Some Characterization of L^r-Henstock-Kurzweil Integrable Functions

Hemanta Kalita

ABSTRACT: In this article, we discuss few properties of L^r-Henstock-Kurzweil (in short L^r-HK) integrable functions, introduced by Paul Musial in [8]. We re-defined L^r-bounded variations. We demonstrated that L^r-Henstock-Kurzweil integrable functions are Denjoy integrable.

Key Words: L^r-Henstock-Kurzweil integral, Absolute L^r-Henstock-Kurzweil integral, Denjoy integral.

Contents

1 Introduction and Preliminaries 1
2 Bounded variation of L^r-Henstock-Kurzweil integral 3
3 L^r-Henstock-Kurzweil integral and properties 4
4 Bibliography .. 6

1. Introduction and Preliminaries

R. A. Gordon in [4] defined the Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals which are the extension of Dunford, Pettis, and Bochner integrals, respectively. Gordon established that a Denjoy-Dunford (Denjoy-Bochner) integrable function on $[a, b]$ is Dunford (Bochner) integrable in some interval $[a, b]$ and that for the spaces that do not contain copy c_0, a Denjoy-Pettis integrable function on $[a, b]$ is Pettis integrable on some sub interval of $[a, b]$. Major and minor functions were first introduced by de la Vallée Poussin in his study of the properties of the Lebesgue integral and those of functions additive of a set (see [12]). Entirely equivalent notions (of “Ober”- and “Unterfunktionen”) were introduced independently by O. Perron [11], who based on them a new definition of integral, which does not require the theory of measure. Calderón & Zygmund first gave the notion of derivation in L^r and unlike the idea of the approximate derivative had proven to be quite effective in applications of Partial Differential Equation, area of surfaces, etc. (see [2]). L. Gordon defined the notion of Dini derivatives in metric L^r (briefly L^r-derivatives) also in his work Perron integral in L^r was discussed (see [6]). Gordon proved that AP-derivatives are equivalent to L^r derivatives. Paul M. Musial and Yoram Sagher introduced the L^r- Henstock-Kurzweil integral in [8]. P. Musial and F. Tulone obtained a norm on the space of HK_r-integrable functions, as well as the dual and completion of this space (see [10]). Paul M. Musial defined the class of L^r-variational integrable functions and show that it is equivalent to the class of L^r-Henstock-Kurzweil integrable functions. They also define the class of functions of L^r-bounded variation (see [9]).

In this paper we characterize properties of L^r- Henstock-Kurzweil integrable functions define in $[a, b]$.

To make our presentation reasonably self-contained we recalling a few definitions and results in this section that we will use in our main section. Recalling a positive function $\delta : [a, b] \to (0, \infty)$ is a gauge (see [4]).

Definition 1.1. [4, Definition 9.3] A function $f : [a, b] \to \mathbb{R}$ is said to be Henstock-Kurzweil integrable on $[a, b]$ if there exists $A \in \mathbb{R}$ with the following property: given $\epsilon > 0$ there exists a gauge δ on $[a, b]$ such that

$$\left| \sum_{i=1}^{p} f(\xi_i) |J_i| - A \right| < \epsilon$$

2010 Mathematics Subject Classification: 35B40, 35L70.

Submitted June 20, 2022. Published December 20, 2022
for each δ-fine \mathcal{P}-partition $\{(I_i, \xi_i)\}_{i=1}^n$ of $[a, b]$. We write A as $\mathcal{H} \int_{[a,b]} f$

Recalling $I = [a, b]$ denote the family of all compact sub intervals $J \subset I$, a function $F : I \to X$ is additive if $F(J \cup L) = F(J) + F(L)$ for any non overlapping $J, L \in I$ such that $J \cup L \in I$. Recalling the space L^r, $1 \leq r < \infty$, as

$$L^r([a,b]) = \left\{ f : \left(\frac{1}{h} \int_a^b |f(x) - P(x)|^r dx \right)^{\frac{1}{r}} < \epsilon, \ 0 < h < \infty, \ for \ some \ polynomial \ P(x) \right\}.$$

For detailed of L^r, $1 \leq r < \infty$ one can follow \cite{2, 8, 14}.

