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Nonlocal Boundary Value Problems for Functional Hybrid Differential Equations

Involving Generalized ω−Caputo Fractional Operator

Hayat Malghi1, Khalid Hilal1, Ali El Mfadel∗,1 and Abdelaziz Qaffou1

abstract: In this manuscript , we establish the existence and uniqueness of solutions for boundary value
problems of nonlinear hybrid fractional differential equations involving generalized ω−Caputo fractional deriva-
tives. The proofs are based on Krasnoselskii fixed point theorem and some basic concept of ω−Caputo frac-
tional analysis. As application, an nontrivial example is given in the last part of this paper to illustrate our
theoretical results.
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1. Introduction

Fractional calculus is a useful tool for modeling and characterizing both discrete and continuous
processes in several domains of science and engineering, including mechanics, electricity, biology, control
theory, signal and image processing, and so on,(see [3,9,13,23,24]). Basic issues related to the different
fractional derivatives such as Riemann-Liouville [21], Caputo [2], Hilfer [19], Erdelyi-Kober [22] and
Hadamard [1] ),where the study of fractional differential equations have been of great object of extensive
study during recent years such as functional hybrid fractional differential equations which can be em-
ployed in modeling and describing non-homogeneous physical phenomena that take place in their form.
The authors in [10] proved the existence and uniqueness results for hybrid differential equations by using
the theory of inequalities, hybrid fixed point theorems and operator theory. The importance of fractional
hybrid differential equations lies in the fact that they include various dynamical systems as particular
cases. Furthermore, hybrid differential equations arise from a variety of different areas of applied math-
ematics and physics, in the deflection of a curved beam having a constant or varying cross section and
electromagnetic waves or gravity driven flows. We refer the readers to the articles [7,6,12] and references
therein for many works on this theory.

2010 Mathematics Subject Classification: 34A08, 34K37.

Submitted July 09, 2022. Published September 12, 2022

1
Typeset by B

S
P
M

style.

© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.64298


2 H. Malghi, K. Hilal, Ali El Mfadel and A. Qaffou

Dhage and Lakshmikantham [12] discussed the following first order hybrid differential equation











d
dt

(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, T ],

u(t0) = u0 ∈ R.

results and some fundamental differential inequalities for hybrid differential equations initiating the
study of theory of such systems and proved utilizing the theory of inequalities, its existence of extremal
solutions and a comparison results.

Zhao, Sun, Han and Li [26] are discussed the following fractional hybrid differential equations involving
Riemann-Liouville differential operators











Dβ
(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, T ],

u(0) = 0.

where f ∈ C(J × R,R \ 0) and g ∈ C(J × R,R). and f satisfied some appropriate assumptions.
In [15], Ali El Mfadel, Said Melliani, M’hamed Elomari considered boundary value problems for hybrid

differential equations with fractional order involving Caputo differential operators of order 0 < β < 1











CDβ,ω

0+

(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, T ],

u(0) = 0.

Where T > 0, f ∈ C(J × R,R r {0}) and g ∈ Cc(J × R,R). They established the existence theorem
for fractional hybrid differential equation, some fundamental differential inequalities are also established
and the existence of extremal solutions.

On the other hand, Khalid Hilal, Ahmed Kajouni [18] investigated some existence of positive solutions
of boundary value problems of fractional differential equations











Dβ
(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, T ],

a u(0)
f(t,u(0)) + b u(T )

f(T,u(T )) = c.

Motivated by the above works, in this paper, we discuss the existence and uniqueness of maximal and
minimal solution of the following nonlinear ω− Caputo fractional differential equations with Lipschitz
and Carathodory conditions











CDβ,ω

0+

(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, T ],

θ u(0)
f(t,u(0)) + σ u(T )

f(T,u(T )) = c.

(1.1)

Where T > 0,θ, σ, c are real constants with θ + σ 6= 0, f ∈ C(J × R,Rr {0}) and g ∈ Cc(J × R,R).

Our paper is organized as follows. In Section 2, we give some basic definitions and properties of
ω−fractional integral and ω−Caputo fractional derivative which will be used in the rest of this paper.
In Section 3, we establish the existence result of solutions for ω−Caputo fractional hybrid differential
by using some Lipschitz and Carathéodory conditions. In section 4, We discuss a fundamental result
relative to strict inequalities. In section 5, demonstrates the existence of maximal and minimal solutions.
In Section 6, we prove some comparison theorems of maximal and minimal solutions and we give an
illustrative example in section 7 followed by Conclusion in Secetion 8.
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2. Preliminaries

In this section, we give some notations, definitions and results on ω-fractional derivatives and ω-
fractional integrals, for more details we refer the reader to works [4,8,20].
Notations

Let J = [0, T ] ⊂ R
+, we also consider Cc(J × R,R) the Caratheódory class of functions on J × R

i.e.h ∈ Cc(J × R,R) if and only if

1. the map t 7→ g(t, x(t)) is measurable for each x ∈ R, and

2. the map u 7→ g(t, x(t)) is continuous for each t ∈ J .

We denote by C(J ×R,Rr {0}) the space of continuous real-valued functions defined on J provided with
the topology of the supremum norm

‖ x ‖= sup
t∈J

| x(t) | .

• We denote by L1(J,R) the space of Lebesgue integrable real-valued functions on J equipped with the
norm

‖ x ‖L1=

∫ T

0

| x(t) | dt.

Definition 2.1. [5] Let q > 0, g ∈ L1([J,R) and ω ∈ Cn(J,R) such that ω′(t) > 0 for all t ∈ J .
The ω-Riemann-Liouville fractional integral at order q of the function g is given by

Iq,ω

0+ g(t) =
1

Γ(q)

∫ t

0

ω′(s)(ω(t) − ω(s))q−1g(s)ds.

