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differential equations in ℓp space by using measures of noncompactness. The result is demonstrated with an
example.

Key Words: Sequence spaces, measure of noncompactness, infinite system of differential equations,
fixed point theory.

Contents

1 Introduction 1

2 Preliminaries and Background 1

3 Solution of the system (2.3) in ℓp space 4

4 Application 8

1. Introduction

Fixed point theory, differential equations, functional equations, integral and integro-differential equa-
tions all use measures of noncompactness (MNC). The most frequent approaches for examining the ex-
istence of solutions to functional equations (Cauchy initial value problems, systems of infinite linear
equations, and so on) involve fixed point arguments. The Banach contraction principle was utilised by
several authors to establish existence results for a variety of problems [1,12,21,23].

Kuratowski [13] was the first to introduce this concept in 1930. Darbo [8] developed a fixed point
theorem which assures the presence of a fixed point for the so-called condensing operators in 1955, using
Kuratowski’s MNC notion. This is a generalized form of the classical Schauder fixed point theorem and
Banach contraction principle. In recent years, the idea of measure of noncompactness has been successfully
employed in sequence spaces (see [3,5,6,17,18,20]). Several authors investigated the solvability of infinite
systems of second and third order differential equations in different sequence spaces [3,5,6,11,15,16,20,
22,24,25,26].

2. Preliminaries and Background

Let Ω represent the space of all complex sequences x = (xi)
∞
i=1. A sequence space is a vector subspace

of Ω. The set of natural, real, and positive real numbers are denoted by N,R and R
+ respectively.

The Kuratowski measure of noncompactness for a bounded subset P of a metric space X is defined
as

α(P ) = inf

{

δ > 0 : P ⊂ ∪n
i=1Pi, diam(Pi) ≤ δ, for 1 ≤ i ≤ m ≤ ∞

}

,

where diam(Pi) denotes diameter of the set Pi.

Another important measure of non-compactness is the Hausdorff non-compactness measure, which
is defined as
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χ(P ) = inf

{

ǫ > 0 : P has a finite ǫ-net in X

}

.

Let (X, ||.||) be a Banach space, R
+ = [0, ∞), the symbols X̄ and Conv(X) denote closure of X and

convex closure of X respectively. Let ME denote the family of non-empty bounded subsets of E and NE

denote the family of non-empty and relatively compact subsets of E. We now define (MNC) axiomatically
given by Banas and Goebel [4].

Definition 2.1. [4] Let X be a Banach space and E be the bounded subset of X . A function ν : MX →
[0, +∞) is said to be measure of non-compactnes in X if it satisfies the following axioms:

1. The family ker ν = {A ∈ MX : ν(E) = 0} is a nonempty and ker ν ⊂ NX .

2. E1 ⊂ E2 ⇒ ν(E1) ≤ ν(E2).

3. ν(Conv(E)) = ν(E).

4. ν(λE1 + (1 − λE2) ≤ λν(E1). + (1 − λ)ν(E2) for all λ ∈ (0, 1).

5. If (Em) is a sequence of closed sets from MX such that En+1 ⊂ Am and lim
m→∞

ν(Em) = 0, then the

intersection set E∞=
∞
⋂

m=1
Em is non-empty.

Theorem 2.1. [8] Let Ω be a nonempty, closed, bounded and convex subset of a Banach space X and
let T : Ω → Ω be a continuous mapping such that there exists a constant k ∈ [0, 1) with the property
ν(T (Ω)) ≤ kν(Ω). Then T has a fixed point in Ω.

Definition 2.2.(Equicontinuous) Let (G1, d) and (G2, d) be two metric spaces, and T the family of
functions from G1 to G2. The family T is equicontinuous at point l0 ∈ G1 if for every ǫ > 0, there exists
a δ > 0 such that d(g(l), g(l0)) < ǫ for all g ∈ T and all l ∈ G1 such that d(l, l0) < δ. The family is
pointwise equicontinuous if it is equicontinuous at every point of G1.

Definition 2.3. [7]

1. A sequence space X with a linear topology is said to be a K-space if each of the maps pn : X → C

defined by pn(x) = xn is continuous foreach n ∈ N .

2. A K-space is said to be an FK-space if X is a complete linear metric space , that is, X is an
FK-space if X is Frechet space with continuous coordinates

3. A normed FK-space is called a BK-space, that is, a BK-space is a Banach sequence space with
continuous coordinates.

4. A sequence (b(k))∞
k=1 in a linear metric space X is called a Schauder basis for X if for every x ∈ X ,

there exists a unique sequence (λm)∞
m=1 of scalars such that x =

∑∞

m=1 λnb(m).