Definition 1.2. \cite{8} Let $f \in L^r(I)$ for $1 \leq r < \infty$ and $I = (a, b)$. For all $x \in I$, r-Dini derivative. The upper-right L^r- derivative:

$$D_{r+}^x f(x) = \inf \left\{ a : \left(\frac{1}{h} \int_0^h [f(x + t) - f(x) - at]_+^r dt \right)^{\frac{1}{r}} = o(h) \right\}.$$

The lower-right L^r- derivative:

$$D_{r-}^x f(x) = \sup \left\{ a : \left(\frac{1}{h} \int_0^h [f(x + t) - f(x) - at]^-_+^r dt \right)^{\frac{1}{r}} = o(h) \right\}.$$

The upper-left L^r- derivative:

$$D_{r+}^x f(x) = \inf \left\{ a : \left(\frac{1}{h} \int_0^h [-f(x - t) + f(x) - at]_+^r dt \right)^{\frac{1}{r}} = o(h) \right\}$$

and the lower-left L^r- derivative:

$$D_{r-}^x f(x) = \sup \left\{ a : \left(\frac{1}{h} \int_0^h [-f(x - t) + f(x) - at]^-_+^r dt \right)^{\frac{1}{r}} = o(h) \right\}$$

Remark 1.3. $D_{r+}^x f(x) = \inf \left\{ a : \int_0^h \left(\frac{f(x + t) - f(x)}{t} - a \right)_+^r dt = o(h) \right\}$, with similar results for the other r-Dini derivatives.

Definition 1.4. \cite{8} For $1 \leq \infty$, a real valued function f is L^r-Henstock-Kurzweil integrable (in short HK_r, integrable) if there exists a function $F \in L^r([a, b])$ so that for any $\epsilon > 0$ there exists a gauge function δ so that for all finite collections $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ of non overlapping tagged intervals in $[a, b]$ with $P \leq \delta$, we have:

$$\sum_{i=1}^n \frac{1}{d_i - c_i} \int_{x_i}^{d_i} \left| F(y) - F(x_i) - f(x_i)(y - x_i) \right|^r dy < \epsilon. \quad (1.1)$$

The function f is said to be L^r-Henstock-Kurzweil integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is L^r-Henstock-Kurzweil integrable on $[a, b]$. We write

$$(L^r - H) \int_I f\chi_E = (L^r - H) \int_E f.$$

Recalling that a gauge δ is HK_r-appropriate for ϵ and for f if (1.1) holds for any δ-fine tagged partition \mathcal{P}. If f is HK_r-integrable on $[a,b]$, the following function is well defined for all $x \in [a, b]$

$$F(x) = (HK_r) \int_a^x f(t)dt.$$

(1.2)
Let $f \in HK_r[a,b]$. The HK_r norm of f as follows:

$$||f||_{HK_r} = ||F||_r,$$

where F is the indefinite HK_r integral of f as defined in (1.2). The concept of absolute continuity which characterizes indefinite HK_r-integrals as follows:

Definition 1.5. [8, Definition 11] Let $1 \leq r < \infty$. We say that $F \in AC_r(E)$ if for all $\epsilon > 0$ there exists $\nu > 0$ and a gauge function $\delta(x)$ defined on E so that for all $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ such that $\sum_{i=1}^{n}(d_i - c_i) < \nu$ we have

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{\frac{1}{r}} < \epsilon$$

2. Bounded variation of L^r-Henstock-Kurzweil integral

Paul Musial in [9] gave the definition of L^r- bounded variation. They missed the coherent concept of $L^r[a,b]$.