Definition 2.2. [5] Let q > 0, g ∈ Cn−1(J,R) and ω ∈ Cn(J,R) such that ω′(t) > 0 for all t ∈ J .
The ω−Caputo fractional derivative at order q of the function g is given by

CDq,ω

0+ g(t) =
1

Γ(n − q)

∫ t

0

ω′(s)(ω(t) − ω(s))n−q−1g[n]
ω (s)ds,

Where

g[n]
ω (s) =

(

1

ω′(s)

d

ds

)n

g(s) and n = [q] + 1.

And [q] denotes the integer part of the real number q.

Remark 2.3. In particular, if q ∈]0, 1[, then we have

CDq,ω

0+ g(t) =
1

Γ(q)

∫ t

0

(ω(t) − ω(s))q−1g′(s)ds.

and

CDq,ω

0+ g(t) = I1−q,ω

0+

(

g′(t)

ω′(t)

)

=
1

Γ(1 − q)

(

1

ω′(t)

d

dt

)
∫ t

0

ω′(s)(ω(t) − ω(s))−qg(s)ds.

Proposition 2.4. [5] Let q > 0, if g ∈ Cn−1(J,R), then we have

1) CDq,ω

0+ Iq,ω

0+ g(t) = g(t).

2) Iq,ω

0+
CDq,ω

0+ g(t) = g(t) −
∑n−1

k=0
g[k]

ω (0)
k! (ω(t) − ω(0))k.

3) Iq,ω

a+ is linear and bounded from C(J,R) to C(J,R).



4 H. Malghi, K. Hilal, Ali El Mfadel and A. Qaffou

We define the multiplication in X by

(xy)(t) = x(t)y(t) for x, y ∈ X.

Clearly, X = C(J ;R) is a Banach algebra with respect to the above norm and multiplication in it.

Lemma 2.5. [11]Let S be a non-empty, closed convex and bounded subset of a Banach algebra X and
let A : X → X and B : S → X be two operators such that

1. A is Lipschitzian with a Lipschitz constant λ,

2. B is completely continuous,

3. x = AxBy ⇒ x ∈ S for all y ∈ S, and

4. λM < 1 where M =‖ B(S) ‖= Sup{B(v) | v ∈ S}.
Then the equation AxBx = x has a solution in S.

We assume the following assumptions throughout the rest of our paper.

(H1) The function u 7→ x(t)
f(t,x(t)) is increasing on R almost every where fort t ∈ J .

(H2) There exists a constant L > 0 such that

| f(t, x) − f(t, y) |≤ L | x − y | for all t ∈ J and x, y ∈ R.

(H3) There exists a function h ∈ L∞(J,R)

| g(t, x) |≤ h(t) a.e. t ∈ J, for all x ∈ R.

3. Existence and uniqueness results

In this section, before we give the main result of our paper, we should prove the following fundamental
lemma.

Lemma 3.1. Suppose that hypothesis (H1) holds and a,b,c are real canstants with θ + σ 6= 0.
Then, for any h ∈ L∞(J,R), then functionx ∈ C(J,R) is a soulution of the

{

CDβ,ω

0+

(

x(t)
f(t,x(t))

)

= h(t), t ∈ J = [0, T ],

θ x(0)
f(0,x(0)) + σ x(T )

f(T,x(T )) = c.
(3.1)

if and anly if x satisfies the hybrid integral equation

x(t) = [f(t, x(t))]

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

)

. (3.2)

Proof. let x(t) satisfies the equation (3.2), then we divide by f(t, x(t)) and we apply the ω−Caputo

fractional derivative CDβ,ω

0+ to both sides of equation (3.2) and we use Proposition 2.4, we obtain

CDβ,ω

0+

(

x(t)

f(t, x(t))

)

= CDβ,ω

0+

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds

)

)

. (3.3)
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CDβ,ω

0+

(

x(t)

f(t, x)

)

=C Dq,ω

0+ Iq,ω

0+ h(t) = h(t),

thus
CDβ,ω

0+

(

x(t)

f(t, x(t))

)

= h(t).

We need to verify that the condition a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c in the problem 3.3. by definition, x(t)
f(t,x(t)

is continuous. Appliying the ω− fractional, we obtain the first equation 3.2. Again,substituting t=0 and
t=T.

x(0)

f(0, x(0))
= −

1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

x(T )

f(T, x(T ))
=

1

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

.

then

θ
x(0)

f(0, x(0)
+ σ

x(T )

f(T, x(T )
= −

θσ

(θ + σ)Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds +
cθ

θ + σ

+
σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds

−
σ2

(θ + σ)Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds +
cσ

θ + σ
= c.

conversely, CDβ,ω

0+

(

x(t)
f(t,x(t))

)

= h(t), by Proposition 1, we get

x(t)

f(t, x(t))
=

x(0)

f(0, x(0))
+ Iβ,ω

0+ h(t),

then

σ
x(T )

f(T, x(T ))
= σ

x(0)

f(0, x(0))
+

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds,

thus

σ
x(T )

f(T, x(T ))
+ θ

x(0)

f(0, x(0))
= (θ + σ)

x(0)

f(0, x(0))
+

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds

implies that

x(0)

f(0, x(0))
= −

1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

Conseauently

x(t) = [f(t, x(t))]

[

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

]

.

