(3s.) **v. 2025 (43)** : 1–12. ISSN-0037-8712 doi:10.5269/bspm.64347

On T-hypersurfaces of Lorentzian para Kenmotsu manifolds

Rajendra Prasad and Pooja Gupta*

ABSTRACT: The main purpose of this paper is to study transversal hypersurface (briefly, $\mathfrak T$ -hypersurface) of Lorentzian para Kenmotsu manifolds. It is proved that each $\mathfrak T$ -hypersurface of Lorentzian almost paracontact manifold admits an almost product Lorentzian metric structure (J,G). After that, we show that every $\mathfrak T$ -hypersurface of Lorentzian almost paracontact manifold also admits a Lorentzian (f,g,μ,ν,λ) -structure and we derive some results allied with relationship between induced almost product Lorentzian metric structure (J,G) and induced Lorentzian (f,g,μ,ν,λ) -structure. Example of $\mathfrak T$ -hypersurface of Lorentzian para Kenmotsu manifold admitting Lorentzian (f,g,μ,ν,λ) -structure is also illustrated.

Key Words: Lorentzian para Kenmotsu manifolds, Lorentzian-metric, almost product metric structure, transversal hypersurfaces.

Contents

1	Introduction	1
2	Preliminaries	2
3	T-HYPERSURFACES	3
4	Some Properties of \(\mathcal{T}\)-Hypersurfaces	7
5	Example of T-Hypersurface of Lorentzian Para Kenmotsu Manifold admitting a (f,g,μ,ν) structure	γ, λ)- 9

1. Introduction

Hypersurfaces of an almost contact manifold have been studied by D. E. Blair [1], S. S. Eum [2], S. I. Goldberg and K.Yano [3], G. D. Ludden [4] and others. In 1970, S. I. Goldberg and K. Yano [3] defined noninvariant hypersurfaces of almost contact manifolds. Further, the concept of transversal hypersurface is introduced by K. Yano in 1972 [12]. After that transversal hypersurfaces were investigated by several authors in different ambient manifolds such as ([13], [14], [15]) and many others.

In 1976, I. Sato [17] studied a structure similar to the almost contact structure, namely almost paracontact structure. In [16], T. Adati studied hypersurfaces of an almost paracontact manifold. The study of Lorentzian almost paracontact manifolds was initiated by K. Matsumoto in 1989 [18]. Also he introduced the notion of Lorentzian para-Sasakian (for short, LP-Sasakian) manifold. I. Mihai and R. Rosca [21] defined the same notion independently and thereafter many authors ([19], [20], [22], [23]) studied Lorentzian para-Sasakian manifolds and their submanifolds.

The study of hypersurface has ample significance in general theory of relativity, black holes and quantum mechanics ([5], [6], [7]). Therefore, several researchers showed their interest in studying the geometry of hypersurface in different ambient spaces ([8],[9], [10], [11]).

In the present paper, we study transversal hypersurfaces, in short \mathfrak{T} -hypersurfaces of Lorentzian almost paracontact manifold, that is, such hypersurfaces of Lorentzian almost paracontact manifold which never contain the vector field ξ . Also, we obtain that every \mathfrak{T} -hypersurface of Lorentzian almost paracontact manifold admits an almost product Lorentzian metric structure (J,G). After that, we show that every transversal hypersurface of Lorentzian almost paracontact manifold also admits a Lorentzian (f,g,μ,ν,λ) -structure, then we find some results to obtain the relationship between induced almost product Lorentzian metric structure (J,G) and induced Lorentzian (f,g,μ,ν,λ) -structure. Further, we discuss about some

Submitted July 14, 2022. Published March 24, 2025 2010 Mathematics Subject Classification: 53C25, 53C40.

^{*} Corresponding author

properties of Lorentzian para Kenmotsu manifold, along with an example of transversal hypersurface of Lorentzian para Kenmotsu manifold admitting Lorentzian $(f, g, \mu, \nu, \lambda)$ -structure.

2. Preliminaries

Let \mathcal{M} be an n-dimensional differentiable manifold equipped with a triple (ϕ, ξ, η) , where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1-form on \mathcal{M} such that [25]

$$\phi^2 U = U + \eta(U)\xi, \quad \eta(\xi) = -1$$
 (2.1)

which implies that

$$\phi(\xi) = 0, \qquad \eta \circ \phi = 0, \qquad rank\phi = n - 1 \tag{2.2}$$

If \mathcal{M} admits a Lorentzian metric g such that

$$g(\phi U, \phi V) = g(U, V) + \eta(U)\eta(V) \tag{2.3}$$

then M is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, g) . Also,

$$g(\phi U, V) = g(U, \phi V), \quad g(U, \xi) = \eta(U), \quad g(\xi, \xi) = \eta(\xi) = -1$$
 (2.4)

Consequently, we call $(\mathcal{M}, \phi, \xi, \eta, g)$ is an Lorentzian almost paracontact manifold with Lorentzian metric g where, ϕ is the structural endomorphism, ξ is the characteristic vector field and η is a 1-form. Now, we define a manifold called the Lorentzian para-Kenmotsu manifold:

Definition 2.1 [24] A Lorentzian almost paracontact manifold \mathcal{M} with structure (ϕ, ξ, η, g) is called **Lorentzian para-Kenmotsu manifold** if the operator of covariant differentiation $\overline{\nabla}$ with respect to the Lorentzian metric g satisfies the following condition:

$$(\overline{\nabla}_U \phi)V = -g(\phi U, V)\xi - \eta(V)\phi U \tag{2.5}$$

for any vector fields U, V on M.

