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Approximate Controllability of Non-autonomous Evolution System with Infinite Delay

Parveen Kumar, Ramesh Kumar Vats and Ankit Kumar

abstract: This article deals with the existence and approximate controllability results for a class of non-
autonomous second-order evolution systems with infinite delay. To establish sufficient conditions for the
proposed control problem the theory of evolution operator with Schauder’s fixed point theorem is used. Fur-
ther, we extend the approximate controllability results to the integro-impulsive differential system. Finally,
to emphasize our theoretical concepts, an example is provided.
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1. Introduction

In many real-world phenomena, there are many processes in which the rate of variation in the system
state depends on past states. This feature is known as a delay or a time delay. Such systems can be
described by differential equations so-called delay differential equations [23,7,32]. Delay can be easily
seen in the networked control system, between the devices which are related through the network, during
data exchanging to data congestion. Also in a biological system, the time necessary for red blood cells
to mature in the bone marrow and there are plenty of real-life applications in which delay occurs. In
recent years, many real-word applications have been investigated by authors to get the useful results for
delay systems of various kinds [25,24,26,29,27]. On the other hand, Controllability plays a significant
role in development of mathematical control theory and became an active area of research nowadays.
Controllability is expressed as qualitative property of dynamical control systems introduced by Kalman,
in 1960. It is widely used in various fields of science and engineering such as ecology, economics and
biology etc. [11,9]. Controllability results for various dynamical systems have been extensively studied
by research community [15,16,2,12] in past few years.

Approximate controllability results for a class of second order systems with infinite delay have been
studied by Sakthivel et al. [17] with the help of Schauder’s fixed point theorem. Existence results for
non-autonomous second order systems have been established by Henríquez and Pozo [22]. Kumar et
al. [28] investigated the existence of solution of non-autonomous fractional differential equations with
integral impulse condition via the measure of non-compactness and k-set contraction. Ravikumar et
al. [31] established the approximate controllability results for semi-linear differential system in Banach
spaces using linear evolution theory with the resolvent operator and Schauder’s fixed point theorem.
Recently, Kumar et al. [29] investigated the approximate controllability results for the non-autonomous
systems with finite delay in Banach space. We point out that, usually, researchers work on a time-
independent system and less work have been reported in the literature on non-autonomous systems. For
more information about non-autonomous (see [19,21,13,20,33]). To the best of the authors knowledge,
the topic of non-autonomous second order evolution systems with infinite delay is not well developed.
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Motivated by the above facts, in this paper we consider the following non-autonomous second order
system with infinite delay:

X′′(ς) = A (ς)X(ς) + Cu(ς) + F (ς,Xρ(ς,Xς)), ς ∈ J = [0,T],

X(0) = ø(ς) ∈ P, X′(0) = ξ0, ς ∈ (−∞, 0], (1.1)

where state function X(·) takes the values from Banach space W to W and linear operator A generates
a strongly continuous cosine family of bounded linear operators in a Banach space W. Let U is a Hilbert
space and u(·) ∈ L2([0,T];U) is a control function. C : U → W is a linear bounded operator, the functions
X̟ : (−∞, 0] → W, X̟(θ) = X(̟ + θ) correspond to abstract phase space P. F : J × P → W and
ρ : J × P → (−∞,T] are suitable non-linear functions to be stated subsequently.

2. Preliminaries

Consider the following non-autonomous differential system

X′′(ς) = A (ς)X(ς) + G (ς), 0 ≤ ς,̟ ≤ T,

X(̟) = X0, X′(̟) = ξ0, (2.1)

where A (ς) : D(A (ς)) ⊂ W → W, is a closed operator dense in W and G : J → W is a suitable function.
The existence of solutions for system (2.1) is associated to the existence of an evolution operator Ψ(ς,̟)
for the homogeneous equation

X′′(ς) = A (ς)X(ς), 0 ≤ ς,̟ ≤ T. (2.2)

Let us take that the domain of A (ς) is a subspace D which is dense in W and independent of ς and
for each X ∈ D , the functionς → A (ς)X is continuous. We refer to [8], for the fundamental solution of
system (2.2). We will use the following concept of evolution operator for the development of our results.

Definition 2.1. A family {Ψ(ς,̟)} of bounded linear operators from J×J → L(W) is called an evolution
operator for (2.2) if the following conditions are holds:

(S1) (ς,̟) ∈ [0,T] × [0,T] → Ψ(ς,̟)X ∈ W is of class C1, ∀ X ∈ W, and

(i) Ψ(ς, ς) = 0, ∀ ς ∈ [0,T].

(ii) For all ς,̟ ∈ [0,T], and for each X ∈ W,

∂
∂ς

Ψ(ς,̟)X
∣

∣

∣

ς=̟
= X, ∂

∂̟
Ψ(ς,̟)X

∣

∣

∣

ς=̟
= −X.

(S2) For all ς,̟ ∈ [0,T], and if X ∈ D(A ), then Ψ(ς,̟)X ∈ D(A ), the mapping (ς,̟) ∈ [0,T]×[0,T] →
Ψ(ς,̟)X ∈ W is a class C2 and

(i) ∂2

∂ς2 Ψ(ς,̟)X = A (ς)Ψ(ς,̟)X.

(ii) ∂2

∂̟2 Ψ(ς,̟)X = Ψ(ς,̟)A (̟)X.

(iii) ∂
∂̟

∂
∂ς

Ψ(ς,̟)X
∣

∣

∣

ς=̟
= 0.

