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Orbits of Random Dynamical Systems
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abstract: In this paper, we introduce and study the notions of hypercyclicity and transitivity for random
dynamical systems and we establish the relation between them in a topological space. We also introduce the
notions of mixing and weakly mixing for random dynamical systems and give some of their properties.
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1. Introduction

Throughout the paper, N0 = {0, 1, 2, 3, . . .} will denote the set of positive integers while N =
{1, 2, 3, . . .} will be the set of nonzero positive integers.

Let X be an F -space that is a complete and metrizable topological vector space over K = R or C.
Let T be a continuous linear operator ( operator for short ) acting on X . If x is vector of X , then the
orbit of x under T is the set denoted by Orb(T, x) and defined by

Orb(T, x) := {T nx : n ∈ N0}.

We say that T is hypercyclic if there exists a vector x ∈ X whose orbit under T is dense in X . In this case,
the vector x is called a hypercyclic vector for T . We denote by HC(T ) the set of all hypercylic vectors
for T. The first example of a hypercyclic operator in the Banach space setting was given by Rolewicz
[20], who proved that if λ ∈ C; |λ| > 1, then λB is hypercyclic, where B is the unilateral backward
shift with weights constantly equal to 1. Rolewicz also proved that there are no hypercyclic operators on
finite-dimensional space. Thus hypercyclicity is an infinite-dimensional phenomenon. If the space X is a
separable space, then the hypercyclicity is equivalent to the notion of topological transitivity, that is; for
any pair (U, V ) of nonempty and open sets of X , there exists a positive integer n such that

T n(U) ∩ V 6= ∅.

In this case, the set HC(T ) is a dense Gδ subset of X , see [12].
A useful general criterion for hypercyclicity was isolated by C. Kitai in a restricted form [14] and

then by R. Gethner and J. H. Shapiro in a form close to that given below [16]. The version used here
appeared in the Ph.D. thesis of J. Bes [10]: we say that T satisfies the hypercyclicity criterion if there
exist an increasing sequence of integers (nk), two dense sets X0, Y0 ⊂ X and a sequence of maps Snk

:
Y0 −→ X such that:

(1) T nkx −→ 0 for any x ∈ X0;

(2) Snk
y −→ 0 for any y ∈ Y0;

(3) T nkSnk
y −→ y for any y ∈ Y0.
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Such an operator satisfying the hypercyclicity criterion is hypercyclic, see [10].
It is known that if T ⊕S is hypercyclic on X⊕Y , then T is hypercyclic on X and S is hypercyclic on

Y . The converse is not true even in the case T = S see [13]. From [17] if T ⊕T is topologically transitive,
then the operator T is called weakly mixing, i.e, T ⊕ T is hypercyclic. Clearly a weakly mixing operator
is hypercyclic. Moreover, the following are equivalent:

(1) T satisfies the hypercyclicity criterion;

(2) T is hereditarily hypercyclic with respect to an increasing sequence of positive integers (nk), that
is, for any subsequence (mk) of (nk), the sequence (Tmk)k∈N0

is hypercyclic;

(3) T is weakly mixing,

see [11]. The notions of hypercyclicity and supercyclicity are well studied in the last few years, see for
example K.G. Grosse-Erdmann and A. Peris’s book [17] and F. Bayart and E. Matheron’s book [9],
and the survey article [18] by K.G. Grosse-Erdmann, and the book [15] by Kostić. In [1,2,3,4,5,6,7,8]
the authors have studied the dynamics of a set of operators instead of a single operator. In this paper,
we introduce the notions of hyperciclycity, topological transitivity, and topological mixing of random
dynamical systems and we study some of their properties.

Let (Ω,F,P) be a probability space, and T = {Tω : X −→ X , ω ∈ Ω} is a collection of measurable
maps on a Polish space X. We will refer to (Ω,F,T) as random dynamical system and we denote it in the
following by T.
By taking, T n

ω = Tωn
◦ · · · ◦ Tω1

for any ω = (ω1, ω2, . . . ) ∈ ΩN0 , we can relate this random dynamical
system to a deterministic dynamical system obtained by defining the following skew-product transforma-
tion:

S : ΩN0 ⊕X −→ ΩN0 ⊕X

(ω, x) 7−→ (σω, Tω1
x),

where σ : ΩN0 7→ ΩN0 is the unilateral shift. It is clear that Sn(ω, x) = (σnω, T n
ωx), for any n ∈ N0. A

probability measure µ on X is stationary if and only if the measure P⊕N0 ⊕ µ is invariant under S that
is S∗(P⊕N0 ⊕ µ) = P⊕N0 ⊕ µ, see [19].