5. An FK-space X is said to have AK if every sequence x = xm ∈ X has a unique representation
x =

∑∞

k=1 e(k), that is, x = lim
n→∞

x[m]. An FK-space with AK property is also called an AK-space.

Theorem 2.2. [7] Let X be a BK space with AK and monotone norm, Q ∈ MX , Pn : X → X, (n ∈ N)
be the operator (projection) defined by Pn(x1, X2, ...) ∈ X . Then

χ(Q) = lim
n→∞

(

sup
x∈Q

||(I − Pn)(x)||
)

.

In a number of important nonlinear analytic disciplines, infinite systems of differential equations
emerge naturally. For example numerical methods for solving partial differential equations, frequently
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lead to the investigation of infinite system of ordinary differential equations. In recent years, the idea
of measure of noncompactness has been successfully employed in sequence spaces for investigating the
solution of infinite system of second and third order differential equations (see [3,5,6,20,24,25]).

The purpose of this paper is to investigate the existence of the solution of the fourth order differential
equation

D
(4)
i (w) = ki(w, v(w)); i = 1, 2, 3, ... (2.1)

with boundary conditions, vi(0) = v
′

i(0) = v
′

i(W ) = v
′′′

i (W ) = 0, w ∈ [0, W ], D(4)(w) =
d4vi

dw4
in the

sequence space ℓp. The solution is investigated by using the infinite system of integral equations and the
Green,s function [9].

We denote ℓp for p ≥ 1, the Banach sequence space with ||.||p norm defined as:

||x||p = ||(xm)||p =

( ∞
∑

m=1

|xm|p
)1/p

for x = (xm) ∈ ℓp.

In view of the Theorem (2.2), in the Banach sequence space (ℓp, ||.||ℓp
), the Hausdorff measure of

noncompactness χ can be formulated as

χ(B) = lim
n→∞

{

sup
u∈B

(

∑

k≥n

|ek|p
)1/p}

(2.2)

where, v(w) = (vi(w))∞
i=1 ∈ ℓp for each w ∈ [0, W ].

In this study, we consider the following infinite system of fourth order differetial equations

D
(4)
i (w) = ki(w, v(w)); i = 1, 2, 3, ... (2.3)

with boundary conditions, vi(0) = v
′

i(0) = v
′

i(W ) = v
′′′

i (W ) = 0, w ∈ [0, W ].

Let C([0, W ],R) be the space of all real valued continuous functions over [0, W ] and C4([0, W ],R)
be the set of all functions with the fourth continuous derivative on [0, W ]. A function v ∈ C4([0, W ],R)
is a solution of (2.3) if and only if v ∈ C([0, W ],R) is a solution of infinite system of integral equation

vi(w) =

∫ W

0

Y (w, s)ki(s, v(s)) ds, for w ∈ [0, W ] (2.4)

where, ki(w, v) ∈ C([0, W ],R), i = 1, 2, 3, ... The Green’s function associated with the system is given by

Y (w, s) =



















−s2(2Ws − 6Ww + 3w2)

12W
, 0 ≤ w ≤ s ≤ W

−w2(3s2 − 6Ws + 2Ww)

12W
, 0 ≤ s < w ≤ W.

(2.5)

The function satisfies the inequality
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Y (w, s) ≤ W 3

12
. (2.6)

From (2.4) and (2.5), we obtain

vi(w) =

∫ w

0

−w2(3s2 − 6Ws + 2Ww)

12W
ki(s, v(s)) ds +

∫ W

w

−s2(2Ws − 6Ww + 3w2)

12W
ki(s, v(s)) ds.

Differentiating this expression three times, we get

d

dw

(

d2vi

dw2

)

=

∫ w

0

−12W

12W
ki(s, v(s)) ds + 0.

=

∫ w

0

−ki(s, v(s)) ds.

Further, differentiation gives

d

dw

(

d3vi

dw3

)

=
d

dw

∫ w

0

−ki(s, v(s)) ds

= ki(w, v(w)).

Since equation (2.3) can be written as
d

dw

(

dv3
i

dw3

)

= ki(w, v(w)). So, vi(w) as given in equation (2.4)

satisfies equation (2.3). Hence finding existence of solution for the system with boundary conditions is
equivalent to find the existence of solution for the infinite system of integral equations.