(S3) For all ς,̟ ∈ [0,T], and if X ∈ D(A ), then ∂
∂̟

Ψ(ς,̟)X ∈ D(A ), as well as ∂2

∂ς2

∂
∂̟

Ψ(ς,̟)X,
∂2

∂̟2

∂
∂ς

Ψ(ς,̟)X and

(i) ∂
∂̟

Ψ(ς,̟)X ∈ D(A ), then ∂2

∂ς2

∂
∂̟

Ψ(ς,̟)X = A (ς) ∂
∂̟

Ψ(ς,̟)X.

(ii) ∂
∂̟

Ψ(ς,̟)X ∈ D(A ), then ∂2

∂̟2

∂
∂ς

Ψ(ς,̟)X = ∂
∂ς

Ψ(ς, s)A (̟)X, and the mapping (ς,̟) ∈ [0,T] ×

[0,T] → A (ς) ∂
∂̟

Ψ(ς,̟)X is continuous.
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Suppose that Ψ(ς,̟) is an evolution operator associated with the operator A (ς) and Φ(ς,̟) =

−∂Ψ(ς,̟)
∂̟

. Furthermore, suppose that Φ(ς,̟) and Ψ(ς,̟) is bounded by ℵ and ℵ̃ respectively i.e

sup
0≤ς,̟≤T

‖Ψ(ς,̟)‖ ≤ ℵ̃ and sup
0≤ς,̟≤T

‖Φ(ς,̟)‖ ≤ ℵ. In addition, there is a constant ℵ1 such that

‖Ψ(ς + l, ̟) − Ψ(ς,̟)‖ ≤ ℵ1|l|

for all ̟, ς, ς + l ∈ [0,T]. The mild solution of the equation (2.1) is given by

X(ς) = Φ(ς,̟)X0 + Ψ(ς,̟)ξ0 +

∫ ς

̟

Ψ(ς, τ)G (τ )dτ .

provided that G : J → W is an integrable function.
In the literature, an abundance of techniques have been used to formulate the existence of the evolution

operator Ψ(ς,̟). In particular, the quite well-known situation is that A (ς) is the perturbation of operator
A that generates a cosine family. Because of this, we briefly reviewing definition of the theory of cosine
family and related terms.

Definition 2.2. A one-parameter family {Φ(ς)}ς∈R of bounded linear operators mapping the Banach
space W into W is called strongly continuous cosine family if and only if
(i) Φ(̟ + ς) + Φ(̟ − ς) = 2Φ(̟)Φ(ς), ∀ ̟, ς ∈ R.
(ii) Φ(0) = I.
(iii) Φ(ς)X for each fixed point X ∈ W, is continuous on R.

Let {Φ(ς)}ς∈R be a strongly continuous cosine family of bounded linear operators on Banach space
W and have an infinitesimal generator A from D(A ) to W. We denote {Ψ(ς)}ς∈R as the sine family
associated with {Φ(ς)}ς∈R which is defined as follows:

Ψ(ς)X =

∫ ς

0

Φ(̟)X d̟, X ∈ W, ς ∈ R

The domain of the operator A is the Banach space and is defined as follows:

D(A ) = {X ∈ W : Φ(ς)X is twice continuously differentiable in ς}

endowed with norm
‖X‖A = ‖X‖ + ‖A X‖, X ∈ D(A ).

Define D̃ = {X ∈ W : Φ(ς)X is once continuously differentiable in ς}, is a Banach space endowed with
norm

‖X‖1 = ‖X‖ + sup
0≤ς≤1

‖A Ψ(ς)X‖, X ∈ D̃ .

The results related with the existence of solutions for the second-order abstract Cauchy problem

X′′(ς) = A X(ς) + K (ς), ̟ ≤ ς ≤ T

X(̟) = X0, X′(̟) = ξ0, (2.3)

where K : [0,T] → W is an integrable function, the existence of solution for (2.3) is given in [1]. The
existence of the solutions of semilinear second order abstract Cauchy problem has been discussed in [4].
The mild solution X(·) of the equation (2.3) is given by

X(ς) = Φ(ς −̟)X0 + Ψ(ς −̟)ξ0 +

∫ ς

̟

Ψ(ς − τ )K (τ )dτ , 0 ≤ ς ≤ T (2.4)

and when X0 ∈ D̃ , X(·) is continuously differentiable then

X′(ς) = A Ψ(ς −̟)X0 + Φ(ς −̟)ξ0 +

∫ ς

̟

Ψ(ς − τ )K (τ )dτ , 0 ≤ ς ≤ T.



4 P. Kumar, R.K. Vats, A. Kumar

In addition, if X0 ∈ D(A ), ξ0 ∈ D̃ and G is continuously differentiable function, then the function X(·) is
a solution of the initial value problem (2.3). Let us take that A (ς) = A +Ã (ς) where Ã (·) : R → L(D̃ ,W)
is a map such that the function ς → Ã (ς)X is a continuously differentiable in W for each X ∈ D̃ . For
more details see [6], for each (X0, ξ0) ∈ D(A ) × D̃ the non-autonomous Cauchy problem given below

X′′(ς) = (A + Ã (ς))X(ς), ς ∈ R (2.5)

X(0) = X0, X′(0) = ξ0 (2.6)

has a unique solution X(·) such that the function ς → X(ς) is continuously differentiable in D̃ . Following
similar argument, one can conclude that equation (2.5) with the initial condition of (2.3) has a unique so-
lution X(·, ̟) such that the function ς → X(ς,̟) is continuously differentiable in D̃ . It follows from (2.4)
that

X(ς,̟) = Φ(ς −̟)X0 + Ψ(ς −̟)ξ0 +

∫ ς

̟

Ψ(ς − τ)Ã (τ )X(τ ,̟)dτ .

In particular, for X0 = 0 we have

X(ς,̟) = Ψ(ς −̟)ξ0 +

∫ ς

̟

Ψ(ς − τ )Ã (τ )X(τ ,̟)dτ .

