Bol. Soc. Paran. Mat. (3s.) v. 2025 (43) : 1-9
©SPM — E-ISSN-2175-1188 ISSN-0037-8712
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.64393

New Theorems on Theta-Function Analogues and Explicit Evaluations of Ramanujan’s
Remarkable Product

S. Vasanth Kumar

ABSTRACT: We define Vi, in this article by using Ramanujan’s product of theta functions ¢ (—q) and
f(—g?), which are analogues to Ramanujan’s amazing product of theta functions. For explicit evaluations of
Vin,n, we prove general theorems.
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1. Introduction

Ramanujan’s general theta-function [15] f(a,b) is defined by

fla,b): = @D/ 2pn(n=1/2 1 gp| < 1,

= (—a;ab)oo(—b; ab) oo (ab; ab) s

Three special cases of f(a,b) are as follows:

o) = fla) = 3 o =i*q>°°7 (1.2)

n=-—oo q)oo
_ nntn/2 _ (@800
¥(q) == f(g,¢* Zq TN (1.3)
f(=q) == f(—¢,—¢") = Z g2 = (g5 9)cos (1.4)
where -
(a;9) 00 = H(l —aq"), lg] < 1.
n=0

Ramanujan defines [4,15], on page 338 of his first notebook.

) - newﬁwg(eq mn)<p2(_e—271'm) (L5)

" v2(e V)2 (e V)
He then offered a list of eighteen specific values on pages 338 and 339. Berndt, Chan, and Zhang [5]
established all eighteen of these values. Naika et al. [7] also proved some general theorems for explicit
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evaluations of the a,, , and discovered some new explicit values from it. For more values of a, ,, one
can see [9,10]. Nipen Saikia [13] recently established new characteristics of a, .
Naika et al. [12] have defined by, ,, as,

. newﬁzﬁ(—eﬂr mn)QPZ(_672w\/ﬁ)
m,n — ™ m :
Pa(—eVE g2 VE)
They proved some specific values and established general theorems for explicit evaluation of by, .
In terms of the products of ay, , and by, , defined above, M. S. M. Naika et al. [11] developed generic
formulas for explicit values of Ramanujan’s cubic continued fraction V(q),

(1.6)

v Ll ard frd Srd w7
1 + 1 + 1 + 1 +

and found some particular values of V(q).

f(_6727r %)w(_e—ﬂ mn)
67”(21477”) \/%f(_e—%r\/mnﬁp(_e*ﬂ' ﬁ) ’
where m and n are real values that are positive. We establish numerous properties of the V,,, ,, . We find
explicit values for V;,, , and prove generic formulas for explicit evaluations.
The complete elliptic integrals of the first kind associated with the moduli k, ¥’ := v/1 — k2, [ and
" := +/1 — I2 respectively, where 0 < k,l < 1. For a fixed positive integer n, suppose that
K L

n—

K L’

an:

)

(1.8)

(1.9)

Then (1.9) induces a modular equation of degree n, which is a relation between k and I. Set o = k?
and 8 = [? as suggested by Ramanujan. Then we say that 3 has a degree n over than a.

Define
X(q) = (=4:9")
and .
Gy =2"7¢ 21x(q),
where

Moreover, if ¢ = e~ ™V ™ and f has degree n over a, then

Gz = (4a(l — )= (1.10)
and »
Gnm = (4ﬂ(1 - ﬂ))ﬁ (111)

The major goal of this study is to derive numerous general theorems for explicit evaluations of V,, ,
and Ramanujan’s product of theta-function V;, ,, analogues, as well as several new explicit evaluations.

2. Preliminary Results
We collect various identities in this section that will help us to prove our essential results.

Lemma 2.1 [2, Ch. 17, Entry 11(ii) and Entry 12(iit), pp. 125-124] We have

22 e By(—em) = Va {al—a)}'/", (21)
212 emmalS y(—emme) =z {B(1 - B)}E, (2:2)
V3 eme2 f(e2) = Ve {a(l- o)}V, (23)
VT emme [T = V(A= )P (24)
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Lemma 2.2 [2, Ch. 16, Entry 27(iii) and (iv), pp. 43] We have

:

)
_ 2a a_B
foem = oo™ ias=r

Lemma 2.3 [6, Theorem 2.1] We have,
2=®) _ %) {7/14(11) 9qw4(q3)}
f12(=4%) ¥3(¢°) '
Lemma 2.4 [16] [1}] We have,
[ (=% v (q) {W(g) —5qw2(q10)}
2( :

F6(—q10) = ra)
Lemma 2.5 [6, Theorem 2.2] We have,
FP=a®) _ 49 {¢(q) —3qw(q9)}
f3(=¢"%) ¥?(¢%) | ¥l —av(e®) |
Lemma 2.6 [2, Chapter 19, entry 5(xii), page 231] We have,
1/4
If P = {1608(1 — )(1 = )}/* and Q:= {24=2 1" then

a(l—a)

1 1
Q+5=2V25 - P),

where B is of degree 3 over a.