In the Lorentzian para-Kenmotsu manifold, we have

$$\overline{\nabla}_U \xi = -U - \eta(U)\xi, \tag{2.6}$$

$$(\overline{\nabla}_U \eta) V = -g(U, V) - \eta(U) \eta(V), \tag{2.7}$$

where $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Further, on a Lorentzian para-Kenmotsu manifold \mathcal{M} , the following relations hold:

1.
$$q(R(X,Y)Z,\xi) = \eta(R(X,Y)Z) = q(Y,Z)\eta(X) - q(X,Z)\eta(Y)$$

2.
$$R(\xi, X)Y = q(X, Y)\xi - \eta(Y)X$$

3.
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y$$

4.
$$R(\xi, X)\xi = X + \eta(X)\xi$$

5.
$$S(X, \xi) = (n-1)\eta(X)$$

6.
$$S(\xi, \xi) = -(n-1)$$

7.
$$Q\xi = (n-1)\xi$$

8.
$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y)$$

for any vector fields X, Y on \mathcal{M} .

Definition 2.2 A differentiable manifold M of dimension n is said to be an **almost product manifold**, if it admits a (1,1) tensor field J such that $J^2 = I$.

3. T-HYPERSURFACES

Let \mathcal{M} be a Lorentzian almost paracontact manifold equipped with Lorentzian almost paracontact structure $(\phi, \xi, \eta, \tilde{g})$, where \tilde{g} is Lorentzian metric. Let M be an immersed hypersurface of \mathcal{M} with induced symmetric tensor field g. In view of casual character of vector fields of manifold, we have three types of hypersurface, namely, pseudo-Riemannian, Riemannian and null (or lightlike) and metric g is a non-degenerate or a degenerate metric according as M is pseudo-Riemannian (Riemannian) hypersurface and lightlike hypersurface respectively. We assume that the structure vector field ξ never belongs to the tangent hyperplane of the hypersurface M. Such a hypersurface is called a **transversal hypersurface**, briefly \mathfrak{T} -hypersurface of a Lorentzian almost paracontact manifold.

Example 3.1 Let \mathcal{M} be a 7 dimensional real number space with coordinate system (x, y, z, t, u, v, s). In \mathcal{M} , we define

$$\begin{split} \eta &= ds - dx, \qquad \xi = -\frac{\partial}{\partial s}, \qquad \phi(\frac{\partial}{\partial x}) = \frac{\partial}{\partial x} + \frac{\partial}{\partial s}, \\ \phi(\frac{\partial}{\partial y}) &= \frac{\partial}{\partial y}, \qquad \phi(\frac{\partial}{\partial z}) = \frac{\partial}{\partial z}, \qquad \phi(\frac{\partial}{\partial t}) = \frac{\partial}{\partial t}, \\ \phi(\frac{\partial}{\partial u}) &= \frac{\partial}{\partial u}, \qquad \phi(\frac{\partial}{\partial v}) = \frac{\partial}{\partial v}, \qquad \phi(\frac{\partial}{\partial s}) = 0 \end{split}$$

and

$$g = dx^{2} + dy^{2} + dz^{2} + dt^{2} + du^{2} + dv^{2} - \eta \otimes \eta$$

then (ϕ, ξ, η, g) is Lorentzian almost paracontact structure in \mathcal{M} .

Let M be hypersurface of M which is defined by s = x with the immersion $i : M \to M$, then the set $\{\alpha_1 = (1, 0, 0, 0, 0, 0, 1), \alpha_2 = (0, 1, 0, 0, 0, 0, 0), \alpha_3 = (0, 0, 1, 0, 0, 0, 0), \alpha_4 = (0, 0, 0, 1, 0, 0, 0), \alpha_5 = (0, 0, 0, 0, 1, 0, 0), \alpha_6 = (0, 0, 0, 0, 0, 1, 0)\}$

is a local basis for the tangent hyperplane of M and N=(1,0,0,0,0,0,0,-1) is the normal vector field of the hypersurface. Since $\xi_{i(p)}=\frac{1}{2}(\alpha_1-N)_{i(p)}$, it can be easily seen that the characteristic vector field $\xi_{i(p)}$, $p \in M$, is not tangent to M. Thus, M is a \mathfrak{T} -hypersurface of M with the characteristic vector field $\xi_{i(p)}$, $p \in M$, which is not tangent to the hypersurface.