Consequently,

‖X(ς,̟)‖1 ≤ ‖Ψ(ς −̟)‖
L(W,D̃)‖ξ0‖ +

∫ ς

̟

‖Ψ(ς − τ )‖
L(W,D̃)‖Ã (τ )‖

L(W,D̃)‖X(τ,̟)‖1dτ .

Gronwall’s inequality implies that

‖X(ς,̟)‖1 ≤ G̃‖ξ0‖, ∀ ̟, ς ∈ J,

where G̃ = ‖Ψ(ς − ̟)‖ exp[‖Ψ(ς − τ )‖‖Ã (τ )‖(ς − ̟)]. Let us define the operator Ψ(ς,̟)ξ0 = X(ς,̟).
By previous results it is concluded that Ψ(ς,̟) is a bounded linear map on D̃ . As D̃ is dense in W so we
can extend Ψ(ς,̟) to W. For extension of Ψ(ς,̟), the notation Ψ(ς,̟) has been used. It is very well
known fact that the cosine family Φ(ς) can not be compact unless the dim(W) < ∞. By contrast, for the
cosine family that arise in specific applications, the sine family Ψ(ς) is very often a compact operator for
all ς ∈ R.

To establish the approximate controllability of the system (1.1), we assume the following condition:
(Y1) αR(α,ΓT

0 ) → 0 as α → 0+ in the strong operator topology. The condition (Y1) holds if and only
if the following second order linear control system

X′′(ς) = A X(ς) + Cu(ς), ς ∈ J

X(0) = X0, X′(0) = ξ0, (2.7)

is approximately controllable on J, for instance see [10]. In [3], the phase space P be a linear space of
functions

P = {X | X : (−∞, 0] → W}

endowed with a seminorm ‖.‖P and satifying the following axioms:

(R1) if X : (−∞, σ] → W, σ > 0 is continuous on [0, σ] and X0 ∈ P then for every ς ∈ [0, σ] the following
conditions holds:

(i) Xς is in P.

(ii) ‖X(ς)‖ ≤ H̃ ‖Xς‖P .

(iii) ‖Xς‖P ≤ K̃ (ς)‖X0‖P + M̃ (ς)sup{‖X(̟)‖ : 0 ≤ ̟ ≤ ς} where H̃ > 0 is a constant ; K̃ , M̃ :
[0,∞) → [1,∞), K̃ is continuous, M̃ is locally bounded and H̃ , K̃ , M̃ are independent of X(·).
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(R2) For the function X(·) in (R1), Xς is a P-valued continuous function on [0, σ].

(R3) The space P is complete.

Definition 2.3. A function X : (−∞,T] → W is said to be mild solution of the differential system (1.1)
if X(·) ∈ C(J,W), X(ς) = ø(ς) for ς ∈ (−∞, 0] and satisfies of the following integral equation

X(ς) = Φ(ς, 0)ø(0) + Ψ(ς, 0)ξ0 +

∫ ς

0

Ψ(ς,̟)[Cu(̟) + F (ς,Xρ(ς,Xς ))]d̟. (2.8)

Definition 2.4. The system (1.1) is called approximately controllable if D̃(T) = W

where

D̃(T) = {X(T;u) : u(·) ∈ L2([0,T];U)}

and X(ς, u) is a mild solution of (1.1).

Now define the operators

ΓT

0 =

∫ T

0

Ψ(T, ̟)CC∗Ψ∗(T, ̟)d̟

R(α,ΓT

0 ) = (αI + ΓT0 )−1,

where I is an identity operator and ΓT0 is a linear operator.
In order to establish the controllability result of the system (1.1), we consider the following assump-

tions:

(P1) Ψ(ς), ς > 0 is compact.

(P2) ρ : J × P → (−∞,T] is continuous.

(P3) The function ς → øς is well defined and continuous from the set

£(ρ−1) = {ρ(̟, ξ) : (̟, ξ) ∈ J × P, ρ(̟, ξ) ≤ 0} into P,

and there exist a bounded continuous function

H
ø : £(ρ−1) → (0,∞) such that ‖øς‖P ≤ H

ø(ς)‖ø‖P for every ς ∈ £(ρ−1).

(P4) The function F : J × P → W satisfies the following conditions.

(i) F (ς, ξ) : J × W is strongly measurable, ∀ ξ ∈ P.

(ii) F (ς, .) : P → W is continuous, ∀ς ∈ J.

(iii) For each r > 0, there exist a function λr ∈ L1(J, R+) such that

sup
‖ξ‖≤r

‖F (ς,ξ)‖ ≤ λr(ς) for a.e ς ∈ J,

and lim
r→∞

inf

∫ T

0

λr(ς)

r
dς = δ < ∞.

(P5) There exist L > 0 such that

‖F (ς, ξ)‖ ≤ L for all (ς, ξ) ∈ J × P.

Lemma 2.5. ( [14]) Let X : (−∞,T] → W be a function such that X0 = ø, then

‖X̟‖P ≤ (H3 + H )‖ø‖P + H2 sup{‖x(θ)‖; θ ∈ [0,max{0, ̟}]}, ̟ ∈ £(ρ−1) ∪ J

where H = sup
ς∈£(ρ−1)

H
ø(ς), H3 = sup

ς∈J

M̃(ς) and H2 = sup
ς∈J

K̃(ς).
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3. Main results

In this segment, we prove the approximate controllability of second-order non-autonomous system with
infinite delay by using the Lebesgue dominated convergence theorem and Schauder’s fixed point theorem.
We will obtain sufficient conditions ensuring the existence of mild solution of differential system (1.1).
To prove the results, we introduce the following notations.