Hence equation (3.2) holds.
This completes the proof. �
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Theorem 3.2. Assume that hypotheses (H1) − (H3) hold and θ + σ 6= 0. If

L

(

(ω(T ) − ω(0))β ‖ h ‖L∞

Γ(β + 1)

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

)

< 1, (3.4)

then the fractional hybrid differential equation (1) has a solution defined on J .

Proof. We define a subset S of X = C(J,R) defined by

S = {x ∈ X/ ‖ x ‖≤ N}.

where

N =
f0

(

(ω(T ) − ω(0))β ‖ h ‖L∞

(

1 + |σ|
|θ+σ|

)

+ |c|
|θ+σ|

)

Γ(β + 1) − L
(

(ω(T ) − ω(0))β ‖ h ‖L∞

(

1 + |σ|
|θ+σ|

)

+ |c|
|θ+σ|

) ,

and
f0 = sup

t∈J

f(t, 0).

It is easy te see that S is a closed, convex and bounded subset of the Banach space X. By using Lemma
3.1, the fractional hybrid differential equation (1.1) is equivalent to the following nonlinear fractional
hybrid integral equation

x(t) = [f(t, x(t))]

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

)

. (3.5)

Define two operators A : X → X and B : S → X be two operators defined by

Ax(t) = f(t, x(t)),

and

Bx(t) =
1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds −
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds − c

)

.

We can transforme the nonlinear fractional hybrid integral equation (3.5) into the operator equation as

Ax(t)Bx(t) = x(t), t ∈ J. (3.6)

Now, we will show that the operators A and B satisfy all the conditions of Lemma 2.5.
First, we prove that A is a Lipschitz operator on X with the Lipschitz constant λ.
Let x, y ∈ X , then by hypothesis (H2)

| Ax(t) − By(t) |=| f(t, x(t)) − f(t, y(t)) |≤ λ | x(t) − y(t) | for all t ∈ J,

Taking supremum over t, we obtain

‖ Ax − By ‖≤ λ ‖ x − y ‖, for all x, y ∈ X.

Secondly, we show the operator B is completely continuous.
For this purpose, it is enough to prove that the operator B is continuous and B(S) is uniformly bounded
and equicontinuous.
Let us show that the operator B is continuous.



Nonlocal Boundary Value Problems for Functional Hybrid Differential Equations 7

Let xn be a sequence in S converging to x ∈ S, then by the Lebesgue dominated convergence theorem,
we have

lim
n7→+∞

Bxn(t) = lim
n7→+∞

[

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1g(s, xn(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1g(s, xn(s))ds − c

)

]

= lim
n7→+∞

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1g(s, xn(s)ds

− lim
n7→+∞

1

θ + σ

(

b

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1g(s, xn(s))ds − c

)

,

= ,

[

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1g(s, x(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1g(s, x(s))ds − c

)

]

= Bx(t), for all t ∈ J.

Wich shows that B is a continuous operator on S.
Next we show that B(S) is a uniformly bounded set in X.

Let x ∈ S, then, by hypothesis (H2), for all t ∈ J

|Bx(t)| =

∣

∣

∣

∣

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1g(s, x(s)ds

−
1

θ + σ

(

b

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1g(s, x(s))ds − c

)

∣

∣

∣

∣

,

| B(t) | ≤
1

Γ(β)

∫ t

0

∣

∣

∣

∣

ω′(s)(ω(t) − ω(s))β−1g(s, x(s))

∣

∣

∣

∣

ds

+
1

θ + σ

(

σ

Γ(β)

∫ T

0

∣

∣

∣

∣

ω′(s)(ω(T ) − ω(s))β−1g(s, x(s))

∣

∣

∣

∣

ds + |c|

)

≤
1

Γ(β)

∫ t

0

∣

∣

∣

∣

ω′(s)(ω(t) − ω(s))β−1

∣

∣

∣

∣

h(s)ds

+
1

θ + σ

(

σ

Γ(β)

∫ T

0

∣

∣

∣

∣

ω′(s)(ω(T ) − ω(s))β−1h(s)

∣

∣

∣

∣

ds + |c|

)

≤
(ω(T ) − ω(s))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| b |

| θ + σ |

)

+
| c |

| θ + σ |

Thus ‖ Bx(t) ‖≤ (ω(T )−ω(s))β

Γ(β+1) ‖ h ‖L∞

(

1 + |b|
|θ+σ|

)

+ |c|
|θ+σ| for all x ∈ S This shows that B is uniformly

bounded on S Now, let us also show that B(S) is equicontinuous on J .
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Let x ∈ B(S) and t1, t2 ∈ J such that t1 < t2, then we have

|Bx(t1) − Bx(t2)| =

∣

∣

∣

∣

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1g(s, x(s))ds,

−
1

Γ(β)

∫ t2

0

ω′(s)(ω(t2) − ω(s))β−1g(s, x(s))ds

∣

∣

∣

∣

,

≤
‖ g ‖L∞

Γ(β + 1)

(

| ωβ(t2) − ωβ(t1) − (ω(t2) − ω(t1))β | +(ω(t2) − ω(t1))β)

Since ω is a continuous function, then we obatin

lim
t1→t2

|Bx(t1) − Bx(t2)| = 0.

which shows that B(S) is equicontinuous.
Now the set B(S) is uniformly bounded and equicontinuous and by using Arzelà–Ascoli Theorem [14]
we deduce that B(S) is compact, wich implies that the operator B is completely continuous.
Now it remains to show that the third assumption in Proposition 2.4 is verified.
Let x ∈ X and y ∈ S be arbitrary such that x = AxBy, then by hypothesis (H2), we have

|x(t)| =

∣

∣

∣

∣

[f(t, x(t))]

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1h(s)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1h(s)ds

)

ds − c

)

.