Now, \mathfrak{T} -hypersurfaces never contain the structure vector field ξ of the defining Lorentzian almost paracontact structure. Thus, ξ can be considered as affine normal to M. Now, ξ and $X \in TM$ are linearly independent, therefore we may write ϕX as:

$$\phi X = JX + \omega(X)\xi,\tag{3.1}$$

where J is a tensor field of type (1, 1) and ω is a 1-form on M.

Now, operating ϕ on (3.1) and with the help of equation (2.1), we have

$$J^2 = I (3.2)$$

and

$$\omega \circ J = \eta \tag{3.3}$$

which follows that:

$$\eta(JX) = (\omega \circ J)JX
\eta(JX) = \omega(J^2X)
(\eta \circ J)X = \omega(X)$$

$$\eta \circ J = \omega.$$
(3.4)

In the account of (3.1), we have

Theorem 3.1 Each \mathfrak{T} -hypersurface of a Lorentzian almost paracontact manifold admits an almost product structure J and a 1-form ω .

Now, we assume that M admits a Lorentzian almost paracontact metric structure (ϕ, ξ, η, g) . Then for every $X, Y \in TM$, we obtain the following results:

$$g(\phi X, \phi Y) = g(JX + \omega(X)\xi, JY + \omega(Y)\xi)$$

= $g(JX, JY) + \omega(Y)(\eta \circ J)(X) + \omega(X)(\eta \circ J)(Y) - \omega(X)\omega(Y)$

In the account of equation (3.4), we have

$$g(\phi X, \phi Y) = g(JX, JY) + \omega(X)\omega(Y) + \omega(X)\omega(Y) - \omega(X)\omega(Y)$$
$$= g(JX, JY) + \omega(X)\omega(Y)$$

Using equation (2.3), we get

$$g(X,Y) + \eta(X)\eta(Y) = g(JX,JY) + \omega(X)\omega(Y)$$

$$g(JX, JY) = g(X, Y) + \eta(X)\eta(Y) - \omega(X)\omega(Y). \tag{3.5}$$

Now, we define a new metric G on the transversal hypersurface given by:

$$G(X,Y) = g(\phi X, \phi Y) = g(X,Y) + \eta(X)\eta(Y). \tag{3.6}$$

So with the help of equation (3.5) we have

$$\begin{split} G(JX,JY) &= g(JX,JY) + \eta(JX)\eta(JY) \\ &= g(X,Y) + \eta(X)\eta(Y) - \omega(X)\omega(Y) + (\eta \circ J)(X)(\eta \circ J)(Y) \\ &= g(X,Y) + \eta(X)\eta(Y) - \omega(X)\omega(Y) + \omega(X)\omega(Y) \\ &= g(X,Y) + \eta(X)\eta(Y) \\ &= G(X,Y). \end{split}$$

Hence, G is Lorentzian metric on M that is (J, G) is an almost product Lorentzian structure on transversal hypersurface M of \mathcal{M} .

Consequently, we can state the following theorem:

Theorem 3.2 Each T-hypersurface of Lorentzian almost paracontact manifold admits an almost product Lorentzian structure.

We now assume that M is orientable and consider a unit vector field N of \mathcal{M} which is normal to M. Then, the Gauss and Weingarten formulae are given by:

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) N \tag{3.7}$$

and

$$\overline{\nabla}_X N = -HX \tag{3.8}$$

for any $X,Y\in TM$ and $N\in T^{\perp}M$ respectively, where $\overline{\nabla}$ is Levi Civita connection on \mathcal{M} . Here ∇ represents the Levi-Civita connection on M with respect to Lorentzian metric g induced by \tilde{g} on \mathcal{M} and h is a second fundamental form related to H by

$$h(X,Y) = g(HX,Y). (3.9)$$

Also note that, the hypersurface M is totally geodesic in \mathcal{M} if second fundamental form vanishes identically i.e. $h \equiv 0$.

Further, for any vector field $X \in TM$, we define

$$\phi X = fX + \mu(X)N,\tag{3.10}$$

$$\phi N = -U,\tag{3.11}$$

$$\xi = V + \lambda N,\tag{3.12}$$

$$\eta(X) = \nu(X) \tag{3.13}$$

where, $\eta(N) = \lambda = g(\xi, N)$, f is (1,1)-type tensor field and μ represents a non-zero 1-form and λ is a smooth function on M. Hence, it follows that $\lambda \neq 0$, because if possible $\lambda = 0$, then $\eta(N) = g(N, \xi) = 0$, which shows that ξ is perpendicular to N, so we have $\xi \in TM$, which contradicts the fact that M is a transversal-hypersurface of M.

