two complex numbers, then

mlfl J

t
exp(tA) = Z ﬁe"‘ltBlj + €2 By,
j=0
where
mp—j—1 .
Bij = (A—al)i(A—ayl S _ED 4oy
1 = ( ai ) ( Q2 ) Z (051 _a2)¢+1( ai ) )
i=0
1
BQO = 7(14 — O[ll)ml .

(012 — Ozl)ml

More generally, we have the following result.

Corollary 2.13. If x4(z) = (z — aq)™ 12[2(23 — ), a,..., a5 are distinct complex numbers, then
j=
mi—1 t» s 1
exp(tA) = Z ﬁealfBlj +Zeajtpj(aj)Pj(A), (2.4)

7=0 j=2
where P = X4,

s mi—j—1 s (—1)ial .

Bij = (A—ayIy 122(A — o) ; 2 e (A—ayl)

and
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Proof. In this case, Formula (2.2) becomes

mlfl ;

t
exp(tA) = E _—'ealtBlj +e*'Byy + - + e By
— jl
Jj=0
where, for j =2,...,s,
1
Bjo = Ljo(A)[P] = P;(A)g;(a;) = P;(A)
J J J FASY) Pila;) "’

izl i
Li@)[P] = Pi(x)(z — a1} > =g (an)(@ — ),
i=0
Pi(z) =[x — o),
1=2
gi(@) =1/][(@ - )
1=2
But since
. a
()= ——,
1=2 !
we have . '
() (—1)17,'&1
xTr) =
91 ( ) s (x—al)l+1
Then )
iT e (D i
Ly@P = - a) [Je-a) 3 3 o=@ - an
1=2 i=0 =2 1T M
Therefore '
iT s (=D i
Bij=A-onl) [[(A-aul) > G o™ (A—ail)
1=2 i=0 1=z 1T
Thus, the proof is completed. (I

To illustrate Corollary 2.13, consider the following example.

Example 2.14. Let

A:

N = =

The characteristic polynomial of A is x 4(x) = 2?(x+2)(x —2). Let us choose, for example, a; = 0, =
—2 and ag = 2. Then, in light of Formula (2.4), the exponential matriz of A is given by

exp(tA) = Big +tB11 + eiQth() + e2t330, (25)
where
as as as ag
Big=(A+21)(A—-21 I — A
10 ( T )( ){(041—0424_041—043 (041—042)2+(041—043)2) }7
Bu = A(A+20)(A-2D)[(—2— 4+ 2
a1 — Qg a1 — Q3
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and
Bag

Bsg

{

In this case as = 1/(ag — a3)

—1/4 and ag =

Bio
B
Bsg
Bsg

(
(
(
(

Hence Formula (2.5) becomes

13

Py(A)/Py(a2) = (=1/16)A*(A — 2I) = (—1/16) A% + (1/8) A%,
Ps(A)/P3(a3) = (1/16)A2(A + 2I) = (1/16) A% + (1/8) A2.

1/(as — ag) = 1/4. Consequently, we have

1/4)A% + 1,

1/4)A3 + A,
1/16)A3 + (1/8) A2,
1/16) A3 + (1/8) A

2t -2t At 2t -2t _ 2
exp(td) = &€ ppte A4 A+T.
16 8
Since
2 2 0 0
2 2 0 0
2 _
A% = 4 3 2 =2
3 4 -2 2
and
4 4 0 0
4 4 0 0
3 _
A= 9 11 -4 4 |’
5 3 4 -4
we obtain ) )
e?t41 e?t—1
2t2 2t2 0 O
e“"—1 e 2+1 0 O
exp(tA) = | 172 o B g 16 176® se2tiar12 e 41 —e i1
1le2t+e_1§t74t712 1162t+561_62t+4t716 7e—%t+1 e—22t+1
16 16 2 2

The following result is due to W. A. Harris et al. [5]

Corollary 2.15. If x4(z) = (x — a1)(x — @) - - (x — ag) has distinct roots a1, aq, ..., ak, then

exp(tA) = e™' By +e*'By + -+ + ' By,

k

1
i=Li#i o (A —ajly).

where B; =[] -
— Yy

Proof. Is a particular case of Theorem 2.9. O

When A is a matrix with only one eigenvalue, we have the following known result shown by Apostol [2]

Corollary 2.16. If x 4(x) = (z — a)* has a single root «, then
k—1

(k — 1)l

exp(tA) = e‘“Bl + teo‘th + -4 eatBk-,

where B; = (A —al)71,1<i<k.

Proof. Follows immediately from Theorem 2.9.
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