Remark: let χX be the Hausdorff measure of noncompactness in the Banach space X , and Ao be an
arbitrary subset of C([0, W ], X) the Banach space of continuous functions, which is equicontinuous on
the interval [0, W ]. Then, Hausdorff measure of noncompactness of Ao is given by [7,15]

χ(Ao) = sup{χX(Ao(w)) : w ∈ [0, W ]}.

3. Solution of the system (2.3) in ℓp space

The following assumptions are made in order to identify the condition under which the system (2.3) has
a solution in ℓp:

(Q1) The functions ki are defined on the set [0, W ] × R
∞ and take real values (i = 1, 2, 3, ...).

(Q2) The operator k defined on the space [0, W ] × ℓp as

(w, v) → (kv) = (k1(w, v), k2(w, v), k3(w, v), ...)

is such that the class of all functions ((kv)(w)), w∈ [0, W ] is equicontinuous at every point of the
space ℓp.

(Q3) The following inequality holds:

|ki(w, v1, v2, v3, ...)|p ≤ gi(w) + hi(w)|vi(w)|p, (3.1)
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where gi(w) and hi(w) are real functions defined and continuous on [0, W ], such that
∞
∑

k=1

gk(w) converges

uniformly on [0, W ] and the sequence (hi(w)) is equibounded on [0, W ].

To prove the result, we set

g(w) =
∞
∑

k=1

gk(w),

Go = sup{g(w) : w ∈ [0, W ]},

Ho = sup{hn(w) : n ∈ N, w ∈ [0, W ]}.

Theorem 3.1. Under the hypotheses (Q1) − (Q3), the infinite system of differential equations (2.3) has

at least one solution v(w) = (vi(w)), whenever
H

1/p
0 W 4

12
< 1 such that v(w) ∈ ℓp space, p ≥ 1, for all

w ∈ [0, W ].

Proof: On the space C([0, W ], ℓp) define the operator γ as:

(γv)(w) = ((γv)n(w)) =

(
∫ W

0

Y (w, s)kn(s, v(s)) ds

)

(3.1)

=

(
∫ W

0

Y (w, s)k1(s, v(s)) ds,

∫ W

0

Y (w, s)k2(s, v(s)) ds, ...

)

.

We first show γ maps C([0, W ], ℓp) into itself. Fixing v(w) = (vm(w)) ∈ C([0, W ], ℓp). Then from the
relation (2.6), the hypothesis (Q2) and Hölder’s inequality, we have for an arbitrary w ∈ [0, W ]

(||(γv)(w)||p)p =

∞
∑

i=1

∣

∣

∣

∣

∫ W

0

Y (w, s)ki(s, v(s)) ds

∣

∣

∣

∣

p

≤
∞

∑

i=1

∣

∣

∣

∣

∫ W

0

Y (w, s)ki(s, v(s)) ds

∣

∣

∣

∣

1/p(
∫ W

0

ds

)1/p

≤
∞

∑

i=1

∫ W

0

|Y (w, s)|p|ki(s, v(s))|p ds

(
∫ W

0

ds

)p/q

≤ (W )p/q
∞

∑

i=1

∫ W

0

|Y (w, s)|p[(gi(s) + hi(s)|vj(s)|p] ds

≤
(

W 3

12

)p

(W )p/q
∞

∑

i=1

[
∫ W

0

gi(s) ds +

∫ W

0

hi(s)|vi(s)|p ds

]

=

(

W
3q+1

q

12

)p ∞
∑

i=1

[
∫ W

0

gi(s) ds +

∫ W

0

hi(s)|vi(s)|p ds

]

.

Now, by Lebesgue dominated convergence theorem, we obtain

||(γv)(t)||d(ℓ1) ≤
(

W
3q+1

q

12

)p[
∫ W

0

g(s) ds + H0

∫ W

0

∞
∑

i=1

|vi(s)|p ds

]

≤
(

W 3+1/p+1/q

12

)p[

G0 + H0(||v||p)p

]

.
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Therefore

(||(γv)(t)||p) ≤
(

W 3+1/p+1/q

12

)(

G0 + H0(||v||p)p

)1/p

. (3.2)

Hence γv is bounded on the interval [0, W ]. Thus γ transforms the space C([0, W ], ℓp) into itself.

Now, using (3.2) and above procedure, we get

||v||p ≤
G

1/p
0

[

W 3+1/p+1/q

12

]

{

1 − H0

[

W 3+1/p+1/q

12

]}1/p
= r. (3.3)

Where, the positive number r is the optimal solution of the inequality

(

W 3+1/p+1/q

12

)(

G0 + H0Rp

)1/p

≤ R.