Lemma 2.7 [2, Chapter 19, entry 13(ziv), page 282] We have,
1/8

If P:= {16aB(1 —a)(1 — B)}'2  and Q := {Bufﬁ)} , then

a(l—o)

1 1
— =2(=-P
Qro=25 -0

where 3 is of degree 5 over a.

Lemma 2.8 [2, Chapter 19, entry 19(iz), page 315] We have,
1/6

If P:={16aB(1 —a)(1 — B)}/® and Q:= {’8(1_5)} , then

a(l—a)

1 1
Q+§+7=2\/§(P+F),

where B is of degree T over a.
Lemma 2.9 [1, Theorem 5.1]

P(=q)

@, then
(q*)

Q*(1+ P =9+ P
Lemma 2.10 [1, Theorem 5.5]

2(_
¥ - qizg—gi) mmd Q7=

©*(q)
v (¢°)’
Q*(1+P?) =5+ P2

then

Lemma 2.11 [8, Theorem 3.2]

I G VI S C) N
pr_qw(—qg) 10 @(qg)’th

Q+PQ=3+P.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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3. Some Properties of V,,, ,,
In this section, we prove some properties of Vi, ;.

Theorem 3.1 We have

Vm,n = Vn,m- (31)

Proof: Employing the equation (2.5) and (2.6), in (1.8), we obtain (3.1). O
Theorem 3.2 We have

Vm,n‘/m,l/n =1 (32)

Proof: Using the equations (2.5) and (2.6) in (1.8), we obtain (3.2). O
Corollary 3.1 We have

Vm,l =1. (33)

Proof: Putting n = 1 in the equation (3.2), we get (3.3) O

Remark 3.1 It can be seen that V,, , has a positive real value and that the values of V, , rise as n
grows when m > 1 using the definitions of (—q), f(—q¢*) and Vp, . As a result of the aforementioned
corollary, Vy,n > 1 for anyn > 1 if m > 1.

Theorem 3.3 We have
Vkm,n

Vnm,k

= V2. (3.4)

Proof: Using the V,, ,, definition, we obtain

Vimm _ ew f (‘5727r Lk) W (—e” n’f)

R ()

(3.5)

Using the Lemma 2.2 in the above equation (3.5) and simplifying using the Theorems 3.1 and 3.2 | we
obtain (3.4). O

Corollary 3.2 We have

VmQ,n = an,me,%- (36)
Proof: Putting £k = m in the Theorem 3.3 and simplifying using (3.2), we obtain (3.6). O
Theorem 3.4 If mn =rs
Vm n ‘/7' S
— = - (3.7)

Vkr,ks Vkm,kn

Proof: Using the V,, ,, definition and the mn = rs formula for positive real numbers m, n, r, s, and k,

we find that
Vkm,kn _ Vkr,ks

Vm,n V;",s

On rearranging the above equation (3.8), we obtain the required result. O

: (3.8)

Corollary 3.3 If mn =rs
Vapnp = Vap2 nVop (3.9)
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Proof: Letting m = p?, n=1,7r = s = p and k = n in above Theorem (3.4), we deduced the equation
(3.9). O

Theorem 3.5 If m, n, r, and s are all positive real values, then

Vms,nr
Vm/n,r/s = (310)

er,ns

Proof: We find that, for any positive real values m, n, and k, using the equation (3.2) in equation (3.4),

Letting k = r/s and again using the equation (3.4) and (3.1) in (3.11), we get (3.10). O
Theorem 3.6 We have

Vin/nm/n = VanVinm/n2- (3.12)

Proof: Using the Theorems (3.2) and (3.5), we get (3.12). O
Theorem 3.7 We have

Vm,me,nz/m = Vn,nvm,rﬂ/m- (313)

Proof: Putting k¥ = m/n in the equation (3.11) and employing Theorems (3.2) and (3.6), we obtain
(3.13). O

Theorem 3.8 We have
Vm,mvn,m2n = Vn,n‘/m,an- (314)

Proof: Employing the Theorems (3.1), (3.2), (3.6) and (3.7), we obtain (3.14). O

4. Some General Theorems on V,, , and their explicit evaluations

We develop some general theorems on V,, , and their explicit evaluations in this section.