Definition 2.1. [9] Let $1 \leq r \leq \infty$, let $f : [a, b] \to \mathbb{R}$ and let E be a measurable subset of $[a, b]$. We say that f is L^r- bounded variation on $E(f \in BV_r(E))$ if there exists $M > 0$ and a gauge $\delta > 0$ defined on E so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\}_{i=1}^{n}$ is a finite collection of $\delta-$ fine tagged sub-intervals of $[a, b]$ having tags in E, then

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{\frac{1}{r}} < M.$$

We re-write the definition of L^r-bounded variational as follows:

Definition 2.2. Let $1 \leq r \leq \infty$, let $f : [a, b] \to \mathbb{R}$ and let E be a measurable subset of $[a, b]$. We say that f is L^r- bounded variation on $E(f \in BV_r(E))$ if there exists a function $F \in L^r([a, b])$ so that for any $M > 0$ and a gauge $\delta > 0$ defined on E so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\}_{i=1}^{n}$ is a finite collection of $\delta-$ fine tagged sub-intervals of $[a, b]$ having tags in E, then

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{\frac{1}{r}} < M.$$

Paul Musial in [9] mentioned the sketch of proof of the following Theorem. We have given the full proof here so that we can use this Theorem in our results.

Theorem 2.3. [9, Theorem 2] If $f \in BV_r(E)$, then we can find $\{E_i\}_{i \geq 1}$ so that $E = \bigcup_{i=1}^{\infty} E_i$ and $f \in BV(E_i)$ for all i.

Proof. Let $f \in BV_r(E)$ then for a function $F \in L^r([a, b])$ there exists $M > 0$ and a gauge $\delta > 0$ defined on E so that $\mathcal{P} = \{(x_i, [c_i, d_i])\}_{i=1}^{n}$ is a finite collection of $\delta-$fine tagged sub intervals of $[a, b]$ having tags in E then

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{\frac{1}{r}} < M. \quad (2.1)$$

Assume $F \in BV_r[a,b]$ and let $\epsilon > 0$, then for a gauge function δ defined on $[a,b]$ so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\} < \delta$ such that the equation (2.1) holds.

The function F is L^r-continuous and so clearly approximately continuous, using the [8, Theorem 5] there exists $\mathcal{P}_i = \{(x_{i,j}, [c_{i,j}, d_{i,j}])\} < \delta$, where $[c_{i,j}, d_{i,j}] \subseteq [c_i, d_i]$ for all i and j, so that
\[
\sum_{i=1}^{n} \frac{1}{d_{i,j} - c_{i,j}} \int_{c_{i,j}}^{d_{i,j}} |F(y) - F(x_{i,j})|dy \geq \frac{1}{2} |F(d_i) - F(c_i)|.
\]

Since \(P = \bigcup_{i=1}^{n} P_i \) is sub-ordinates to \(\delta \), we have
\[
\sum_{i=1}^{n} |F(d_i) - F(c_i)| \leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j} \frac{1}{d_{i,j} - c_{i,j}} \int_{c_{i,j}}^{d_{i,j}} |F(y) - F(x_{i,j})|dy < \frac{1}{2} \epsilon.
\]

So, \(F \in BV(E_i) \). Hence we can find \(f \in BV(E_i) \). \(\square \)

3. \(L^r \)-Henstock-Kurzweil integral and properties

In this section we discuss few properties of \(L^r \)-Henstock-Kurzweil integrals in real space \(\mathbb{R} \). The collection of all function that are \(L^r \)-Henstock integrable on \(I = [a, b] \), will be denoted by \(HK_r(I) \). In the begining of the section, we discuss few properties of \(BV_r[a, b] \).

Proposition 3.1. 1. Let \(F \in BV_r[a, b] \) then \(F \) is bounded variation on every sub interval of \([a, b]\) and
\[
BV_r(F, [a, b]) = BV_r(F, [a, c]) + BV_r(F, [c, b])
\]
for each \(c \in (a, b) \).