Hence, by (3.2) the operator γ transforms the ball Br ⊂ C([0, W ], ℓp) into itself.

We than show that on Br, γ is continuous. Let t ∈ [0, W ] and ǫ > 0 be arbitrarily fixed then, for any
u = u(t), v = v(t) ∈ Br with ||u − v|| < ǫ, we have

(

||(γu)(w) − (γv)(w)||ℓp

)p

=

∞
∑

i=1

∣

∣

∣

∣

∫ W

0

Y (w, s)[ki(s, u(s)) − ki(s, v(s))] ds

∣

∣

∣

∣

p

≤
∞

∑

i=1

∫ W

0

|Y (w, s)||ki(s, u(s)) − ki(s, v(s))| ds

(
∫ W

0

ds

)p/q

≤ (W )p/q
∞

∑

i=1

∫ W

0

|Y (w, s)|p|ki(s, u(s)) − ki(s, v(s))|p ds.

Now, by using (2.6) and the assumption (Q2) of equicontinuity, we get

(

||(γv)(w) − (γv)(w)||ℓp

)p

≤
(

W
3q+1

q

12

)p ∞
∑

i=1

∫ W

0

|ki(s, u(s)) − ki(s, v(s))|p ds

≤
(

W
3q+1

q

12

)p

lim
m→∞

m
∑

i=1

∫ W

0

|ki(s, u(s)) − ki(s, v(s))|p ds

=

(

W
3q+1

q

12

)p

lim
m→∞

∫ W

0

( m
∑

i=1

|ki(s, u(s)) − ki(s, v(s))|p
)

ds. (3.4)

Further, let us define the function δ(ǫ) as:

δ(ǫ) = sup{|ki(s, u(s)) − ki(s, v(s))| : u, v ∈ ℓp, ||u − v|| ≤ ǫ, w ∈ [0, W ], i ∈ N}.

Then clearly δ(ǫ) → 0 as ǫ → 0, since the family {(kv)(w) : w ∈ [O, W ]} is equicontinuous at every point
v ∈ ℓp.
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Therefore, by (3.4) and using Lebesgue dominant convergence theorem, we obtain

(

||(γv)(w) − (γv)(w)||ℓp

)p

≤
(

W
3q+1

q

12

)p ∫ W

0

δ(ǫ) ds

=

(

W 3+1/p+1/q

12

)p

(δ(ǫ))p.

This implies that the operator γ is continuous on the ball Br.

Further since Y (w, s) as defined in (2.5) is uniformly continuous on [0, W ]4, so by definition of operator γ,
it is easy to show that {γu : u ∈ Br} is equicontinuous on [0, W ]. Let Br1

= Conv(γBr), then Br1
⊂ Br

and the functions from the set Br1
are equicontinuous on [0, W ].

Let E ⊂ Br1
, then E is equicontinuous on [0, W ]. If v ∈ E is a function then for arbitrarily fixed

w ∈ [0, W ], we have by assumption (Q3)

∞
∑

i=f

∣

∣

∣

∣

(γv)i(w)

∣

∣

∣

∣

p

=

∞
∑

i=k

∣

∣

∣

∣

∫ W

0

Y (w, s)ki(s, v(s)) ds

∣

∣

∣

∣

p

≤
∞

∑

i=f

(
∫ W

0

|Y (w, s)||ki(s, v(s))| ds

)p

.

Applying Hölder’s inequality and (2.5), we get

∞
∑

i=f

∣

∣

∣

∣

(γv)i(w)

∣

∣

∣

∣

p

≤
∞

∑

i=f

(
∫ W

0

|Y (w, s)|p|ki(s, v(s))|p ds

)(
∫ W

0

ds

)p/q

≤
(

W
3q+1

q

12

)p ∞
∑

i=k

(
∫ W

0

|ki(s, v(s))|p ds

)

.

Again, using the Lebesgue dominant convergence theorem and the assumption (Q2), we derive the fol-
lowing inequality

∞
∑

i=f

∣

∣

∣

∣

(γv)i(w)

∣

∣

∣

∣

p

≤
(

W
3q+1

q

12

)p ∞
∑

i=f

(
∫ W

0

[

gi(s) + hi(s)|vi(s)|p
]

ds

)

=

(

W
3q+1

q

12

)p(
∫ W

0

( ∞
∑

i=f

gi(s)ds

)

+

∫ W

0

( ∞
∑

i=f

hi(s)|vi(s)|p ds

))

≤
(

W
3q+1

q

12

)p(
∫ W

0

( ∞
∑

i=f

gi(s)ds

)

+ H0

∫ W

0

( ∞
∑

i=f

|vi(s)|p ds

))

.