We obtain an induced Lorentzian structure $(f, g, \mu, \nu, \lambda)$ -structure [8] on transversal-hypersurface such that

$$f^2 = I + \mu \otimes U + \nu \otimes V \tag{3.14}$$

$$fU = -\lambda V \quad and \quad fV = \lambda U$$
 (3.15)

$$\mu \circ f = \lambda \nu \quad and \quad \nu \circ f = -\lambda \mu$$
 (3.16)

$$\mu(U) = -\lambda^2 - 1, \quad \nu(V) = -1 - \lambda^2 \quad and \quad \nu(U) = 0 = \mu(V)$$
 (3.17)

$$q(fX, fY) = q(X, Y) + \nu(X)\nu(Y) - \mu(X)\mu(Y)$$
(3.18)

$$g(fX,Y) = g(X,fY), \quad g(X,U) = -\mu(X) \quad and \quad g(X,V) = \nu(X)$$
 (3.19)

for all $X, Y \in TM$, where $\lambda = \eta(N)$.

Thus, we have obtained the following result:

Theorem 3.3 Every \mathfrak{T} -hypersurface of Lorentzian almost paracontact manifold also admits a Lorentzian $(f, g, \mu, \nu, \lambda)$ -structure.

Now, we find a relationship between the induced almost product Lorentzian structure (J,G) and induced (f,g,μ,ν,λ) -structure on transversal hypersurface of Lorentzian almost paracontact manifold.

Theorem 3.4 If M be a \mathfrak{T} -hypersurface of Lorentzian almost paracontact manifold \mathcal{M} equipped with Lorentzian almost paracontact structure (ϕ, η, ξ, g) , then we have

$$\omega = \frac{1}{\lambda}\mu,\tag{3.20}$$

$$J = f - \frac{1}{\lambda}\mu \otimes V, \tag{3.21}$$

$$JU = \frac{1}{\lambda}V,\tag{3.22}$$

$$\mu \circ J = \mu \circ f = \lambda \nu, \tag{3.23}$$

$$JV = fV = \lambda U, (3.24)$$

$$\nu \circ J = \frac{1}{\lambda} \mu \tag{3.25}$$

and

$$G(X, JY) = g(X, fY). \tag{3.26}$$

Proof: As we know that, $\phi X = JX + \omega(X)\xi$ and $\xi = V + \lambda N$ which implies that

$$\phi X = JX + \omega(X)(V + \lambda N)$$

$$\implies \phi X = JX + \omega(X)V + \omega(X)\lambda N.$$

In account of equation (3.10), we have

$$fX + \mu(X)N = JX + \omega(X)V + \omega(X)\lambda N.$$

On comparing normal and tangential parts respectively, we get

$$\mu(X) = \lambda \omega(X)$$
 $\implies \omega(X) = \frac{1}{\lambda} \mu(X)$

or

$$\omega = \frac{1}{\lambda}\mu, \quad \forall X \in TM$$

which is equation (3.20) and

$$fX = JX + \omega(X)V$$

using above result i.e. equation (3.20), we have

$$JX = fX - \frac{1}{\lambda}\mu(X)V$$

$$or \qquad J = f - \frac{1}{\lambda}\mu \otimes V, \qquad \forall X \in TM$$

which is equation (3.21).

Now, from equations (3.21), (3.15) and (3.17) we have

$$JU = fU - \frac{1}{\lambda}\mu(U)V$$
$$= \lambda V - \frac{1}{\lambda}(-\lambda^2 - 1)V$$
$$\implies JU = \frac{1}{\lambda}V$$

which is equation (3.22).

Now, from equation (3.21), (3.16) and (3.17) we get

$$(\mu \circ J)(X) = (\mu \circ f)(X) - \frac{1}{\lambda}\mu(X)\mu(V)$$
$$(\mu \circ J)(X) = (\mu \circ f)(X) = \lambda\nu(X) \qquad \{\because \mu(V) = 0\}$$
$$\implies (\mu \circ J) = (\mu \circ f) = \lambda\nu, \qquad \forall X \in TM$$

which is equation (3.23).

Similarly, with the help of equations (3.21), (3.16) and (3.17) we get

$$\nu \circ J = \frac{1}{\lambda} \mu$$

which is equation (3.25).

Now, from (3.21) and (3.17), we get

$$JV = fV - \frac{1}{\lambda}\mu(V)V$$

$$\implies JV = fV = \lambda U$$

which is equation (3.24).

Now, using equations (3.4), (3.13), (3.19) and (3.20) in equation (3.6), we have

$$\begin{split} G(X,JY) &= g(X,JY) + \eta(X)\eta(JY) \\ &= g(X,JY) + \eta(X)\omega(Y) \\ &= g(X,fY - \frac{1}{\lambda}\mu(Y)V) + \eta(X)\omega(Y) \\ &= g(X,fY) - \frac{1}{\lambda}\mu(Y)\nu(X) + \frac{1}{\lambda}\mu(Y)\nu(X) \qquad \{\because \omega = \frac{1}{\lambda}\mu,\eta(X) = \nu(X)\} \\ &= g(X,fY) \end{split}$$

which is equation (3.26).