2. If \(F \) is in \(BV_r[a, c] \) and \(F \) is in \(BV_r[c, b] \) then \(F \) is in \(BV_r[a, b] \).

Theorem 3.2. The function \(F \in AC_r[a, b] \) is in \(BV_r[a, b] \).

Proof. Let \(F \in AC_r[a, b] \) and let \(\epsilon > 0 \). There exists \(\nu > 0 \) and a gauge function \(\delta \) defined on \([a, b]\) so that if \(\mathcal{P} = \{(x_n, [c_n, d_n])\} \) \(< \delta \) and
\[
\sum_{n=1}^{q} (d_n - c_n) < \nu
\]
then
\[
\sum_{n=1}^{q} \frac{1}{d_n - c_n} \int_{c_n}^{d_n} |F(y) - F(x_n)|dy < \epsilon. \]

\(\square \)

Theorem 3.3. For \(1 \leq r < \infty \), \(BV_r[a, b] = BV[a, b] \).

Proof. Let us assume \(F \in BV[a, b] \). If \(\{[c_i, d_i]\} \) is a finite collection of non overlapping intervals that have end points in \(E \), there exists \(M > 0 \) such that
\[
\sup_{j=1}^{q} \sum_{j=1}^{q} |F(d_j) - F(c_j)| < M.
\]

This implies that for any \(\nu > 0 \) if \(\sum_{j=1}^{q} (d_j - c_j) < \nu \) then
\[
\sum_{j=1}^{q} \left(\max_{x \in [c_j, d_j]} F(x) - \min_{x \in [c_j, d_j]} F(x) \right) < M.
\]

For any choice of \(x_j \in [c_j, d_j] \),
\[
\sum_{j=1}^{q} \frac{1}{d_j - c_j} \int_{c_j}^{d_j} |F(y) - F(x_j)|^r dy \leq \sum_{j=1}^{q} \left(\max_{x \in [c_j, d_j]} F(x) - \min_{x \in [c_j, d_j]} F(x) \right) < M \text{ for any gauge function } \delta.
\]

So, \(BV[a, b] \subseteq BV_r[a, b] \). also from the Theorem(2.3) \(BV_r[a, b] \subseteq BV[a, b] \). Hence \(BV_r[a, b] = BV[a, b] \). \(\square \)
Theorem 3.10. If $f : I = [a, b] \to \mathbb{R}$ are L^r-Henstock-Kurzweil integrable on I. If $f \geq 0$ a.e. on I then $(L^r - H) \int_I f \geq 0$.

Proof. Let f be L^r-Henstock-Kurzweil integrable on $I = [a, b]$ then there exists a function $F \in L^r[I]$ such that for any $\epsilon > 0$ there exists a gauge function δ such that for all finite collection $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ of non-overlapping tagged intervals in I with $\mathcal{P} < \delta$ implies

$$\sum_{i=1}^{n} \frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i) - f(x_i)(y - x_i)|^r \, dy < \epsilon.$$

That is,

$$\sum_{i=1}^{n} \frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - S(f, \mathcal{P})|^r \, dy < \epsilon.$$

Now by the [8, Theorem 21], $f \in L^1[a, b]$. From the fact of Lebesgue integral we get the proof. \qed

Remark 3.5. The linearity of L^r-Henstock-Kurzweil integral (see [9]) and the Theorem 3.4, gives if $f \geq g$ a.e. on I then $(L^r - H) \int_I f \geq (L^r - H) \int_I g$.

Lemma 3.6. For $1 \leq r < \infty$, $ACG_r[a, b] = ACG[a, b]$.

Proof. Let $E \subseteq [a, b]$. From the known fact that $ACG_r[a, b] = \bigcup AC_r[E_n]$ where $E = \bigcup_{n=1}^{\infty} E_n$. Also $AC_r[E_n] = AC[E_n]$. Therefore,

$$ACG_r[a, b] = \bigcup AC[E_n]$$

$$= ACG[E].$$

Consequently, $ACG_r[a, b] = ACG[a, b]$. \qed

We can find from the known fact that $HK_r(I)$ is contained in $L^1(I)$, then any function in $HK_r(I)$ is Denjoy integrable. That is:

Theorem 3.7. Let $f : I = [a, b] \to \mathbb{R}$. For $1 \leq r < \infty$, if f is L^r-Henstock-Kurzweil integrable function is Denjoy integrable.