MC = ‖C‖ K = ‖XT‖ + H̃ ℵ‖ø‖P + ℵ̃‖ξ0‖

Let Z = {X ∈ C(J,W);X(0) = ø(0)} be a Hilbert space. Consider a set Q = {X ∈ Z ; ‖X‖ ≤ r} where
r > 0 is a constant. It will be shown that system (1.1) is approximate controllable, if for all α > 0 there
exist a continuous function X(·) ∈ Z such that

X(ς) = Φ(ς, 0)ø(0) + Ψ(ς, 0)ξ0 +

∫ ς

0

Ψ(ς,̟)[Cu(̟) + F (ς,Xρ(ς,Xς ))]d̟

u(ς) = C
∗Ψ∗(T, ς)R(α,ΓT

0 )q(X(·))

q(X(·)) = XT − Φ(T, 0)ø(0) − Ψ(T, 0)ξ0 −

∫ T

0

Ψ(T, ̟)
[

F (ς,Xρ(ς,Xς ))
]

d̟.

Theorem 3.1. Assume that condition (P1) − (P4) are holds and suppose that for all α > 0

(1 +
1

α
ℵ2M2

CT)ℵ̃H2δ < 1,

then system (1.1) has solution on J.

Proof. Define the operator Fα : Z → Z , as follows

FαX(ς) = Φ(ς, 0)ø(0) + Ψ(ς, 0)ξ0 +

∫ ς

0

Ψ(ς,̟)[Cv(̟) + F (ς, X̄ρ(ς,X̄ς ))]d̟, α > 0

where

v(ς) = C∗Ψ∗(T, ς)R(α,ΓT

0 )q(X(·))

q(X(·)) = XT − Φ(T, 0)ø(0) − Ψ(T, 0)ξ0 −

∫ T

0

Ψ(T, ̟)[F (ς , X̄ρ(ς,X̄ς))]d̟.

and X̄ : (−∞,T] → W such that X̄0 = ø and X̄ = X on [0,T], the proof of this theorem is divided into
three steps.

Step 1. We have to prove that Fα is self map. Let ø̄ : (−∞,T] → W be the extension of ø to
(−∞,T] such that ø̄(θ) = ø(0) on J. Our aim, is to show that the operator Fα : Z → Z has a fixed
point. We assume that there exist r > 0 such that Fα(Q) ⊂ Q. Suppose that our assumption is false,
then there exist α > 0 such that for all r > 0, there exist X

′

∈ Q and ς
′

∈ J such that r < ‖FαX
′

(ς
′

)‖.
We get

r < ‖FαX
′

(ς
′

)‖

≤ H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ + ℵ̃MC

∫ ς

0

‖v(̟)‖d̟ + ℵ̃

∫ ς

0

‖[F (̟, X̄′

ρ(ς,X̄′

̟
)
)]‖d̟,

for any X ∈ Q, it follows from above Lemma (2.5)

‖X̄′

ρ(ς,X̄′

̟
)
‖ ≤ (H3 + H )‖ø‖P + H2r = r∗, r∗ > 0. (3.1)
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Hence, we get

r ≤H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ + ℵ̃MCT‖v(̟)‖ + ℵ̃

∫ T

0

λr∗(̟)d̟

r ≤H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ + ℵ̃MCT

{

C∗Ψ∗(T, ς)R(α,ΓT

0 )
[

XT − Φ(T, 0)ø(0) − Ψ(T, 0)ξ0

−

∫ T

0

Ψ(T, ̟)[F (̟, X̄ρ(̟,X̟̄))]d̟
]

}

+ ℵ̃

∫ T

0

λr∗(̟)d̟

r ≤H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ + ℵ̃MCT

{

1

α
ℵ̃MC[K + ℵ̃

∫ T

0

λr∗(̟)d̟]

}

+ ℵ̃

∫ T

0

λr∗(̟)d̟

r ≤H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ +
1

α
ℵ̃2M2

CKT + (1 +
1

α
ℵ̃2M2

CT)ℵ̃

∫ T

0

λr∗(̟)d̟

r ≤K∗ + (1 +
1

α
ℵ̃2M2

CT)ℵ̃

∫ T

0

λr∗(̟)d̟,

where K∗ = H̃ ℵ‖ø(0)‖P + ℵ̃‖ξ0‖ + 1
α

ℵ̃2M2
C
KT, we note that K∗ is independent of r and r∗ → ∞ as

r → ∞. Now

lim
r→∞

inf

∫ T

0

λr∗(̟)

r
d̟ = lim

r→∞
inf

∫ T

0

λr∗(̟)r∗

r∗r
dt = δH2.

Hence for α > 0, we obtain

(1 +
1

α
ℵ̃2M2

CT)ℵ̃H2δ > 1,

which contradict our hypothesis, therefore, for α > 0, ∃ r > 0 such that Fα(Q) ⊂ Q.
Step 2. Next we prove that the operator Fα is compact. Consider Π(ς) = {FαX(ς) : X ∈ Q}. Define

(FεαX)(ς) = Φ(ς, 0)ø(0) + Ψ(ς, 0)ξ0 +

∫ ς−ε

0

Ψ(ς,̟)[Cv(̟) + F (̟, X̄ρ(̟,X̟̄))]d̟.

Since Ψ(ς,̟) is compact, the set Πε(ς) = {FεαX(ς) : X ∈ Q} is relatively compact in W, That is, a finite

set {̺i, 1 ≤ i ≤ n} in W exists such that Πε(ς) ⊂
∞
⋃

i=1

ℵ̃(̺i,
τ
2 ), where

∞
⋃

i=1

ℵ̃(̺i,
τ
2 ) is an open ball in W

with center at ̺i and radius τ
2 . On the other hand,

‖(FαX)(ς) − (FεαX)(ς)‖ ≤ ℵ̃MC

∫ ς

ς−ε
‖v(̟)‖d̟

+ ℵ̃

∫ ς

ς−ε
‖F (̟, X̄ρ(̟,X̟̄))‖d̟

≤
τ

2
.