Hereinafter, X will be a topological space and T = {Tω}ω∈Ω be a collection of continuous functions
that map X into itself. In this case, the orbit of a point x ∈ X at some ω ∈ ΩN

0 of this random dynamical
system is defined by

Orb(x,T) = {T n
ωx : n ∈ N0},

where T 0
ωx = x.

2. Hypercyclic and Topologically Transitive Random Dynamical Systems

In the following, we define the notion of hypercyclicity for a random dynamical system.

Definition 2.1. Let X be a toplogical space. We say that a random dynamical system T is hypercyclic
on X if there exists x ∈ X and ω ∈ ΩN0 such that

Orb(x,T) = X.

In such a case, x is called a hypercyclic point for T, and the set of hypercyclic points for T is denoted by
HC(T).

Remark 2.2. Let X be a topological space, and T : X → X be a continuous map on X. If we take
Tω = T for any ω ∈ Ω, then T = {Tω}ω∈Ω is hypercyclic if only if T is hypercyclic.

Example 2.3. We pose X = [0, 1] and Ω = {1, 2}, and we consider the maps:

T1 : X −→ X

x 7−→

{

2x if x ∈ [0, 1
2 ]

2 − 2x if x ∈] 1
2 , 1]

,
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and
T2 : X −→ X

x 7−→ x+ α(mod 1),

where α ∈ [0, 1[. There exists x ∈ X such that {T n
1 x, n ∈ N0} = X. Let ω = (1, 1, 1, . . . ), then

{T n
ωx, n ∈ N0} = X.

Hence, T = {T1, T2} is hypercyclic on X.

In the following definition, we introduce the notion of quasi-conjugate for a random dynamical system.

Definition 2.4. Let X and Y be topological spaces, T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be random dynamical
systems on X and Y respectivly. T is called quasiconjugate to S if there exists a continuous map φ : Y → X

with dense range such that for all ω ∈ Ω, Tω ◦ φ = φ ◦ Sω. If φ can be chosen to be a homeomorphism
then S and T are called conjugate.

The property of hypercylicity of a dynamical system is preserved under quasiconjugacy, see [10,
Proposition 1.19]. The following proposition proves that the same result holds for a random dynamical
system.

Proposition 2.5. Let X and Y be topological spaces, T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be random
dynamical systems on X and Y respectively, such that T is quasiconjugate to S with respect to φ. If S is
hypercyclic on Y , then T is hypercyclic on X. Furthermore,

φ(HC(S)) ⊂ HC(T).

Proof. Suppose that S is hypercyclic, then there exists some x ∈ Y and ω ∈ ΩN0 such that {Sn
ωx, n ∈ N0}

visits every nonempty open subset of Y . Let U be a nonempty open subset of X , then φ−1(U) is a
nonempty open subset of Y , implies that there exists some n ∈ N0 such that Sn

ωx ∈ φ−1(U). This implies
that T n

ω (φ(x)) ∈ U . Thus,

{T n
ωφ(x) : n ∈ N0} = X.

Hence, T is hypercyclic and φ(x) ∈ HC(T). �

Corollary 2.6. Let X and Y be topological spaces, T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be random dynamical
systems on X and Y respectively, such that T is conjugate to S with respect to φ. Then T is hypercyclic
on X if only if S is hypercyclic on Y . Furthermore,

φ(HC(S)) = HC(T)