Theorem 4.1 If P := {Gn/gng}’?’ and @ := me then

Q+Q12=2\/§{P—]13}. (4.1)

Proof: Using the Lemma (2.1) with the definition of V;;, ,,, we obtain

N ECERIN 42

Employing the above equation (4.2) and the definition of class invariant (1.10), (1.11) in the Lemma (2.6)
with m = 3, we obtain (4.1) O

Corollary 4.1 We have
1/3

1/5,9:{\3/5—1} . (4.3)
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Proof: Putting n = 9 in the above Theorem (4.1), we obtain
Vio + Vg = 2V2{G5GE, - G3°Gy'} (44)

Solving the above equation (4.4) with from the table of Chapter 34 of Ramanujan notebooks [4, p.189,190]
Gs =212 and Gor = 21/12 (V2 - 1)71/3, we obtain (4.3). O

Theorem 4.2 If P := {Gn/5G5n}2 and Q= V53n, then

Q+222{P]13}. (4.5)

Proof: Using the equation (4.2) and the definition of class invariant (1.10), (1.11) in the Lemma (2.7)
with m =5 , we obtain (4.5). O

Theorem 4.3 If P :={G,,;7G7}* and Q:=V},, then
Q+—1+7—2\@ P+—1 (4.6)
= . .

Proof: Using the equation (4.2) and definition of class invariant (1.10), (1.11) in the Lemma (2.8) with
m =7 , we obtain (4.6). O

Theorem 4.4 If

¥(=q) f(=¢*)
=———"— and Q= ————"—, then 4.7
a4 (—q?) q'/5 f(—q°) ®7)
Pt+9
12— Pt £ 1. 4.
‘/3,71 P4(1+P4)a 7é ( 8)
Proof: Employing the definition of V,;, , with m = 3, we get
f=a®)¥(=¢*)
Vin = . 4.9
ST g 2 f(—g8)g(—q) 9
Using (4.9) in the Lemma (2.3) we obtain (4.8). O
Corollary 4.2 We have
1/6
Vas = {2 - \/5} . (4.10)

Proof: Putting n = 3 in the equation (4.7) and from Notebooks [4, p. 327], we have
“’(67:;) = \/6v3 9. (4.11)
G

Employing the equation (2.13) and (4.11), we obtain

P = ql;ﬁfb(iei)‘“’ﬂ = \/946V3. (4.12)

Substituting (4.12) in (4.8), we obtain the required result. O
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Theorem 4.5 If
¥(=9)

=—— and Q:=——"—""—, then
q1/2¢(_q5) ql/Bf(_qlo)
P? 45
v = —— % p2o_1.
BT p2(p2 4 1)’ 7

Proof: Employing the definition of V,;, , with m = 5, we get
v = _JCde)
TS (=q0)Y(—q)
Using (4.15) in the Lemma (2.7) we obtain (4.14).

Corollary 4.3 We have
Vss=9—4vV5.

Proof: Putting n = 5 in the equation (4.13) and from Notebooks [4, p. 327], we have
ple’™) _ ./
= \/5V5 - 10.
p(e=m)
Employing the equation (2.14) and (4.17), we obtain

W)
P = e = 5v/5 4 10.

Substituting (4.18) in (4.14), we obtain the required result.

Theorem 4.6 If

p.o YD g0 f(—zQ)

q¥(—¢°) ?3f(—q'8)’
P+3

o= {mprn ) PA

Proof: Employing the definition of V,;, , with m =9, we get
va _ f(_qQ)’(/}(_qg) )
T B (=a¥)Y (=)
Using (4.21) in the Lemma (2.8) we obtain (4.20).

then

Corollary 4.4 We have

where u = V23 + 2

Proof: Putting n = 9 in the equation (4.19) and from Notebooks [4, p. 327], we have

ple™) 3 .
Pe™™) 14 a3+ 1))

Employing the equation (2.15) and (4.23), we obtain
P(=e™") 3u

T (e ) T 2—u
Substituting (4.24) in (4.20), we obtain the required result.

P

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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Gn/m
Vin = { o } (4.25)

Theorem 4.7 We have

Proof: Employing the Lemma 2.1 in the definition of V;;, ,, , we obtain

1_ 1/24
Vi = {5(15)} . (4.26)
Using the equation (1.10) and (1.11), we get

By observing the equations (4.26) and (4.27), we obtain (4.25). O

Corollary 4.5 We have
Vn,n = Gr_ﬁl' (428)

Proof: Setting m = n in the above Theorem (4.7) with the value G; = 1, we obtain required result. O

Corollary 4.6 We have

Vi 210 (4.29)
22 = —————— 71 .
{1 + \/5}1/4

Vas = {2—¢§}1/6, (4.30)

Vss = \/52_1, (4.31)
14 (2(—1+ 31313 717

Voo = { TR 3T } : (4.32)

Proof: For (i), we use the values of G4 from [4, p.114, Theorem 6.2.2(ii)]. For (ii) — (iv), we use
corresponding values of G, from [2, p.189-193]. O
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