∣

∣

∣

∣

≤ [| f(t, x(t)) − f(t, 0) | + | f(t, 0) |]

(

(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

+
| σ | (ω(T ) − ω(0))β

| θ + σ | Γ(β + 1)
‖ h ‖∞L +

‖ c ‖

| θ + σ |

)

≤ (L | x(t) | +f0)

(

(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

)

≤ L | x(t) |

(

(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

)

+ f0

(

(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

)

,

taking supremum over t, we obtain

‖ x ‖≤

f0

(

(ω(T )−ω(0))β

Γ(β+1) ‖ h ‖L∞

(

1 + |σ|
|θ+σ|

)

+ |c|
|θ+σ|

)

1 − L

(

(ω(T )−ω(0))β

Γ(β+1) ‖ h ‖L∞

(

1 + |σ|
|θ+σ|

)

+ |c|
|θ+σ|

) = N,

Since

M =‖ B(S) ‖= Sup{B(x) : x ∈ S} ≤
(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

then we get

λM ≤ k

(

(ω(T ) − ω(0))β

Γ(β + 1)
‖ h ‖L∞

(

1 +
| σ |

| θ + σ |

)

+
| c |

| θ + σ |

)

< 1.

Finally, all conditions of Lemma 2.5 are satisfied for the operators A and B. Hence the fractional hybrid
differential equation (1.1) has a solution defined on J . �
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4. Fractional hybrid differental inequalities

We discuss a fundamental result relative to strict inequalities
We begin with the definition of the class Cp([0, T ],R).

Definition 4.1. m ∈ Cp([0, T ],R) means that m ∈ C([0, T ],R) and tpm(t) ∈ Cp([0, T ],R)

Lemma 4.2. Let m ∈ Cp([0, T ],R). suppose That for any t1 ∈ (0, +∞) we have m(t1) = 0 and m(t) ≤ 0
for 0 ≤ t ≤ t1. Then it follows that

CDβ,ω

0+ m(t1) ≥ 0

Proof. Consider m ∈ Cp([0, T ],R), such that m(t1) = 0 and m(t) < 0 for 0 < t ≤ t1. Then, m(t) is
continuous on [0, T ] and tpm(t) is continuous on [0, T ].
since m(t) ant ω(t) is continuous on [0, T ], given any t1 such that 0 < t1 < T , there exists a k1(t1) >
0, k2(t1) > 0 and h > 0 such that −k1(t1)(t1 − s) ≤ m(t) − m(s) ≤ k1(t1)(t1 − s) and −k2(t1)(t1 − s) ≤
ω(t) − ω(s) ≤ k2(t1)(t1 − s)
for 0 < t1 − h ≤ s ≤ t1 + h < T . Because we have

CDβ,ω

0+ m(t1) =
1

Γ(1 − β)

(

1

ω′(t)

d

dt

)
∫ t

0

ω′(s)(ω(t) − ω(s))−βm(s)ds

set H(t) =
∫ t

0
ω′(s)(ω(t) − ω(s))−βm(s)ds and consider

H(t1) − H(t1 − h) =

∫ t1

0

ω′(s)(ω(t1) − ω(s))−βm(s)ds −

∫ t1−h

0

ω′(s)(ω(t1 − h) − ω(s))−βm(s)ds.

=

∫ t1

t1−h

ω′(s)(ω(t1) − ω(s))−βm(s)ds +

∫ t1−h

0

ω′(s)(ω(t1) − ω(s))−βm(s)ds

−

∫ t1−h

0

ω′(s)(ω(t1 − h) − ω(s))−βm(s)ds.

=

∫ t1−h

0

ω′(s)[(ω(t1) − ω(s))−β − (ω(t1 − h) − ω(s))−β ]m(s)ds

+

∫ t1

t1−h

ω′(s)(ω(t1) − ω(s))−βm(s)ds

Let

I1 =

∫ t1−h

0

ω′(s)[(ω(t1) − ω(s))−β − (ω(t1 − h) − ω(s))−β ]m(s)ds

and

I2 =

∫ t1

t1−h

ω′(s)(ω(t1 − h) − ω(s))−βm(s)ds.

Since t1 > t1 − h and −β < 0 and ω(t) is increasing, we have

(ω(t1) − ω(s))−β < (ω(t1 − h) − ω(s))−β .

This, coupled with the fact that m(t) ≤ 0, 0 < t ≤ t1, implies that I1 ≥ 0.
Now, consider

I2 =

∫ t1

t1−h

ω′(s)(ω(t1 − h) − ω(s))−βm(s)ds.

Using
−k1(t1)(t1 − s) ≤ m(t) − m(s) ≤ k1(t1)(t1 − s)

and
−k2(t1)(t1 − s) ≤ ω(t) − ω(s) ≤ k2(t1)(t1 − s)
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and the fact that m(t1) = 0, for s ∈ (t1 − h, t1 + h) we obtain, m(s) ≥ +k1(t1)(t1 − s),
and

I2 ≥ −k1(t1)

∫ t1

t1−h

ω′(s)(ω(t1) − ω(s))−β(t1 − s)ds

≥ −k1(t1)
(k2(t1))−β+1h−β+2

−β + 1

Thus, we have

H(t1) − H(t1 − h) ≥ −k1(t1)
(k2(t1))−β+1h−β+2

−β + 1

Then dividing through by h and taking limits as h −→ 0, we have

lim
h←→0

[

H(t1) − H(t1 − h)

h
− k(t1)