Let {X}p
i=1 be a family of topological spaces and let Ti = {Ti,ω : ω ∈ Ω} be a random dynamical

system on Xi, for all i = 1, 2, . . . , p. Let

⊕p
i=1Xi = X1 ⊕X2 ⊕ · · · ⊕Xp = {(x1, x2, . . . , xp) : xi ∈ Xi, i = 1, 2, . . . , p}

and define the random dynamical system ⊕p
i=1Ti = {(⊕p

i=1Ti)ω, ω ∈ Ω} on ⊕p
i=1Xi by,

(⊕p
i=1Ti)ω : ⊕p

i=1Xi → ⊕p
i=1Xi, (x1, x2, . . . , xp) 7→ (T1,ωx1, T2,ωx2, . . . , Tp,ωxp). (∀ω ∈ Ω)

Remark 2.7. For all ω ∈ ΩN0 , for all n ∈ N0, and for all (x1, x2, . . . , xp),

(⊕n
i=1Ti)

n
ω(x1, x2, . . . , xp) = (T n

1,ωx1, T
n
2,ωx2, . . . , T

n
p,ωxp).

Proposition 2.8. Let {X}p
i=1 be a family of topological spaces and let Ti = {Ti,ω : ω ∈ Ω} be a random

dynamical system on Xi for all i = 1, 2, . . . , p. If ⊕p
i=1Ti is hypercyclic on ⊕p

i=1Xi, then Ti is hypercyclic
in Xi for all i = 1, 2, . . . , p. Moreover if (x1, x2, . . . , xp) ∈ HC(⊕p

i=1Ti), then xi ∈ HC(Ti) for all
i = 1, 2, . . . , p.
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Proof. Suppose that ⊕p
i=1Ti is hypercyclic on ⊕p

i=1Xi. Let (x1, x2, . . . , xp) ∈ HC(⊕p
i=1Ti), then there

exists ω ∈ ΩN0 such that

{(⊕p
i=1Ti)n

ω(x1, x2, . . . , xp), n ∈ N0} = ⊕p
i=1Xi,

For all i = 1, 2, . . . , n, let Ui be a nonempty open subset of Xi, then U1 ⊕ U2 ⊕ · · · ⊕ Up is a nonempty
open subset of ⊕p

i=1Xi, implies that there exists some p ∈ N0 such that

(⊕p
i=1Ti)

n
ω(x1, x2, . . . , xp) = (T n

1,ωx1, T
n
2,ωx2, . . . , T

n
p,ωxp) ∈ U1 ⊕ U2 ⊕ · · · ⊕ Up,

that is T p
i,ωxi ∈ Ui for all i = 1, 2, . . . , p, it follows that

{T n
i,ωxi, n ∈ N0} = Xi,

Hence Ti is hypercyclic in Xi and xi ∈ HC(Ti), for all i = 1, 2, . . . , p.
�

Remark 2.9. The converse of Proposition 2.8 is not true in general. Indeed, let X = {z ∈ C : |z|= 1}
and Ω = {0, 1}. We consider the maps T0 : X → X, z 7→ eiαz, where α is irrational in [0, 2π[, and
T1 = IdX . There exists x ∈ X, such that {T n

0 x, n ∈ N0} = X, see [17]. Take ω = (0, 0, 0, . . . ), then

{T n
ωx, n ∈ N0} = X, implies that, the random dynamical system T = {Tω}ω∈Ω is hypercyclic. But T ⊕ T

is not hypercyclic.

In the following definition, we introduce the notion of topological transitivity for a random dynamical
system.

Definition 2.10. Let X be a topological space, and T = {Tω}ω∈Ω be a random dynamical system on X.
We say that T is topologically transitive on X if: for any U and V nonempty open subsets of X, there
exists ω ∈ ΩN0 and n ∈ N0, such that

T n
ω (U) ∩ V 6= ∅.

Remark 2.11. Let X be a topological space, and T : X → X be a continuous map on X. Take Tω = T

for any ω ∈ Ω. Then {Tω}ω∈Ω is topologically transitive on X if only if T is a topologically transitive
operator on X.

Example 2.12. Let X = {x ∈ C : |x|= 1} and Ω = {0, 1}. Consider the maps: T0 : X → X, x 7→ eiαx,
where α ∈ R − Q and T1 : X → X, x 7→ T1(x) = x2. For any U and V nonempty open subsets of X,
there exists some n ∈ N0 such that T n

1 (U) ∩ V 6= ∅. Take ω = (1, 1, 1, . . . ), then for any pair (U, V ) of
nonempty open subsets of X there exists some n ∈ N0, such that

T n
ω (U) ∩ V 6= ∅.