Consequently, Π(ς) ⊂
∞
⋃

i=1

ℵ̃(̺i, τ). Hence, there exist relatively compact set arbitrarily close to Π(ς) =

{FαX(ς) : X(ς) ∈ Q} as ε → 0. Since it is compact at ς = 0, hence set Π(ς) is relatively compact in
W, ∀ ς ∈ [0,T]. Now we prove that Π(ς) = {FαX(·) : X(·) ∈ Q} is equicontinuous on [0, T ] for 0 < ς1 <
ς2 < T,

‖(FαX)(ς2) − (FαX)(ς1)‖ ≤ ‖Φ(ς2, 0) − Φ(ς1, 0)‖‖ø(0)‖PH̃ + ‖Ψ(ς2, 0) − Ψ(ς1, 0)‖‖ξ0‖

+ ÑMC

∫ ς2

ς1

‖u(̟)‖d̟ +MC

∫ ς1

0

‖Ψ(ς2, ̟) − Ψ(ς1, ̟)‖‖u(̟)‖d̟

+ ℵ̃

∫ ς2

ς1

λr∗(̟)d̟ +

∫ ς1

0

‖Ψ(ς2, ̟) − Ψ(ς1, ̟)‖λr∗(̟)d̟.
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‖(FαX)(ς2) − (FαX)(ς1)‖

≤ ‖Φ(ς2, 0) − Φ(ς1, 0)‖‖ø(0)‖PH̃ + ‖Ψ(ς2, 0) − Ψ(ς1, 0)‖‖ξ0‖

+
ℵ̃2M2

C

α

∫ ς2

ς1

(

‖XT‖ + ℵ‖ø(0)‖PH̃ + ℵ̃‖ξ0‖ + ℵ̃

∫ T

0

λr∗(̟)d̟
)

dη

+
ℵ̃M2

C

α

∫ ς1

0

‖Ψ(ς2, ̟) − Ψ(ς1, ̟)‖
(

‖XT‖ + ℵ‖ø(0)‖PH̃ + ℵ̃‖ξ0‖

+ ℵ̃

∫ T

0

λr∗(̟)d̟
)

dη

+ ℵ̃

∫ ς2

ς1

λr∗(̟)d̟ +

∫ ς1

0

‖Ψ(ς2, ̟) − Ψ(ς1, ̟)‖λr∗(̟)d̟.

Here, it can be seen that ‖(FαX)(ς2) − (FαX)(ς1)‖ → 0 as (ς1 − ς2) → 0. Also, the compactness of
evolution operator Ψ(ς,̟) implies the continuity in the uniform operator topology. Thus, the set Π(ς) =
{FαX(ς) : X ∈ Q} is equicontinuous on [0,T].

Step 3. Let {Xn}n∈N be a sequence in Q and X ∈ Q such that Xn → X in Z . From axioms (R1),
we find that X̄n

ρ(̟,X̄n
̟

)
→ X̄ρ(̟,X̟̄) as n → ∞ ∀ ̟ ∈ J . Now from the inequality,

‖F (̟, X̄n
ρ(̟,X̄n

̟
)
) − F (̟, X̄ρ(̟,X̟̄))‖

≤ ‖F (̟, X̄n
ρ(̟,X̄n

̟
)
) − F (̟, X̄ρ(̟,X̄n

̟))‖

+ ‖F (̟, X̄ρ(̟,X̄n
̟

)) − F (̟, X̄ρ(̟,X̟̄))‖.

We infer that

F (̟, X̄n
ρ(̟,X̄n

̟
)
) → F (̟, X̄ρ(̟,X̟̄)) as n → ∞ ∀ ̟ ∈ J.

By the assumption (R2), and Lebesgue dominated convergence theorem, we concludes that FαX
n → FαX

in Z . Hence, Fα(·) is continuous on Q. Thus in view of Schauder’s fixed point theorem, the operator Fα
has a fixed point and the delay non-autonomous system (1.1) has a solution on J. �

Theorem 3.1. If the assumptions (P1) − (P5) are holds and linear system (2.7) is approximate control-
lable on J, then the nonlinear delay non-autonomous system (1.1) is approximate controllable.

Proof. Let Xα(·) be a fixed point of Fα in Q. Any fixed point of Fα is a mild solution of the system (1.1)
under the control

uα(ς) = C∗Ψ∗(T, ς)R(α,ΓT

0 )q(Xα),

where

q(Xα) = XT − Φ(T, 0)ø(0) − Ψ(T, 0)y0 −

∫ T

0

Ψ(T, ̟)
[

F (̟,Xρ(̟,X̟))
]

d̟,

and satisfies the inequality

Xα(T) = XT + αR(α,ΓT

0 )q(Xα).

By the assumption (A3)

∫ T

0

‖F (̟, X̄αρ(̟,X̄α
̟))‖

2d̟ ≤ TL2.
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Consequently, the sequence {F (̟, X̄αρ(̟,X̄α
̟))} is bounded in L2(J,W) and there exists a subsequence

denoted by {F (̟, X̄αρ(̟,X̄α
̟))}, that weakly converges to F (̟) in L2(J,W). By using infinite dimen-

sional version of the Ascoli-Arzela theorem, an operator l(·) →
∫ .