(k2(t1))−β+1h−β+1

−β + 1

]

≥ 0

Since β ∈ (0, 1), we conclude that dH
dt

≥ 0, which implies that CDβ,ω

0+ m(t1) ≥ 0 . �

Theorem 4.3. Assume that hypothesis (H1) holds. Suppose that there exist functions y, z ∈ Cp([0, T ],R)
such that

CDβ,ω

0+

(

y(t)

f(t, y(t))

)

≤ g(t, y(t)) a.e. t ∈ J (4.1)

and
CDβ,ω

0+

(

z(t)

f(t, z(t))

)

≥ g(t, z(t)) a.e. t ∈ J (4.2)

0 < t ≤ T , with one of the inequalities being strict. Then

y0 < z0,

wherey0 = t1−βy(t)|t=0 and z0 = t1−βz(t)|t=0 implies

y(t) < z(t)

for all t ∈ J .

Proof. Suppose that inequality (4.2) holds. Assume that the claim is false. Then, since y0 < z0 and
t1−βy(t) and t1−βz(t) are continuous functions, there exists t1 such that 0 < t1 ≤ T with y(t1) = z(t1)
and y(t) < z(t), 0 ≤ t < t1. we pose

Y (t) =
y(t)

f(t, y(t))
and Z(t) =

z(t)

f(t, z(t))

We have Y (t1) = Z(t1), and by virtue of hypothesis (H1), we get Y (t) < Z(t) for all 0 ≤ t < t1.
Let m(t) = Y (t) − Z(t), 0 ≤ t ≤ t1, We find that m(t) < 0 and m(t1) = 0 with m ∈ Cp([0, 1],R). Then

by lemma 3. We have CDβ,ω

0+ m(t1) ≥ 0, bay (4.1) and (4.2)

g(t1, y(t1)) ≥C Dβ,ω

0+ (Y (t1) ≥C Dβ,ω

0+ Z(t1) > g(t1, z(t1)).

This is acontradiction with y(t1) = z(t1).Thus the conclusion of the theorem and the proof is complet. �

Theorem 4.4. Asusum that hypothesis (H1) holds and a, b, c are real constans with θ + σ 6= 0. Suppose
that there exist functions y, z ∈ Cp([0, T ],R) such that

CDβ,ω

0+

(

z(t)

f(t, z(t))

)

≤ g(t, z(t)) a.e. t ∈ J (4.3)
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and
CDβ,ω

0+

(

z(t)

f(t, z(t))

)

≥ g(t, z(t)) a.e. t ∈ J (4.4)

one The inequalities being strict, and if θ > 0, σ < 0 and y(T ) < z(T ), then

θ
y(0)

f(0, y(0))
+ σ

y(T )

f(T, y(T ))
< θ

z(0)

f(0, z(0))
+ σ

z(T )

f(T, z(T ))
(4.5)

implies
y(t) < z(t) for all t ∈ J (4.6)

Proof. We have

θ
y(0)

f(0, y(0))
+ σ

y(T )

f(T, y(T ))
< θ

z(0)

f(0, z(0))
+ σ

z(T )

f(T, z(T ))
,

this implies

θ
( y(0)

f(0, y(0))
−

z(0)

f(0, z(0))

)

< σ
( z(T )

f(T, z(T ))
−

y(T )

f(T, y(T ))

)

.

Since σ < 0 and y(T ) < z(T ) and by hypothesis (H1), then z(T )
f(T,z(T )) − y(T )

f(T,y(T )) > 0.

This shows that y(0)
f(0,y(0)) − z(0)

f(0,z(0)) < 0 since θ > 0, and by hypothesis (H1) we have y(0) < z(0).

hence the application of Theoreme 4.3. yields that y(t) < z(t) �

Theorem 4.5. Assume that the conditions of theorem 4.4 hold with inequalities 4.1 and 4.2. Suppose
that there existes a real number M > 0 such that

g(t, x1) − g(t, x2) ≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

a.e t ∈ J (4.7)

for all x1, x2 ∈ R with x1 ≥ x2. Then

θ
y(0)

f(0, y(0))
+ σ

y(T )

f(T, y(T ))
< θ

z(0)

f(0, z(0))
+ σ

z(T )

f(T, z(T ))
,

provided that M ≤ Γ(1 + β)(ω(t) − ω(0))2β, then

y(t) < z(t), for all t ∈ J.

Proof. We set zε(t)
f(t,zε(t)) = z(t)

f(t,z(t)) + ε(1 + (ω(t) − ω(0))β+1 for small ε > 0 and let

Zε(t) = zε(t)
f(t,zε(t)) and Z(t) = z(t)

f(t,z(t)) for t ∈ J . So that we have

Zε(t) > Z(t) ⇒ zε(t) > z(t).

Since

g(t, x1) − g(t, x2) ≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

and
CDβ,ω

0+

(

z(t)

f(t, z(t))

)

≥ g(t, z(t))

for all t ∈ J , one has

CDβ,ω

0+ Zε(t) = CDβ,ω

0+ Z(t) +C Dβ,ω

0+ ε(1 + (ω(t) − ω(0))β+1)

≥ g(t, z(t)) + εΓ(1 + β)(ω(t) − ω(0))2β

≥ g(t, zε(t)) −
M

1 + (ω(t) − ω(0))β+1
(Zε − Z) + εΓ(1 + β)(ω(t) − ω(0))2β

≥ g(t, zε(t)) + ε(Γ(1 + β)(ω(t) − ω(0))2β − M)

> g(t, zε(t))
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provided M ≤ Γ(1 + β)(ω(t) − ω(0))2β

Also, we have zε(0) > z(0) ≥ y(0). Hence, the application of theorem 3.2 yields that y(t) < zε(t) for all
t ∈ J .
By the arbitrariness of ε > 0, taking teh limits as ε −→ 0, we have y(t) ≤ z(t) for all t ∈ J .
�

5. Existence of maximal and minimal solutions

In the section, we prove the existence of maximal and minimal solution for 1.1 on J = [0, T ]. We need
the following fundamental defintion in what follows.