Theorem 3.8. Let $f : I \to \mathbb{R}$ be L^r-Henstock-Kurzweil integrable on I. Then $|f| \in HK_r(I)$ if and only if the indefinite integral $F(x) = \int_a^x f$ has $BV_r(I)$.

Proof. The proof is immediate. Since f is in $HK_r(I)$, then f is in $L^1(I)$. Therefore, $F(x)$ is of bounded variation, which tell us that f is in $BV_r(I)$. See [1, Theorem 7.5]. \qed

Corollary 3.9. Let $f : [a, b] \to \mathbb{R}$ be L^r-Henstock-Kurzweil integrable function on $[a, b]$. L^r-Henstock-Kurzweil integrable function are absolutely integrable function on $[a, b]$.

Theorem 3.10. The function $f : I = [a, b] \to \mathbb{R}$.

1. If f is L^r-Henstock-Kurzweil integrable then f is measurable.

2. If f is L^r-Henstock-Kurzweil integrable on $[a, b]$ and $f \geq 0$ a.e then f is Lebesgue integrable on $[a, b]$.
Proof. For (1) Let \(f \) be \(L^r \)-Henstock-Kurzweil integrable on \(I = [a, b] \) and \(F \) is the \(L^r \)-Henstock-Kurzweil integral of \(f \), then [8, Theorem 14] there exists \(F \in ACG_r[a, b] \) so that \(F'_r = f \) a.e. so that \(I \) is the sum of a sequence \(\{E_n\} \) of closed sets on each of which \(F \) is \(L^r \)-AC. Again [8, Theorem 15] gives \(F \) is AC. [13, Lemma 4.1 of Ch VII] there exists for each \(n \) a function \(E_n \) of bounded variation on \(I \), which coincides with \(F \) on \(E_n \). We therefore have a.e. on \(E_n \) the relation \(f(x) = F'_r(x) = F'_e(x) \) where \(F'_e(x) \) is \(L^r \) derivative of \(F \) and since the derivative of a function is bounded variation is measurable and a.e. finite, it follows that \(f \) is measurable and a.e. finite on each \(E_n \) and consequently on the whole interval \(I = [a, b] \).

For (2), follows [8, Theorem 21]. \(\square \)

Corollary 3.11. If \(f : [a, b] \to \mathbb{R} \) be \(L^r \)-Henstock-Kurzweil integrable on \([a, b] \). The following are holds:

a) If \(f \) is bounded on \([a, b] \) then \(f \) is clearly Lebesgue integrable on \([a, b] \).

b) If \(f \geq 0 \) a.e. is \(L^r \)-Henstock integrable on every measurable subset of \([a, b] \) then \(f \) is Lebesgue integrable on \([a, b] \).

Theorem 3.12. Let \(f : [a, b] \to \mathbb{R} \). If \(f \) is \(L^r \)-Henstock-Kurzweil integrable on \([a, b] \) then every perfect set in \([a, b] \) contains a portion on which \(f \) is Lebesgue integrable.

Proof. Let \(f \) be \(L^r \)-Henstock-Kurzweil integrable on \([a, b] \) then the Theorem(3.7), \(f \) is Denjoy integrable on \([a, b] \). Using [4, Theorem 12(c)], we found every perfect set in \([a, b] \) a portion on which \(f \) is Lebesgue integrable. \(\square \)

4. Bibliography

References

Hemanta Kalita,
Mathematics Division, School of Advanced Sciences and Languages,
VIT Bhopal University, Indore-Bhopal Highway,
Sehore, Madhya Pradesh, India.
E-mail address: hemanta30kalita@gmail.com