0 Ψ(·, ̟)l(̟)d̟ : L2(J,W) → C(J,W)
is compact, We obtain

‖q(Xα) − w‖ =
∣

∣

∣

∣

∣

∣

∫ T

0

Ψ(T, ̟)
[

‖F (̟, X̄αρ(̟,X̄α
̟)) − F (̟)‖

]

d̟
∣

∣

∣

∣

∣

∣

≤ sup
ς∈J

∣

∣

∣

∣

∣

∣

∫ ς

0

Ψ(T, ̟)
[

F (̟, X̄αρ(̟,X̄α
̟)) − F (̟)

]

d̟
∣

∣

∣

∣

∣

∣
→ 0

as α → 0+, where

w = XT − Φ(T, 0)ø(0) − Ψ(T, 0)y0 −

∫ T

0

Ψ(T, ̟)[F (̟,Xρ(̟,X̟))]d̟.

Then

‖Xα(T ) − XT‖ ≤ ‖αR(α,ΓT0 )(w)‖ + ‖αR(α,ΓT

0 )‖‖q(Xα) − w‖

≤ ‖αR(α,ΓT0 )(w)‖ + ‖q(Xα) − w‖.

In view the hypothesis (Y1) and above inequality. We assert that ‖Xα(T) − XT‖ → 0 as α → 0+.
Hence the delay non-autonomous (1.1) is approximate controllable. �

4. Integro and Impulsive System

In this section, we establish the approximate controllability of second order non-autonomous infinite
delay integro differential system with non-instantaneous impulse.















X′′(ς) = A (ς)X(ς) + Cu(ς) + F (ς,Xρ(ς,Xς)) +
∫ ς

0
K (ς −̟)G (̟,X(̟))d̟, ς ∈ (̟i, ςi+1], i = 0, 1, · · · ,m.

X(ς) = ψ1
i (ς,X(ς−

i )), ς ∈ (ςi, ̟i], i = 1, 2, · · · ,m.

X′(ς) = ψ2(ς,X(ς−
i )), ς ∈ (ςi, ̟i], i = 1, 2, · · · ,m.

X(ς) = ø(ς) ∈ P, X′(0) = ξ0, ς ∈ (−∞, 0]

(4.1)

where A ,F , C are defined in equation( 1.1). X(ς) is a state function with time interval

0 = ̟0 = ς0 < ς1 < ̟1 < ς2, · · · , ςm < ̟m < ςm+1 = T < ∞.

Consider the state function X ∈ C((ς i, ςi+1], X), i = 0, 1, · · · ,m and there exist X(ς−
i ) and X(ς+

i ), i =
1, 2, · · · ,m with X(ς−

i ) = X(ςi). The functions ψ1
i (ς,X(ς−

i )) and ψ2
i (ς,X(ς−

i )) represent non-instantaneous
impulses during the intervals (ςi, ̟i] , i = 1, 2, · · · ,m.
Let PC([0,T],W) be the space of piecewise continuous functions X : [0,T] → W a Banach space, endowed
with the norm ‖X‖PC= sup

ς∈J

‖X(ς)‖.

Definition 4.1. A function X ∈ PC([0,T],W) is called a mild solution of the impulsive system (4.1)
if X(ς) = ø(ς), X′(0) = ξ0, the non-instantaneous impulse conditions X(ς) = ψ1

i (ς,X(ς−
i )), ς ∈

(ςi, ̟i], i = 1, 2, · · · ,m, X′(ς) = ψ2
i (ς,X(ς−

i )), ς ∈ (ςi, ̟i], i = 1, 2, · · · ,m, and X(ς) is the solu-
tion of the following integral equations

X(ς) =



















Φ(ς, 0)ø(0) + Ψ(ς, 0)ξ0

+
∫ ς

0
Ψ(ς,̟)[Cu(̟) + F (̟,Xρ(̟,X̟)) +

∫̟

0
K (ς − ζ)G (ζ,X(ζ))dζ]d̟, ς ∈ [0, ς1]

Φ(ς,̟i) ψ
1
i (ς,X(ς−

i )) + Ψ(ς,̟i)ψ
2
i (ς,X(ς−

i ))

+
∫ ς

0
Ψ(ς,̟)[Cu(̟) + F (̟,Xρ(̟,X̟)) +

∫̟

0
K (ς − ζ)G (ζ,X(ζ))dζ]d̟. ς ∈ [̟i, ςi+1].

In order to prove the approximate controllability of integro differential system (4.1) with non-instantaneous
impulsive we require the following assumptions.



10 P. Kumar, R.K. Vats, A. Kumar

(P6) (i) There exist positive constants cψ1
i

and cψ2
i
, i = 1, 2, · · · ,m such that max

ς∈Ji

‖ψ1
i (ς, ·)‖ = cψ1

i

and maxς∈Ji
‖ψ2

i (t, ·)‖ = cψ2
i
, where Ji = [ςi, ̟i].

(ii) ψdi ∈ C(Ii × W,W) and there are positive constants Lψd
i
, i = 1, 2, · · · ,m, d = 1, 2, such that

‖ψdi (ς,X1) − ψdi (ς,X2)‖ ≤ Lψd
i
‖X1 − X2‖, ∀ ς ∈ Ji and X1,X2 ∈ W.

(P7)(i) KT =
∫ ς

0
K (̟)d̟

(ii) ‖G (ς, .)‖ ≤ MG

(iii) ‖G (ς,X1(ς)) − G (ς,X2(ς))‖ ≤ LG ‖(X1(ς)) − (X2(ς))‖ where MG and LG is a positive number.

Theorem 4.1. The system (4.1) has solution on J if the assumptions (P1) − (P4) and (P6), (P7) are
satisfied and for all α > 0

(1 +
1

α
N2M2

CT)(ℵ̃H2δ + TMGKT) < 1.