Thus, the random dynamical T = {T0, T1} is topologically transitive on X.

The topological transitivity of a dynamical system is preserved under quasiconjugacy, see [10]. The
following proposition proves that the same result holds for a random dynamical system.

Proposition 2.13. Let X and Y be topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be random
dynamical systems on X and Y respectivly, such that T is quasiconjugate to S. If S is topologically
transitive on Y , then T is topologically transitive on X.

Proof. Suppose that S is topologically transitive. Let U and V be nonempty open subsets of X , then
φ−1(U) and φ−1(V ) are nonempty and open of Y . Hence there exists ω ∈ ΩN0 and n ∈ N0, such that

Sn
ω(φ−1(U)) ∩ φ−1(V ) 6= ∅.

This implies that

T n
ω (U) ∩ V 6= ∅.
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Thus T is toplogically transitive. �

Corollary 2.14. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectivly, such that T is conjugate to S. Then S is topologically
transitive on Y if only if T is topologically transitive on X.

Proposition 2.15. Let {Xi}n
i=1 be a family of topological spaces and let Ti = {Ti,ω : ω ∈ Ω} be a random

dynamical system on Xi, for all i = 1, 2, . . . , n. If ⊕n
i=1Ti is topologically transitive in ⊕n

i=1Xi, then Ti

is topologically transitive in Xi, for all i = 1, 2, . . . , n.

Proof. Suppose that ⊕n
i=1Ti is topologically transitive. Let Ui and Vi be nonempty open subsets of Xi;

1 ≤ i ≤ n. Then, U1 ⊕U2 ⊕ · · · ⊕Un and V1 ⊕V2 ⊕ · · · ⊕Vn are nonempty open subsets of ⊕n
i=1Xi, which

implies that there exist ω ∈ ΩN0 and p ∈ N0 such that

(⊕n
i=1Ti)

p
ω(U1 ⊕ U2 ⊕ · · · ⊕ Un) ∩ (V1 ⊕ V2 ⊕ · · · ⊕ Vn) 6= ∅

then

(T p
1,ω(U1) ⊕ T

p
2,ω(U2) ⊕ · · · ⊕ T p

n,ω(Un)) ∩(V1 ⊕ V2 ⊕ · · · ⊕ Vn) 6= ∅,

it follows that

T
p
i,ω(Ui) ∩ Vi 6= ∅ for any i = 1, 2, . . . , n.

Thus, Ti is topologically transitive on Xi, for all i = 1, 2, . . . , n.
�

Remark 2.16. The converse is not true. Let X = {z ∈ C : |z|= 1} and Ω = {0, 1}. We consider the
maps T0 : X → X, z 7→ eiαz, where α is irrational in [0, 2π[, and T1 = IdX . There exists x ∈ X, such
that

{T n
0 x, n ∈ N0} = X.

Then the random dynamical system T = {Tω}ω∈Ω is hypercyclic on X, but T ⊕ T is not hypercyclic in
X ⊕X.

By the Birkhoff’s transitivity theorem [12], if X is a separable F -space, then a continuous map on X
is hypercyclic if and only if it is topologically transitive. For T a random dynamical system we have the
following remark. Recall that

σ : ΩN0 −→ ΩN0

(ω1, ω2, . . . ) 7−→ σω = (ω2, ω3, . . . ).

the full shift in ΩN0 .

Remark 2.17. Let X be a topological space without isolated points and T = {Tω}ω∈Ω be a random
dynamical system on X. It is easy to see that if x ∈ HC(T) with ω, then so is every Tσpwx (p ≥ 1). As
a result, we have

Orb(x,T) ⊂ HC(T)

and this shows that HC(T) is dense in X.

In the following proposition, we prove that if T is hypercyclic then it is topologically transitive.

Proposition 2.18. Let X be a topological space and T = {Tω}ω∈Ω be a random dynamical system on X,
such that for any ω ∈ Ω, Tω is a continuous map on X. If T is hypercyclic on X, then it is topologically
transitive on X.