Definition 5.1. A solution r of 1.1 is said to be maximal if for any other solution x to 1.1 one has
x(t) ≤ r(t) for all t ∈ J . Similarly, a solution ρ of 1.1 is said to be minimal if ρ(t) ≤ x(t) for all t ∈ J ,
where x is any solution of 1.1 on J.

We discuss the case of maximal solution only, as the case of minimal solution is similar and can
be obtained with the same arguments with appropriate modifications. Given an arbitrarily small real
number ε > 0, consider the following boundary value problem of order 0 < β < 1:











CDβ,ω

0+

(

x(t)
f(t,x(t))

)

= g(t, x(t)) + ε, t ∈ J = [0, T ],

θ x(0)
f(0,x(0)) + σ x(T )

f(T,x(T )) = c + ε.

(5.1)

An existence theorem for (5.1) can be stated as follows.

Theorem 5.2. Assume that hypotheses (H1) − (H3) hold and a, b, c are real constants with a + b 6= 0.
Suppose that inequality (3.4) holds. Then, for every small number ε > 0, (5.1) has a solution defined on
J

Proof. By inequality (3.4), there exists ε0 > 0 such that

L

(

(ω(T ) − ω(0))β ‖ h ‖L∞ +ε (ω(T )−ω(0))
β

Γ(β + 1)

(

1 +
| σ |

| θ + σ |

)

+
| c | +ε

| θ + σ |

)

< 1,

for all 0 < ε ≤ ε0. Now the rest of the proof is similar to Theorem 3.2 �

Our main existence theorem for maximal solution for (1.1) is the following.

Theorem 5.3. Assume that hypotheses (H1) − (H3) hold with the conditions of Theorem 4.4 and θ, σ, c
are real constants with θ+σ 6= 0. Furthermore, if condition (3.4) holds, then (1.1) has a maximal solution
defined on J

Proof. Let {εn}∞0 be be a decreasing sequence of positive real numbers such that

lim
n→∞

εn = 0,

where εn is a positive real number satisfying the inequality

L

(

(ω(T ) − ω(0))β ‖ h ‖L∞ +ε0
(ω(T )−ω(0))

β

Γ(β + 1)

(

1 +
| σ |

| θ + σ |

)

+
| c | +ε0

| θ + σ |

)

< 1,

The number ε0 exists in view of inequality (3.4). By Theorem 5.2 , there exists a solution r(t, εn) defined
on J of the 1.1











CDβ,ω

0+

(

x(t)
f(t,x(t))

)

= g(t, x(t)) + εn, t ∈ J = [0, T ],

θ x(0)
f(0,x(0)) + σ x(T )

f(T,x(T )) = c + εn.

(5.2)
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Then any solution u of (1.1)

CDβ,ω

0+

(

u(t)

f(t, u(t))

)

≤ g(t, u(t)),

�

and any of auxiliary probleme (5.2) satisfies

CDβ,ω

0+

(

r(t, εn)

f(t, r(t, εn))

)

= g(t, r(t, εn)) + εn > g(t, r(t, εn)),

where

θ
u(0)

f(0, u(0))
+ σ

u(T )

f(T, u(T ))
≤ θ

r(0, εn)

f(0, r(0, εn))
+ σ

r(T, εn)

f(T, r(T, εn))
.

By using Thorem 4.4 we have

u(t) ≤ r(t, εn). (5.3)

for all t ∈ J and t ∈ N, since {εn} be decreasing sequence, then

c + ε2 = θ
r(0, ε2)

f(0, r(0, ε2))
+ σ

r(T, ε2)

f(T, r(T, ε2))

≤ θ
r(0, ε1)

f(0, r(0, ε1))
+ σ

r(T, ε1)

f(T, r(T, ε1))
= c + ε1

then by theorem 5.2, we have r(t, ε2) ≤ r(t, ε1), Therefore, r(t, εn) is a decreasing sequence of positive
real numbers, and the limit

r(t) = lim
n−→∞

r(t, εn) (5.4)

exists. We show that the convergence in (5.4) is uniform on J. To finish, it is enough to prove that the
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sequence r(t, εn is equicontinuous in C(J,R). Let t1, t2 ∈ J with t1 < t2 be arbitrary. Then

| r(t1, εn) − r(t2, εn) | =

∣

∣

∣

∣

[f(t1, r(t1, εn))]

(

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

)

− c − εn

)

− [f(t2, r(t2, εn))]

(

1

Γ(β)

∫ t2

0

ω′(s)(ω(t2) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

)

− c − εn

)
∣

∣

∣

∣

=

∣

∣

∣

∣

[f(t1, r(t1, εn))]

(

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

− [f(t2, r(t2, εn))]

(

1

Γ(β)

∫ t2

0

ω′(s)(ω(t2) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

− [f(t1, r(t1, εn)) − f(t2, r(t2, εn))]

×
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

)

− c − εn

)∣

∣

∣

∣

≤

∣

∣

∣

∣

[f(t1, r(t1, εn))]

(

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

− [f(t2, r(t2, εn))]

(

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

[f(t1, r(t1, εn)) − f(t2, r(t2, εn))]