4. Some Properties of \(\mathcal{I}\)-Hypersurfaces

Firstly, we state the following lemma:

Lemma 4.1 Let M be a \mathfrak{T} -hypersurface with Lorentzian $(f, g, \mu, \nu, \lambda)$ -structure of Lorentzian almost paracontact manifold \mathcal{M} , then

$$(\overline{\nabla}_X \phi)Y = ((\nabla_X f)Y - \mu(Y)HX + h(X,Y)U) + ((\nabla_X \mu)Y + h(X,fY))N, \tag{4.1}$$

$$\overline{\nabla}_X \xi = (\nabla_X V - \lambda H X) + (h(X, V) + X\lambda)N, \tag{4.2}$$

$$(\overline{\nabla}_X \phi) N = (-\nabla_X U + f(HX)) + (-h(X, U) + \mu(HX)) N, \tag{4.3}$$

since $h(X,U) + \mu(HX) = 0$, we have $(\overline{\nabla}_X \phi)N = (-\nabla_X U + f(HX)) + 2\mu(HX)N$ or, $(\overline{\nabla}_X \phi)N = (-\nabla_X U + f(HX)) - 2h(X,U)N$ and

$$(\overline{\nabla}_X \eta) Y = (\nabla_X \nu) Y - \lambda h(X, Y), \qquad \forall X, Y \in TM. \tag{4.4}$$

Theorem 4.1 Let M be a \mathfrak{T} -hypersurface with induced Lorentzian $(f, g, \mu, \nu, \lambda)$ -structure of Lorentzian para Kenmotsu manifold \mathcal{M} , then we have

$$(\nabla_X f)Y - \mu(Y)HX + h(X,Y)U = -g(fX,Y)V - \nu(Y)fX, \tag{4.5}$$

$$(\nabla_X \mu)Y + h(X, fY) = -\nu(Y)\mu(X) - \lambda q(fX, Y), \tag{4.6}$$

$$\nabla_X V - \lambda H X = -X - \nu(X)V, \tag{4.7}$$

$$h(X,V) + X\lambda = -\lambda\nu(X),\tag{4.8}$$

$$-\nabla_X U + f(HX) = -\lambda fX + \mu(X)V, \qquad h(X, U) = 0 \quad i.e. \quad \mu(HX) = 0$$
 (4.9)

and

$$(\nabla_X \nu)Y = \lambda h(X, Y) - q(X, Y) - \nu(X)\nu(Y) \qquad \forall X, Y \in TM. \tag{4.10}$$

Proof: Using equations (4.1), (2.5), (3.12), (3.10) and (3.13), we have

$$-g(fX,Y)(V + \lambda N) - \nu(Y)f(X) - \nu(Y)\mu(X)N = ((\nabla_X f)Y - \mu(Y)HX + h(X,Y)U) + ((\nabla_X \mu)Y + h(X,fY))N.$$

Now, on comparing tangential and normal parts in above equation, we get the results (4.5) and (4.6) respectively.

Now, from equations (4.2), (2.6), (3.13) and (3.12), we get

$$\begin{split} -X - \eta(X)\xi &= (\nabla_X V - \lambda HX) + (h(X,V) + X\lambda)N \\ \Longrightarrow -X - \nu(X)(V + \lambda N) &= (\nabla_X V - \lambda HX) + (h(X,V) + X\lambda)N, \end{split}$$

on comparing tangential and normal parts, we have the required results (4.7) and (4.8) respectively. Similarly, using equations (2.5), (3.12) and (3.10) in (4.3), we get

$$\begin{split} (\overline{\nabla}_X\phi)N &= -g(\phi X,N)\xi - \eta(N)\phi X\\ \Longrightarrow &(-\nabla_X U + f(HX)) - 2h(X,U)N = -g(X,\phi N)(V+\lambda N) - \lambda(fX+\mu(X)N)\\ &= \mu(X)(V+\lambda N) - \lambda fX - \lambda \mu(X)N\\ &= \mu(X)V + \lambda \mu(X)N - \lambda fX - \lambda \mu(X)N\\ &= \mu(X)V - \lambda fX \end{split}$$

On comparing both sides we can easily obtain equation (4.9). Further, since

$$\begin{split} (\overline{\nabla}_X \eta) Y &= \overline{\nabla}_X \{ \eta(Y) \} - \eta(\overline{\nabla}_X Y) \\ &= \overline{\nabla}_X \{ g(Y, \xi) \} - \eta(\overline{\nabla}_X Y) \\ &= g(\overline{\nabla}_X Y, \xi) + g(Y, \overline{\nabla}_X \xi) - \eta(\overline{\nabla}_X Y) \\ &= g(Y, \overline{\nabla}_X \xi) \\ &= g(Y, -X - \eta(X) \xi) \\ &= -g(Y, X) - \eta(X) \eta(Y). \end{split}$$

Hence, we get the required equation (4.10) by using above the result and equation (4.4).

Theorem 4.2 If M is a \mathfrak{T} -hypersurface with Lorentzian $(f, g, \mu, \nu, \lambda)$ -structure of a Lorentzian para Kenmotsu manifold \mathcal{M} , then 2-form F on M is given by:

$$F(X,Y) = g(X, fY)$$

satisfies the following condition:

$$(\nabla_X F)(Y, Z) + (\nabla_Y F)(Z, X) + (\nabla_Z F)(X, Y) = 2[-\{g(fY, X)\nu(Z) + g(fZ, Y)\nu(X) + g(fX, Z)\nu(Y)\} + \{\mu(Z)h(X, Y) + \mu(Y)h(X, Z) + \mu(X)h(Y, Z)\}]$$

and consequently, 2-form F is not closed on M.