Taking supremum over all v ∈ E, we obtain

sup
v∈E

∞
∑

i=f

∣

∣

∣

∣

(γv)i(w)

∣

∣

∣

∣

p

≤
(

W
3q+1

q

12

)p(
∫ W

0

( ∞
∑

i=f

gi(s)ds

)

+ H0 sup
v∈E

∫ W

0

( ∞
∑

i=f

|vi(s)|p ds

))

.

As E is the set of equicontinuous functions on I, so using the definition of Hausdorff measure of non-
compactness in ℓp space and by above Remark, we get by Hölder’s inequality

(

χ(γE)

)p

≤ H0

(

W 4

12

)p
(

χ(E)
)p

.

=⇒
(

χ(γE)

)

≤ H
1/p
0

(

W 4

12

)

(

χ(E)
)

.
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If H
1/p
0

(

W 4

12

)

< 1, that is H
1/p
0 W 4 < 12.

Then by Theorem (2.1), the operator γ on the set Br has a fixed point, which completes the proof of the
theorem.

Now since the system of integral equations (2.4) is equivalent to the boundary value problem (2.3),
we conclude that the infinite system of fourth order differential equations

D
(4)
i (w) = ki(w, v(w)); i = 1, 2, 3, ...

with boundary conditions, vi(0) = v
′

i(0) = v
′

i(W ) = v
′′′

i (W ) = 0, w ∈ [0, W ],

has atleast one solution v(w) = (v1(w), v2(2), ...) ∈ ℓp such that vi(w) ∈ C4([0, W ], ℓp),
(i = 1, 2, 3, ...) for any w ∈ [0, W ], if the assumptions of the Theorem (3.1) are satisfied.

Note: We choose value of W in such a way that H
1/p
0 W 4 < 12 is satisfied.

4. Application

In this section, we demonstrate our result with the help of the following example.

Example 3.2. Consider the following infinite system of fourth order differential equations in l2

d4vm

dw4
=

√
we−u2

m
(w)

(2m + 1)2
+

∞
∑

l=m

cosw

l3m2

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)
, m ∈ N, w ∈ [0, W ], for m = 1, 2, ... (4.1)

Solution. Compare (4.1) with (2.3) we have

km(w, v) =

√
We−u2

m
(w)

(2m + 1)2
+

∞
∑

l=m

cos w

l3m2

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)
. (4.2)

Assumption (Q1) of the Theorem (3.1) is clearly satisfied. We now show that assumption (Q2) of the
Theorem (3.1) is also satisfied that is

|km(w, v)|2 ≤ gn(w) + hn(w)|vn|2. (4.3)

Using Cauchy-Schwarz inequality and equation (4.1), we have

|km(w, v)|2 =

∣

∣

∣

∣

√
We−u2

m
(w)

(2m + 1)2
+

∞
∑

l=m

cos w

l3m2

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)

∣

∣

∣

∣

2

≤ 2

{

We−2u2
m

(w)

(2m + 1)4
+

[ ∞
∑

l=m

cos w

l3m2

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)

]2}

≤ 2We−2u2
m

(w)

(2m + 1)4
+ 2

( ∞
∑

l=m

cos2 w

l6m4

) ∞
∑

l=m

[

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)

]2

.

Now, using the fact that

ao(1 − aobo)

bo
≤ 1

(2bo)2
, bo 6= 0 (4.4)
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for any real ao, bo, we have

|km(w, v)|2 ≤ 2We−2u2
m

(w)

(2m + 1)4
+ 2

(

cos2 w

m4
× π6

945

)[

v2
m +

∞
∑

l=m

vl(w)[1 −
√

(l − m)vl(w)]
√

(l − m + 1)

]2

≤ 2We−2u2
m

(t)

(2m + 1)4
+

2π6 cos2 w

945m4
v2

m +
2π6 cos2 w

945m4
×

∞
∑

l=m+1

1

(2
√

(l − m))2

≤ 2We−2u2
m

(w)

(2m + 1)4
+

π8 cos2 w

15120m4
+

2π6 cos2 w

945m4
v2

m.