×
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

)

− c − εn

)∣

∣

∣

∣

+

∣

∣

∣

∣

[f(t2, r(t2, εn))]

(

1

Γ(β)

∫ t1

0

ω′(s)(ω(t1) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

− [f(t2, r(t2, εn))]

(

1

Γ(β)

∫ t2

0

ω′(s)(ω(t2) − ω(s))β−1(g(s, r(s, εn)) + εn)

)

ds

∣

∣

∣

∣

≤ f0
(‖ h ‖L∞ +εn)

Γ(β + 1)

(

| ωβ(t2) − ωβ(t1) − (ω(t2) − ω(t1))β | +ω(t2) − ω(t1))β

)

+ | f(t1, r(t1, εn)) − f(t2, r(t2, εn)) |

×

[

(‖ h ‖L∞ +εn)(ω(T ))β

Γ(β + 1)
+

| b | (‖ h ‖L∞ +εn)(ω(T ))β

| θ + σ | Γ(β + 1)
+

| c | +εn

| θ + σ |

]

.

Where f0 = sup(t,x)∈J×[−N,N ] |f(t, x)|.
Since f is continuous on a compact set J × [−N, N ], it is uniformly continuous there.
Hence,

f(t1, r(t1, εn)) − f(t2, r(t2, εn)) −→ 0 as t1 −→ t2

uniformly for all n ∈ N. Therefore, from the above inequality, it follows that

r(t1, εn) − r(t2, εn) −→ 0 as t1 −→ t2

uniformly for all n ∈ N. Therefore,

r(t, εn)
n−→∞
−→ r(t) for all t ∈ J
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Next, we show that the function r(t) is a solution of (1.1) defined on J. Now, since r(t, εn) is a solution
of (5.2), we have

r(t, εn) = [f(t, r(t, εn))]

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1(g(s, r(s, εn)) + εn)ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1(g(s, r(s, εn)) + εn)ds − εn − c

))

,

for all t ∈ J . Taking the limit as n −→ ∞ in the above equation yields

r(t) = [f(t, r(t))]

(

1

Γ(β)

∫ t

0

ω′(s)(ω(t) − ω(s))β−1g(s, r(s))ds

−
1

θ + σ

(

σ

Γ(β)

∫ T

0

ω′(s)(ω(T ) − ω(s))β−1g(s, r(s))ds − c

))

,

for all t ∈ J . Thus, the function r is a solution of (1.1) on J. Finally, from inequality (5.4) it follows that
u(t) ≤ r(t) for all t ∈ J . Hence, (1.1) has a maximal solution on J

6. Comparison theorems

The main problem of the differential inequalities is to estimate a bound for the solution set for the
differential inequality related to the (1.1). In this section we prove that the maximal and minimal solutions
serve as the bounds for the solutions of the related differential inequality to (1.1) on .

Theorem 6.1. Assume that hypotheses (H1)−(H3) and condition (3.4) hold and θ, σ, c are real constants
with θ + σ 6= 0. Suppose that there exists a real number M > 0 such that

g(t, x1) − g(t, x2) ≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

a.e t ∈ J

for all x1, x2 ∈ R with x2 ≥ x1, where M ≤ Γ(1 + β). Furthermore, if there exists a function u ∈ C(J,R)
such that











CDβ,ω

0+

(

u(t)
f(t,u(t))

)

≤ g(t, u(t)), t ∈ J = [0, T ],

θ u(0)
f(0,u(0)) + σ u(T )

f(T,u(T )) ≤ c.

(6.1)

then
u(t) ≤ r(t) (6.2)

for all t ∈ J , where r is a maximal solution of (1.1) on J.

Proof. Let ε > 0 be arbitrarily small. By Theorem 5.3, r(t, ε) is a maximal solution of (5.1) so that the
limit

r(t) = lim
ε−→0

r(t, ε) (6.3)

is uniform on J and the function r is a maximal solution of (1.1) on J. Hence, we obtain











CDβ,ω

0+

(

r(t,ε)
f(t,r(t,ε))

)

= g(t, r(t, ε)) + ε, t ∈ J = [0, T ],

θ r(0,ε)
f(0,r(0,ε)) + σ r(T,ε)

f(T,r(T,ε)) = c + ε.

(6.4)

From the above inequality it follows that























CDβ,ω

0+

(

r(t, ε)

f(t, r(t, ε))

)

> g(t, r(t, ε)), t ∈ J = [0, T ],

θ
r(0, ε)

f(0, r(0, ε))
+ σ

r(T, ε)

f(T, r(T, ε))
= c + ε.

(6.5)
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Now we apply Theorem 4.5 to inequalities (6.1) and (6.5) and conclude that u(t) < r(t, ε) for all t ∈ J .
This, in view of limit (6.3), further implies that inequality (6.2) holds on J. This completes the proof. �

Theorem 6.2. Assume that hypotheses (H1)−(H3) and condition (3.4) hold and θ, σ, c are real constants
with θ + σ 6= 0. Suppose that there exists a real number M > 0 such that

g(t, x1) − g(t, x2) ≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

a.e t ∈ J

for all x1, x2 ∈ R with x2 ≥ x1, where M ≤ Γ(1 + β)(ω(t) − ω(0))2β. Furthermore, if there exists a
function u ∈ C(J,R) such that























CDβ,ω

0+

(

v(t)

f(t, v(t))

)

≥ g(t, v(t)), t ∈ J = [0, T ],

θ
v(0)

f(0, v(0))
+ σ

v(T )

f(T, v(T ))
> c.