Proof: In the view of equations (3.9), (3.19), (4.5), we get

$$\begin{split} (\nabla_X F)(Y,Z) &= g(Y,(\nabla_X f)Z) \\ &= g(Y,-g(fX,Z)V - \nu(Z)fX + \mu(Z)HX - h(X,Z)U) \\ &= -g(fX,Z)g(Y,V) - g(Y,fX)\nu(Z) + \mu(Z)g(Y,HX) - g(Y,U)h(X,Z) \\ &= -g(fX,Z)\nu(Y) - g(Y,fX)\nu(Z) + \mu(Z)h(X,Y) + \mu(Y)h(X,Z) \end{split}$$

Similarly,

$$(\nabla_Y F)(Z, X) = -g(fY, X)\nu(Z) - g(Z, fY)\nu(X) + \mu(X)h(Y, Z) + \mu(Z)h(Y, X)$$

and

$$(\nabla_Z F)(X, Y) = -g(fZ, Y)\nu(X) - g(X, fZ)\nu(Y) + \mu(Y)h(Z, X) + \mu(X)h(Z, Y)$$

which gives

$$(\nabla_X F)(Y, Z) + (\nabla_Y F)(Z, X) + (\nabla_Z F)(X, Y) = 2[-\{g(fY, X)\nu(Z) + g(fZ, Y)\nu(X) + g(fX, Z)\nu(Y)\} + \{\mu(Z)h(X, Y) + \mu(Y)h(X, Z) + \mu(X)h(Y, Z)\}]$$

Now, we can easily see that

$$dF = (\nabla_X F)(Y, Z) + (\nabla_Y F)(Z, X) + (\nabla_Z F)(X, Y) \neq 0$$

for any $X, Y, Z \in TM$.

Hence, 2-form F is not closed on M.

5. Example of \(\mathbf{T}\)-Hypersurface of Lorentzian Para Kenmotsu Manifold admitting a $(f, g, \mu, \nu, \lambda)$ -structure

Let us consider a 5-dimensional manifold \mathcal{M}^5 which is defined as follows:

$$\mathcal{M}^5 = \{ (x_1, x_2, x_3, x_4, t) \in \mathbb{R}^5 : t > 0, 0 < x_1 < 1 \},\$$

where (x_1, x_2, x_3, x_4, t) are the standard coordinates in \mathbb{R}^5 . Let e_1, e_2, e_3, e_4 and e_5 be the vector fields

on
$$\mathcal{M}^5$$
 given by $e_1 = t \frac{\partial}{\partial x_1}$, $e_2 = t \frac{\partial}{\partial x_2}$, $e_3 = t \frac{\partial}{\partial x_3}$, $e_4 = t \frac{\partial}{\partial x_4}$, $e_5 = t \frac{\partial}{\partial t} = \xi$

 $e_1 = t \frac{\partial}{\partial x_1}$, $e_2 = t \frac{\partial}{\partial x_2}$, $e_3 = t \frac{\partial}{\partial x_3}$, $e_4 = t \frac{\partial}{\partial x_4}$, $e_5 = t \frac{\partial}{\partial t} = \xi$ which are linearly independent at each point of \mathcal{M}^5 . Let Lorentzian metric tensor, \tilde{g} on \mathcal{M}^5 is defined as follows:

$$\tilde{g}(e_1, e_1) = 1,$$
 $\tilde{g}(e_2, e_2) = 1,$ $\tilde{g}(e_3, e_3) = 1$

$$\tilde{g}(e_4, e_4) = 1,$$
 $\tilde{g}(e_5, e_5) = -1,$ $\tilde{g}(e_1, e_2) = 0$

$$\tilde{g}(e_1, e_3) = 0, \quad \tilde{g}(e_1, e_4) = 0, \quad \tilde{g}(e_1, e_5) = 0$$

$$\tilde{g}(e_2, e_3) = 0, \quad \tilde{g}(e_2, e_4) = 0, \quad \tilde{g}(e_2, e_5) = 0$$

$$\tilde{g}(e_3, e_4) = 0, \qquad \tilde{g}(e_3, e_5) = 0, \qquad \tilde{g}(e_4, e_5) = 0$$

Let η be the 1-form such that $\eta(X) = \tilde{g}(X, e_5) = \tilde{g}(X, \xi), \forall X \in \Gamma(T\mathcal{M}^5)$. Now, we define the tensor field

 ϕ of (1,1) type such that

$$\phi e_1 = -e_2,$$
 $\phi e_2 = -e_1,$ $\phi e_3 = -e_4,$ $\phi e_4 = -e_3,$ $\phi e_5 = 0.$