Proof. Suppose that T is hypercyclic. Then there exists some x ∈ X and ω ∈ ΩN0 such that

{T n
ωx, n ∈ N0} = X .
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Let U and V be two nonempty open subsets of X , then there exists some p, n ∈ N0, such that T p
ωx ∈ U

and T n
ωx ∈ V . Suppose that n > p, then T n

ωx = T
n−p
σpω ◦ T p

ωx, which implies that,

T
n−p
σpω (U) ∩ V 6= ∅.

Hence, T is topologically transitive.
�

With some additional assumptions on the topological space, the following theorem shows that we have
the equivalence between the properties of hypercyclicity and topological transitivity.

Theorem 2.19. Let X be a separable complete metric space X without isolated points. Let T = {Tω}ω∈Ω

be a random dynamical system on X. Then T is topologically transitive on X if only if it is hypercyclic
on X.

Proof. Let {Uk}k≥1 be a countable base for the topology of X . Then there is some ω ∈ ΩN0 such that
for any nonempty open set V in X and each fixed k ≥ 1, there is some n ≥ 0 such that

T n
ω (V ) ∩ Uk 6= ∅

or equivalently
V ∩ T−n

ω (Uk) 6= ∅

This shows that
⋃

n≥0 T
−n
ω (Uk) is dense in X and hence, since X is a Baire space, the set ∩k≥1 ∪n≥0

T−n
ω (Uk) is also dense in X . Now, if we define the set

Dω(T) = {x ∈ X : {T n
ωx : n ∈ N0} = X},

then it is easy to see that

Dω(T) =
⋂

k≥1

⋃

n≥0

T−n
ω (Uk)

Thus, is a dense Gδ set in X and in particular nonempty. So, T is hypercyclic and we are done. �

3. Topological mixing and Weakly Topological Mixing Random Dynamical Systems

In the following definition, we introduce the notion of topological mixing for a random dynamical
system.

Definition 3.1. Let X be a topological space, and T = {Tω}ω∈Ω be a random dynamical system on X.
We say that T is topologically mixing on X if, for any U and V nonempty open subsets of X, there exist
ω ∈ ΩN0 and N ∈ N0, such that

T n
ω (U) ∩ V 6= ∅, for all n > N .

Remark 3.2. Let X be a topological space, and T : X → X be a continuous map on X. Take Tω = T

for any ω ∈ Ω. Then T = {Tω}ω∈Ω is topologically mixing on X if only if T is a topologically mixing
operator on X.

Example 3.3. We pose X = [0, 1] and Ω = {0, 1} , and we consider the maps: T1 : X → X,

x 7→

{

2x if x ∈ [0, 1
2 ]

2 − 2x if x ∈] 1
2 , 1]

and T2 : X → X,
x 7→ T2(x) = x+ α(mod 1),

with α ∈ [0, 1[. For any U and V of nonempty open subsets of X there exists some N ∈ N0, such that
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T n
1 (U) ∩ V 6= ∅, for all n > N ,

see [17]. Take ω = (1, 1, 1, . . . ), then for any pair (U, V ) of nonempty open subsets of X there exists
some N ∈ N0, such that T n

ω (U) ∩ V 6= ∅, for all n > N , hence T = {Tω}ω∈Ω is topologically mixing on
X.

Proposition 3.4. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectively, such that T is quasi-conjugate to S with respect to
φ. If S is topologically mixing on Y , then T is topologically mixing on X.

Proof. Suppose that S is topologically mixing on X . Let U and V be two nonempty open subsets of X ,
then φ−1(V ) and φ−1(U) are nonempty and open in Y . Hence there exist ω ∈ ΩN0 and N ∈ N0, such
that

Sn
ω(φ−1(U)) ∩ φ−1(V ) 6= ∅ for all n > N ,

which implies that

T n
ω (U) ∩ V 6= ∅ for all n > N .

Thus T is topologically mixing.
�

Corollary 3.5. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectively, such that T is conjugate to S. Then T is topologically
mixing on X if only if S is topologically mixing on Y .