Proof: Consider Ẑ = {X ∈ PC : X(0) = ø(0)} be the space endowed with uniform norm convergence.

In space Ẑ , we take a subset Q̂ = {X ∈ Ẑ : ‖X‖ ≤ r̂} of Ẑ , where r̂ > 0.

Define the operator F̂α : Ẑ → Ẑ given by

F̂αX(ς) = Φ(ς,̟i)ψ
1
i (ς,X(ς−

i )) + Ψ(ς,̟i)ψ
2
i (ς,X(ς−

i )) +

∫ ςi+1

̟i

Ψ(ς,̟i)[Cu(̟) + F (ς, X̄ρ(ς,X̄ς))

+

∫ ̟

0

K (ς − ζ)G (ζ,X(ζ))dζ ]d̟

where

v(ς) = C∗Ψ∗(T, ς)R(α,Γ
ςi+1

̟i
)q(X(·))

and

q(X(·)) = XT − Φ(T, 0)ψ1
i (ς,X(ς−

i )) − Ψ(T, 0)ψ2
i (ς,X(ς−

i ))

−

∫ ςi+1

̟i

Ψ(T, ̟)[F (ς, X̄ρ(̟,X̟̄)) +

∫ ̟

0

K (ς − ζ)G (ζ,X(ζ))dζ]d̟.

For ς ∈
m
⋃

i=0

[̟i, ςi+1], we have

F̂αX(ς) = Φ(ς,̟i)ψ
1
i (ς,X(ς−

i )) + Ψ(ς, 0)ψ2
i (ς,X(ς−

i ))

+

∫ ςi+1

̟i

Ψ(ς,̟i)[Cu(̟) + F (ς, X̄ρ(ς,X̄ς )) +

∫ ̟

0

K (ς − ζ)G (ζ,X(ζ))dζ]d̟.

The function X̄ : (−∞,T] → W is the extension of X to (−∞,T] such that X̄0 = φ We assume that there

exist r̂ > 0 such that F̂α is self map in Q̂. Suppose that our assumption is false, then there exist α > 0
such that for all r̂ > 0, there exist X

′

∈ Q̂ and ς
′

∈ J such that r̂ < ‖F̂αX
′

(ς
′

)‖. we get

r̂ < ‖FαX
′

(ς
′

)‖

≤ ℵH̃ cψ1
i

+ ℵ̃cψ2
i

+ ℵ̃MC

∫ ςi+1

̟i

‖v(̟)‖d̟

+ ℵ̃

∫ ςi+1

̟i

‖[F (̟, X̄′

ρ(ς,X̄′

̟)
) +

∫ ̟

0

K(ς − ζ)G (ζ,X(ζ))dζ ]‖d̟,
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for any X ∈ Q̂, it follows from above Lemma (2.5).

‖X̄′

ρ(ς,X̄′

̟)
‖ ≤ (H3 + H )‖φ‖P + H2r̂ = r̂∗,

where r̂∗ > 0 is a constant. We obtain

r̂ ≤ ℵH̃ cψ1
i

+ ℵ̃cψ2
i

+ ℵ̃MCT‖v(s)‖ + ℵ̃

∫ T

0

λr̂∗(̟)d̟ + ℵ̃TKTMG

r̂ ≤ ℵH̃ cψ1
i

+ ℵ̃cψ2
i

+ ℵ̃MCT

{

C∗Ψ∗(T −̟i, ς)R(α,Γ
ςi+1

̟i
)
[

Xi+1 − Φ(ς,̟i)ψ
1
i (ς,X(ς−

i ))

− Ψ(ς,̟i)ψ
2
i (ς,X(ς−

i )) −

∫ ςi+1

̟i

Ψ(ς,̟i)[F (̟, X̄′

ρ(̟,X̄′

̟)
) +

∫ ̟

0

K (ς − ζ)G (ζ,X(ζ))dζ]d̟
]}

+ Ñ

∫ ςi+1

̟i

λr̂∗(̟)d̟ + ÑTKTMg

r̂ ≤ ℵH̃ cψ1
i

+ ℵ̃cψ2
i

+ ℵ̃MCT
1

α
ℵ̃McT

[

K̂ + ℵ̃

∫ ςi+1

̟i

λr̂∗d̟ + ℵ̃KTMGT

]

+ ℵ̃

∫ ςi+1

̟i

λr̂∗d̟ + ℵ̃KTMGT

r̂ ≤ ℵH̃ cψ1
i

+ ℵ̃cψ2
i

+ ℵ̃2M2
CTK̂

1

α
+ ℵ̃2M2

c T
1

α
ℵ̃

{

∫ ςi+1

̟i

λr̂∗d̟ + ℵ̃KTMGT

}

+ ℵ̃

∫ ςi+1

̟i

λr̂∗d̟ + ℵ̃KTMGT

r̂ ≤ K̄ + (1 +
1

α
ℵ̃2M̃c

2
T)ℵ̃

(

∫ ςi+1

̟i

λr̂∗d̟ +KTMGT

)

r̂ ≤ K̄ + (1 +
1

α
ℵ̃2M̃c

2
T)ℵ̃(δH2 + TKTMG ).

We note that K̄ is independent of r̂ and K̄ → ∞ as r̂ → ∞. Now

lim
r̂→∞

inf

∫ T

0

λr̂∗(̟)

r̂
d̟ = lim

r̂→∞
inf

∫ T

0

λr̂∗(̟)̂r∗

r̂∗r̂
d̟ = δH2.

Hence we have for α > 0.

(1 +
1

α
ℵ̃2M2

CT)ℵ̃(H2δ + TKTMG ) > 1,

which is contradiction to our assumption. Thus α > 0, there exist r̂ > 0 such that F̂α map Q̂ into itself.
Further, one can easily prove that for all α > 0, F̂α has a fixed point by applying Schauder’s fixed point
theorem.