Then, we can easily see that

$$\tilde{g}(X,\xi) = \eta(X), \qquad \eta(\phi X) = 0,$$

$$\eta(e_5) = \eta(\xi) = \tilde{g}(\xi,\xi) = \tilde{g}(t\frac{\partial}{\partial t}, t\frac{\partial}{\partial t}) = -1, \qquad \{\because e_5 = \xi\}$$

$$\phi^2 X = X + \eta(X)\xi$$

and

$$\tilde{g}(\phi X, \phi Y) = \tilde{g}(X, Y) + \eta(X)\eta(Y), \qquad \forall X, Y \in \Gamma(T\mathcal{M}^5).$$

Thus, $\mathcal{M}^5(\phi, \xi, \eta, \tilde{g})$ defines a Lorentzian almost paracontact manifold. By ∇ , we denote the Levi-Civita connection on \mathcal{M}^5 , then by direct computations, we get

connection on
$$\mathcal{M}^5$$
, then by direct computations, we get $[e_1,e_2]=0$ $[e_1,e_3]=0$ $[e_1,e_4]=0$ $[e_1,e_5]=-e_1$ $[e_2,e_1]=0$ $[e_2,e_3]=0$ $[e_2,e_4]=0$ $[e_2,e_5]=-e_2$ $[e_3,e_1]=0$ $[e_3,e_2]=0$ $[e_3,e_4]=0$ $[e_3,e_5]=-e_3$ $[e_4,e_1]=0$ $[e_4,e_2]=0$ $[e_4,e_3]=0$ $[e_4,e_5]=-e_4$ $[e_5,e_1]=e_1$ $[e_5,e_2]=e_2$ $[e_5,e_3]=e_3$ $[e_5,e_4]=e_4$

The Riemannian connection ∇ of Lorentzian metric \tilde{g} is given by:

$$2\tilde{g}(\nabla_X Y, Z) = X\tilde{g}(Y, Z) + Y\tilde{g}(Z, X) - Z\tilde{g}(X, Y) - \tilde{g}(X, [Y, Z]) + \tilde{g}(Y, [Z, X]) + \tilde{g}(Z, [X, Y])$$

which is Koszul's formula. Using Koszul's formula, we can easily find that:

Also, let $X = \sum_{i=1}^{5} X^{i} e_{i}$ and we can easily verify that :

$$\nabla_X \xi = -X - \eta(X)\xi, \qquad (\nabla_X \phi)Y = -\tilde{q}(\phi X, Y)\xi - \eta(Y)\phi X$$

Hence, $\mathcal{M}^5(\phi, \xi, \eta, \tilde{g})$ is a Lorentzian para Kenmotsu manifold.

Now, consider (\mathcal{M}^4, g) , where $\mathcal{M}^4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 0 < x_1 < 1\}$, be a hypersurface of \mathcal{M}^5 which is given by $\chi : \mathcal{M}^4 \to \mathcal{M}^5$ such that $\chi(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_4, log x_1)$. Then, the local basis of tangent hyperplane of \mathcal{M}^4 is given by:

$$X_1 = \frac{\partial}{\partial x_1} + \frac{1}{x_1} \frac{\partial}{\partial t}, \qquad \qquad X_2 = \frac{\partial}{\partial x_2}, \qquad \qquad X_3 = \frac{\partial}{\partial x_3}, \qquad \qquad X_4 = \frac{\partial}{\partial x_4}$$

and the unit normal vector field N of hypersurface is given by

$$N = \frac{t}{\sqrt{1 - x_1^2}} \left(\frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial t} \right).$$

Here, it is clear that

$$\chi_* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{1}{x_1} & 0 & 0 & 0 \end{bmatrix}$$

which implies that $Rank \ d\chi = Rank \ \chi_* = 4 = dim \ of \ \mathcal{M}^4$. Further, we can see that $\xi_p, p \in \mathcal{M}^4$ is not tangent to the hypersurface. Therefore, \mathcal{M}^4 is a transversal hypersurface of \mathcal{M}^5 . Also, we have

$$\begin{split} \eta(N) &= -\frac{x_1}{\sqrt{1-x_1^2}} = \lambda, \\ V &= \frac{tx_1}{1-x_1^2} \frac{\partial}{\partial x_1} + \frac{t}{1-x_1^2} \frac{\partial}{\partial t} \end{split}$$

and

$$U = \frac{t}{\sqrt{1 - x_1^2}} \frac{\partial}{\partial x_2}.$$

Further, any tangent vector field of the transversal hypersurface \mathcal{M}^4 can be expressed as $X = \sum_{i=1}^4 c_i X_i$, where $c_i, 1 \leq i \leq 4$ are smooth functions. Operating ϕ on both sides we obtain

$$\phi X = -c_2 \left(1 + \frac{tx_1}{\sqrt{1 - x_1^2}}\right) \frac{\partial}{\partial x_1} - c_1 \frac{\partial}{\partial x_2} - c_4 \frac{\partial}{\partial x_3} - c_3 \frac{\partial}{\partial x_4} - c_2 \frac{tx_1^2}{\sqrt{1 - x_1^2}} \frac{\partial}{\partial t} + c_2 x_1 N = fX + \mu(X) N$$

where, $\mu(X) = c_2 x_1$ and f is given by

$$f = \begin{bmatrix} 0 & -(1 + \frac{tx_1}{\sqrt{1 - x_1^2}}) & 0 & 0 & 0\\ -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 & 0\\ 0 & 0 & -1 & 0 & 0\\ 0 & -\frac{tx_1^2}{\sqrt{1 - x_1^2}} & 0 & 0 & 0 \end{bmatrix}.$$