(6.6)

then
ρ(t) ≤ v(t) (6.7)

for all t ∈ J , where ρ is a minimal solution of (1.1) on J.

Note that Theorem 6.1 is useful to prove the boundedness and uniqueness of the solutions for (1.1)
on J. A result in this direction is as follows.

Theorem 6.3. Assume that hypotheses (H1)−(H3) and condition (3.4) hold and a, b, c are real constants
with a + b 6= 0. Suppose that there exists a real number M > 0 such that

g(t, x1) − g(t, x2) ≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

a.e t ∈ J.

for all x1, x2 ∈ R with x2 ≥ x1, where M ≤ Γ(1 + β)(ω(t) − ω(0))2β. If an identically zero function is
the only solution of the differential equation















CDβ,ω

0+ m(t) =
M

1 + (ω(t) − ω(0))β+1
m(t), t ∈ J = [0, 1],

θm(0) + σm(T ) = 0.

(6.8)

then (1.1) has a unique solution on J.

Proof. By Theorem 3.2, (1.1) has a solution defined on J. Suppose that there are two solutions u1 and
u2 of (1.1) existing on J with u1 > u2. Define a function m : J −→ R by

m(t) =
u1(t)

f(t, u1(t))
−

u2(t)

f(t, u2(t))

In view of hypothesis (H1), we conclude that m(t) > 0. Then we have

CDβ,ω

0+ m(t) = CDβ,ω

0+

(

u1(t)

f(t, u1(t))
−

u2(t)

f(t, u2(t))

)

= CDβ,ω

0+

(

u1(t)

f(t, u1(t))

)

−C Dβ,ω

0+

(

u2(t)

f(t, u2(t))

)

,

= g(t, u1(t)) − g(t, u2(t)),

≤
M

1 + (ω(t) − ω(0))β+1

(

x1

f(t, x1)
−

x2

f(t, x2)

)

,

=
M

1 + (ω(t) − ω(0))β+1
m(t),
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for almost everywhere t ∈ J . Since

m(0) =
u1(0)

f(0, u1(0))
−

u2(0)

f(0, u2(0))

and

m(T ) =
u1(T )

f(T, u1(T ))
−

u2(T )

f(T, u2(T ))
,

and

θ
u1(0)

f(0, u1(0))
+ σ

u1(T )

f(T, u1(T ))
= θ

u2(0)

f(0, u2(0))
+ σ

u2(T )

f(T, u2(T ))
,

we have
θm(0) + σm(T ) = 0.

Now, we apply Theorem 6.1 with f(t, x) = 0 and c = 0 to get that m(t) ≤ 0 for all t ∈ J , where an
identically zero function is the only solution of the differential equation (6.8) m(t) ≤ 0 is a contradiction
with m(t) > 0. Then we can get u1 = u2. This completes the proof. �

7. An illustrative example

In this section we give an example to illustrate our main result.
Consider the following hybrid fractional differential equation:











CD
2
3 ,t2

0+

(

u(t)
f(t,u(t))

)

= g(t, u(t)), t ∈ J = [0, 1],

u(0)
f(0,u(0) + u(T )

f(T,u(T ) = 0.

(7.1)

where β = 2
3 , T = 1, ω(t) = t, g(t, u(t)) =

t2

12
sin(u(t)) and

f(t, u(t)) =
e−t

9 + et

(

|u(t)|

1 + |u(t)|

)

.

It is clear that the assumption (H1) is satisfied.
To prove the assumption (H2), let t ∈ J and u, v ∈ R, then we have

|f(t, u(t)) − f(t, v(t))| =

∣

∣

∣

∣

e−t

9 + et

(

|u(t)|

1 + |u(t)|

)

−
e−t

9 + et

(

|v(t)|

1 + |v(t)|

)∣

∣

∣

∣

,

|f(t, u(t)) − f(t, v(t))| ≤

∣

∣

∣

∣

e−t

9 + et

∣

∣

∣

∣

∣

∣

∣

∣

(

|u(t)|

1 + |u(t)|

)

−

(

|v(t)|

1 + |v(t)|

)∣

∣

∣

∣

,

|f(t, u(t)) − f(t, v(t))| ≤
1

10

∣

∣

∣

∣

u(t) − v(t)

(1 + |u(t)|) (1 + |v(t)|)

∣

∣

∣

∣

,

|f(t, u(t)) − f(t, v(t))| ≤
1

10
|u(t) − v(t)| ,

Thus, the assumption (H2) in holds true with L = 1
10 .

It remains to verify the assumption (H3). Let t ∈ J and u ∈ R, then we have

|g(t, u(t))| =

∣

∣

∣

∣

t2

12
sin(u(t))

∣

∣

∣

∣

,

|g(t, u(t))| ≤
t2

12
|sin(u(t))| ,

|g(t, u(t))| ≤
t2

12
.
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Wich implies that the assumption (H3) is verified with h(t) = t2

12 .
Moreover, we have

3L

2
×

(ω(T ) − ω(0))β ‖ h ‖L∞

Γ(β + 1)
=

3

20
×

(

(1 − 0)
1
2 × 1

36

Γ(5
3 )

)

=
1

240
×

1

Γ(5
3 )

∼ 0, 027 < 1.

Finally, all the conditions of Theorem 3.2 are satisfied, thus the hybrid fractional problem (7.1) has a
solution on [0, 1].

8. Conclusion

In this paper, we studied the existence results of hybrid fractional differential equations involving
ω−Caputo fractional derivative of order 0 < β < 1. The existence theorems are proved by using some
Lipschitz and Carathéodory conditions. As application, an example is presented to illustrate the appli-
cability our main result.
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