Proposition 3.6. Let {Xi}n
i=1 be a family of topological spaces, and let Ti = {Ti,ω : ω ∈ Ω} be a random

dynamical system on Xi, for all i = 1, 2, . . . , n. If ⊕n
i=1Ti is topologically mixing on ⊕n

i=1Xi, then Ti is
topologically mixing in Xi for all i = 1, 2, . . . , n.

Proof. Suppose that ⊕n
i=1Ti is topologically mixing. Let Ui and Vi be nonempty open subsets of Xi;

1 ≤ i ≤ n. Then U1 ⊕U2 ⊕ · · · ⊕Un and V1 ⊕ V2 ⊕ · · · ⊕ Vn are nonempty open subsets of ⊕n
i=1Xi, which

implies that there exists ω ∈ ΩN0 and N ∈ N0, such that

(⊕n
i=1Ti)

p
ω(U1 ⊕ U2 ⊕ · · · ⊕ Un) ∩ (V1 ⊕ V2 ⊕ · · · ⊕ Vn) 6= ∅, for all p > N .

Then

(T p
1,ω(U1) ⊕ T

p
2,ω(U2) ⊕ · · · ⊕ T p

n,ω(Un)) ∩(V1 ⊕ V2 ⊕ · · · ⊕ Vn) 6= ∅, for all p > N.

It follows that
T

p
i,ω(Ui) ∩ Vi 6= ∅,

for all p > N , for any i = 1, 2, . . . , n. Thus, Ti is topologically mixing on Xi for all i = 1, 2, . . . , n.
�

In the following definition, we introduce the notion of weakly topologically mixing for a random
dynamical system.

Definition 3.7. Let X be a topological space. A random dynamical system T = {Tω}ω∈Ω is called weakly
topologically mixing on X, if T ⊕ T is topologically transitive on X ⊕X.

Proposition 3.8. Let X be a topological space, and T = {Tω}ω∈Ω be a random dynamical system on X.
If T is weakly topologically mixing on X, then it is topologically transitive on X.

Proof. This is a consequence of Proposition 2.15. �

Remark 3.9. Let X be a topological space, and T = {Tω}ω∈Ω be a random dynamical system on X, then

topologically mixing ⇒ weak topologically mixing ⇒ topologically transitive.
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Furthermore, if X is a separable complete metric space without isolated points, then

topologically transitive ⇔ hypercyclic.

Proposition 3.10. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectivly such that T is quasiconjugate to S. If S is weakly
topologically mixing on Y then T is weakly topologically mixing on X.

Proof. Suppose that S is weakly topologically mixing on Y , then S ⊕ S is topologically transitive in X .
Let φ : Y → X be a continuous map with dense range such that for all ω ∈ Ω, Tω ◦ φ = φ ◦ Sω. Take
ψ = φ ⊕ φ, then ψ defines a continuous map with dense range from Y ⊕ Y to X ⊕ X . Furthermore, for
all ω ∈ Ω we have ψ ◦ (S ⊕ S)ω = (T ⊕ T )ω ◦ ψ. That is S ⊕ S is quasiconjugate to T ⊕ T via ψ. Hence
by Proposition (2.13), we deduce that T ⊕ T is topologically transitive on X ⊕ X . Thus T is weakly
topologically mixing on X .

�

Corollary 3.11. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectively such that T is conjugate to S. Then S is weakly
topologically mixing on X if only if T is weakly topologically mixing on Y .

Proposition 3.12. Let X and Y be two topological spaces. Let T = {Tω}ω∈Ω and S = {Sω}ω∈Ω be two
random dynamical systems on X and Y respectively. If T ⊕ S is weakly topologically mixing on X ⊕ Y ,
then T and S are topologically weakly mixing on X and Y respectively.

Proof. Suppose that T ⊕ S is weakly mixing. We consider the maps, φ : X ⊕ Y → X , (x, y) 7→ x and
ψ : X⊕Y → X , (x, y) 7→ y. For all ω ∈ Ω we have φ ◦ (T ⊕S)ω = Tω ◦φ and ψ ◦ (T ⊕S)ω = Sω ◦ψ, then
T is quasiconjugate to T ⊕ S via φ and S is quasiconjugate to T ⊕ S via ψ. Thus, by Proposition 3.10 we
deduce that T and S are weakly topologically mixing on X and Y respectively.

�
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