Hence, \mathcal{M}^4 is a \mathfrak{T} -hypersurface or transversal hypersurface of \mathcal{M}^5 which admits $(f, g, \mu, \nu, \lambda)$ -structure.

Acknowledgments

We think the referee by your suggestions.

References

- 1. Blair, D. E., Ludden, G. D., Hypersurfaces in almost contact manifolds, Tohuku Math. J. (2) 21 (1969), 354–362.
- 2. Eum, S. S., On complex hypersurfaces in normal almost contact spaces, Tensor (N.S.) 19 (1968), 45–50.
- Goldberg, S. I., Yano, K., Noninvariant hypersurfaces of almost contact manifolds, J. Math. Soc. Japan 22 (1970), 25–34.
- 4. Ludden, G. D., Submanifolds of cosymplectic manifolds, J. Differential Geometry 4 (1970), 237–244.
- 5. O'Neill, B., Semi-Riemannian Geometry With Applications To Relativity, Academic Press, New York, 1983.
- 6. Lifschytz, G. and Ortiz, M., Quantum gravity effects at a black hole horizon, Nucl. Phys. B, 456(1995), 377-401.
- 7. Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of semi-Riemannian Manifolds and Applications, Mathematics and its Applications, 364, Kluwer Academic Publishers, Dordrecht, 1996.
- 8. Yano, K and Okumara, M., $On(f, g, u, v, \lambda)$ -structures, Ködai Math. Sem. Rep., 22(1970), 401-423.
- 9. Okumura, M., On some real hypersurfaces of a complex projective space, Trans. Am. Math. Soc., 212 (1975), 355-364.
- 10. Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc., 37(3) (1985), 515-535.
- 11. Maeda, Y., On real hypersurfaces of a complex projective space, J. Math. Soc. Japan., 28 (3) (1976), 529-540.
- 12. Yano, K., Eum, S. S. and Ki, U-H., On transversal hypersurfaces of an almost contact manifold, Ködai Math. Sem. Rep., 24 (1972), 459-470.
- Ahmad, M. and Shaikh, A. A., Transversal hypersurface of (LCS)n-manifold, Acta Math. Univ. Comenianae, 87(1) (2018), 107-116.
- Prasad, R. and Tripathi, M. M., Transversal hypersurfaces of Kenmotsu manifold, Indian J. Pure Appl. Math., 34(3) (2003), 443-452.

- 15. Prasad, R. and Yadav, S. P., Transversal hypersurfaces with (f, g, u, v, λ) -structures of a nearly trans-Sasakian manifold, Advances in Pure. Appl. Math., 7(2) (2016), 115-121.
- 16. Adati, T., Hypersurfaces of almost paracontact Riemannian manifolds, TRU Math. 17 (1981),189-198.
- 17. Sato, I., On a structure similar to the almost contact structure, Tensor(N. S.), 30(1976), 219-224.
- 18. Matsumoto, K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12(1989), 151-156.
- Matsumoto, K., Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), 189–197.
- 20. Matsumoto, K., Shaikh, A. A., and De, U. C., On Lorentzian para-Sasakian manifolds, Rend. Semin. Mat. Messina (II) (2000), suppl. 149–158.
- 21. Mihai, I., Rosca, R., On Lorentzian P-Sasakian manifolds, pp. 155–169 in: Classical Analysis, Proc. Kazimierz Dolny 1991, World Scientific, Singapore 1992.
- 22. Tripathi, M. M., De, U. C., Lorentzian almost paracontact manifolds and their submanifolds, J. Korea Soc. Math. Educ. 2 (2001), 101–125.
- 23. Tripathi, M. M., Shukla, S. S., On submanifolds of Lorentzian almost paracontact manifolds, Publ. Math. Debrecen 59 (2001), 327–338.
- Haseeb, A., Prasad, R., Certain Results on Lorentzian Para-Kenmotsu Manifolds, Bol. Soc. Paran. Mat. 3 (2021), 201-220.
- Prasad, R., Rai, A. K., Shukla, S.S., Tripathi, M.M., A Note on Transversal Hypersurfaces of Lorentzian Almost Paracontact Manifolds, Demonstratio Mathematica, 4 (2007).

Rajendra Prasad,

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

E-mail address: rp.lucknow@rediffmail.com

and

Pooja Gupta,
Department of Mathematics and Astronomy,
University of Lucknow, Lucknow-226007,

 $E ext{-}mail\ address: poojaguptamars140gmail.com}$