Hence, by taking

gn(w) =
2We−2u2

m
(w)

(2n + 1)4
+

π8 cos2 w

15120m4

and

hn(w) =
2π6 cos2 w

945m4
,

it is clear that gn(w) and hn(w) are real valued continuous functions on [0, W ]. Also

|gn(w)| =
2W

(2m + 1)4
+

π8

15120m4

≤
(

2W +
π8

15120m4

)

1

m4
for all w ∈ [0, W ].

Therefore by Weirstrass test for uniform convergence of the function series we see that
∑

l≥1

gl(w) is uni-

formly convergent on [0, W ]. Further we have

|hn(w)| =
2π6

945m4
for all w ∈ [0, W ].

Thus the function sequence (hi(w)) is equibounded on [0, W ]. Thus (4.2) is satisfied and hence the as-
sumption (Q3) is satisfied.

Also

Go = sup

{

∑

k≥1

gk(w) : w ∈ [0, W ]

}

=

(

2W +
π8

15120m4

)

× π2

90

and

Ho = sup

{

hi(w) : w ∈ [0, W ]

}

=
2π6

945
.

The assumption (Q2) is also satisfied as for fixed w ∈ [0, W ] and (vi(w)) = (v1(w), v2(w), ...) ∈ ℓ2.
We have

∞
∑

i=1

|ki(w, v)| =

∞
∑

i=1

gi(w) +

∞
∑

i=1

hi(w)|vi(w)|2

≤ Go + Ho

∞
∑

i=1

|vi(w)|2.
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Hence, the operator k = (ki) transforms the space ([0, W ], ℓ2) into ℓ2. Also for ǫ > 0 and u = (ui), v = (vi)
in ℓ2 with ||u − v||2 < ǫ, we have

(

||(ku)(w) − (kv)(w)|||2
)2

=
∞

∑

m=1

|km(w, u(w)) − km(w, v(w))|2

=

∞
∑

m=1

{∣

∣

∣

∣

∞
∑

l=m

cos wul(w)[1 −
√

l − mul(w)]

l3m2
√

l − m + 1

− cos wvl(w)[1 −
√

l − mvl(w)]

l3m2
√

l − m + 1

∣

∣

∣

∣

2}

≤
∞
∑

m=1

{(

1

m4

)
∣

∣

∣

∣

∞
∑

l=m

cos wul(w)[1 −
√

l − mul(w)] − cos wvl(w)[1 −
√

l − mvl(w)]

l3
√

l − m + 1

∣

∣

∣

∣

2}

≤
∞
∑

m=1

{(

1

m4

)
∣

∣

∣

∣

∞
∑

l=m

(ul(w) − vl(w))[1 − (l − m)(ul(w) + vl(w))]

l3
√

l − m + 1

∣

∣

∣

∣

2}

.

Using Hölder’s inequality, we obtain

(

||(ku)(w) − (kv)(w)||2
)2

≤
∞
∑

m=1

{

1

m4

(

∞
∑

l=m

1

l6

)

∞
∑

l=m

∣

∣

∣

∣

(ul(w) − vl(w))[1 − (l − m)(ul(w) + vl(w))]√
l − m + 1

∣

∣

∣

∣

2}

≤ π6

945

∞
∑

m=1

{

1

m4

∞
∑

l=m

|(ul(w) − vl(w))|2
∣

∣

∣

∣

[1 − (l − m)(ul(w) + vl(w))]√
l − m + 1

∣

∣

∣

∣

2}

≤ π6

945

∞
∑

m=1

{

1

m4

[

|um(w) − vm(w)|2 +
∞
∑

l=m

|(ul(w) − vl(w))|2
∣

∣

∣

∣

[1 − (l − m)(ul(w) + vl(w))]√
l − m + 1

∣

∣

∣

∣

2]}

.

Using (4.4), we get

(

||(ku)(w) − (kv)(w)||2
)2

≤ π6

945

∞
∑

m=1

{

1

m4

[

|um(w) − vm(w)|2 +
π2

48

]}

≤
(

π8

48

)

ǫ2.

Thus, for any w ∈ [0, W ], we have

||(ku)(w) − (kv)(w)||2 ≤ π4ǫ

48
.

Therefore the family {(kv)(w) : w ∈ [0, W ]} is equicontinuous.

Finally, it is seen that the condition H
1/p
0 W 4 < 12 is satisfied for all W ≤ 1.7030725.

So, by Theorem (3.1), there exists at least one solution to given infinite system of differential equation
(4.1) in C([0, W ], ℓ2).
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