5. Examples

Example 5.1. In this section, we illustrate an example to show our abstract results. We need to introduce
some technical terms in order to apply the abstract results to a partial differential equation. In view of Eq.
(2.5), we take A (ς) = A + Ã (ς), where the operator A is the infinitesimal generator of Φ(ς) associated
with Ψ(ς), Ã (ς) : D(Ã (ς)) → W is closed linear operator.

Let the space W = L2(P,C), where P is defined as the quotient R/2πZ. We will use the identi-
fication between functions on P and 2π periodic functions on R. The space of 2π−periodic integrable
functions from R into C is denoted by W = L2(P,C). Also, we take H2(P,C), the Sobolev space of
2π−periodic functions, X : R → C such that X′′ ∈ L2(P,C). Define the operator A X(ς) = X′′(ς)
with domain D(A ) = H2(P,C) and A is infinitesimal generator of strongly continuous cosine fam-
ily Φ(ς) on W (see [4]). Also A has discrete spectrum which consists eigenvalues −λ2 for λ ∈ Z,
with associated eigenvectors ξλ(ς) = 1√

2π
eiλς and the set {ξλ, λ ∈ Z} is an orthonormal basis of W.
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In particular A X = −

∞
∑

λ=1

λ2〈X, ξλ〉ξλ for X ∈ D(A ). The cosine function Φ(ς) is given by Φ(ς)X =

∞
∑

λ=1

cos(λς)〈X, ξλ〉ξλ, ς ∈ R with associated sine function Ψ(ς)X =
∞

∑

λ=1

sin(λς)

λ
〈X, ξλ〉ξλ, ς ∈ R. It is

clear that for each ς ∈ R, ‖Φ(ς)‖ ≤ 1. Hence, it is uniformly bounded on R.

Now, we consider the following delay system:

Xςς(ς,̟) = X̟̟(ς,̟) + b(ς)X̟(ς,̟) +

∫ ς

−∞
ζ1(r − ς)X (r − ρ1(ς)ρ2 (‖X‖) , ̟) dr, (5.1)

X(ς, 0) = X(ς, π) = 0, ς ∈ [0,T], 0 < T < ∞,

X(ς,̟) = ø(ς,̟), Xς(0, ̟) = X1(̟), ̟ ∈ [0, π],

(5.2)

where, ρ1, ρ2 : [0,∞] → [0,∞] are continuous functions, b : R → R is continuous function with β =
sup

0≤ς≤a
|b(ς)| for fix number a > 0. Now, we define the phase space P = C((−∞,T],W), which is space of

all functions ø : (−∞, 0] → W, such that φ is left continuous, ø|[−r,0] ∈ C([−r, 0];W), for r > 0, and

∫ 0

−∞

‖φ(θ)‖W
ζ2(θ)

d(θ) > ∞.

The norm ‖ · ‖P is defined as

‖ø‖P :=

∫ 0

−∞

‖ø(θ)‖W
ζ2(θ)

d(θ),

where ζ2 : (−∞, 0] → [1,∞) is a continuous function with ζ2(0) = 1, and

lim
θ→−∞

ζ2(θ) = ∞.

The function

G(ς) := sup
−∞<θ≤−ς

ζ2(ς + θ)

ζ2(θ)
is locally bounded for ς ≥ 0.

Now, one can easily seen that P = C((−∞,T],W) forms a phase space which satisfies the axioms (R1)-
(R3) with K̃ (ς) = ς and M̃ = G(ς) and function ø : (−∞, 0] → W, is defined as

ø(ς)(̟) = ϕ(ς,̟), ̟ ∈ [0, π].

The functions f, ρ : J × P → W are defined as

f(ς, ϕ)̟ =

∫ 0

−∞
ζ1(−θ)ϕ(θ,̟)dθ,

ρ(ς, ϕ) = ς − ρ1(s)ρ2(‖ϕ(0)‖W).

Suppose that Ã (ς)X(̟) = b(ς)X′(̟) defined on H1(P,C). We can see that A (ς) = A + Ã (ς) is a closed
linear operator. We will initially demonstrate that the evolution operator is generated by A +Ã (ς). Now,
the solution of the scalar initial value problem

X′′(ς) = −λ2X(ς) + z(ς).

X(S ) = 0, X′(S ) = X1,

is given by

X(ς) =
X1

λ
sin λ(ς − S ) +

1

λ

∫ ς

S

sinλ(ς −̟)z(̟)d̟.
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Thus, the solution of the scalar initial value problem

X′′(ς) = −λ2X(ς) + iλb(ς)X(ς),

X(S ) = 0, X′(S ) = X1, (5.3)

is given by

X(ς) =
X1

λ
sinλ(ς − S ) + i

∫ ς

S

sinλ(ς −̟)b(̟)X(̟)d̟.

From Gronwall-Bellman lemma, we get

|X(ς)| ≤
|X1|

λ
ea(ς−S ) (5.4)

for S ≤ ς and a is a constant. Now define the evolution operator as follows

Ψ(ς,S )X =
∞

∑

λ=1

Xλ(ς,S )〈X, ξλ〉ξλ.

From the estimate (5.4), it follows that C(ς,S ) : W → W is well defined and satisfies the conditions of
definition (2.1). Now the Delay non-autonomous system (1.1) can be formulated abstractly as:

X′′(ς) = A (ς)X(ς) + Cu(ς) + F (ς,Xρ(ς,Xς )), ς ∈ J = [0,T],

X(0) = ø ∈ P, X′(0) = ξ0, ς ∈ (−∞, 0].
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